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We propose a cooperative method for resource allocation with power control in a multihop Direct 
Sequence Code Division Multiple Access Wireless Visual Sensor Network (WVSN). Typical multihop WVSNs 
consist of visual sensors that record different scenes and relay nodes that retransmit video data until 
the base station is reached. The error prone wireless environment contributes to the end-to-end video 
quality degradation. Moreover, the limited battery life span of the network nodes poses challenges 
on the management of power consumption. The different resource requirements of the WVSN nodes 
necessitate a quality-driven and power-aware resource allocation mechanism. We formulate the joint 
Quality Enhancement and Power Control problem based on a utility function that reflects both the benefit 
in terms of video quality and the cost in terms of transmission power. This function is employed by the 
Nash Bargaining Solution, which achieves higher fairness in terms of end-to-end video quality among 
all nodes. For the fairness assessment, a new metric is introduced. The experiments demonstrate the 
effectiveness of the proposed approach and explain the video quality-power consumption tradeoff as 
well as the resulting fairness-power consumption tradeoff.
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1. Introduction

Recent advances in video coding technologies and wireless 
communications have provided several applications and systems, 
such as healthcare, public safety systems, environmental monitor-
ing and traffic analysis [1]. A simple traditional Wireless Visual Sen-
sor Network (WVSN) is usually organized in a centralized manner 
and consists of: a) battery-constrained visual sensors with wireless 
communication capability, and b) a Base Station (BS) that collects 
the information from the sensors and decides on the resource al-
location among all network nodes. Since the transmission range of 
a visual sensor node is limited, the recorded video sequences may 
need to be transmitted using fixed relay nodes until they reach 
the BS via multiple hops. The relay nodes utilize a decode-and-
forward protocol. In this context, each WVSN node transmission 
causes interference to other transmitting nodes, which lie within 
its transmission range, leading to the degradation of the received 
video quality at the BS.
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Taking into account the fact that the nodes have different re-
source requirements and that it is crucial to optimize communica-
tion in order to minimize energy consumption and simultaneously 
maintain an acceptable quality of the application requirements [2], 
the establishment of an efficient cross-layer method that considers 
all these aspects is a challenging task. Most of the works in the 
recent literature consider the optimization of one of the aforemen-
tioned aspects (e.g. power consumption).

Despite the QoS provisioning, a power management policy is 
required so that the lifetime of each battery-powered node is pro-
longed. At the same time, the interference among nodes that trans-
mit simultaneously causes quality degradation, which should not 
be neglected by the power allocation method. Particularly, a source 
node’s video may suffer from interference caused by other source 
nodes in its cluster. Furthermore, in a multihop WVSN, the re-
lay nodes can interfere with other source and/or relay nodes. As 
a result, the video sequence experiences successive degradation 
across the multihop path to the BS. Therefore, in order to avoid 
such degradation, it is required to control not only the source 
and channel coding rates and the used transmission power of the 
source nodes, but also the channel coding rates and the transmis-
sion power of the relay nodes. This control is performed at the BS, 
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which collects all information from both source and relay nodes 
and manages the resource allocation. Nevertheless, the need to op-
timize both the end-to-end video quality and the power consump-
tion has motivated us to propose a game-theoretic bi-objective 
approach that provides joint Quality Enhancement and Power Con-
trol (QEPC) for multihop WVSNs.

In the present work, we study the resource allocation prob-
lem in cooperative multihop Direct Sequence Code Division Multiple 
Access (DS-CDMA) WVSNs. Without cooperation, the nodes would 
simply act selfishly and greedily, thus would use the highest avail-
able transmission power in order to achieve the highest possible 
video quality at the BS. However, this would result both in exces-
sive power consumption and intra-cell interference, consequently 
leading to quality degradation and higher transmission power con-
sumption. We consider that some of the recorded scenes are corre-
lated in terms of their position and the levels of motion. Hence, the 
correlated groups of visual sensors have similar resource require-
ments, which allows us to accordingly cluster the visual sensors 
and, thus, reduce the computational complexity of the resource al-
location optimization problem. Furthermore, the network resources 
(transmission power, source and channel coding rates) have to be 
optimally allocated to the source and relay nodes using a quality-
aware strategy, so as to maintain the end-to-end distortion at a 
low level for all source nodes. Moreover, power consumption con-
trol is dictated for all WVSN nodes due to limited resources [2,3].

Briefly, our aim is to define an effective approach for the bi-
objective problem of jointly enhancing the end-to-end video qual-
ity and the total power consumption in WVSNs. To this end, in the 
present work, we assume that our WVSN nodes form coalitions 
and cooperate to establish a mutually acceptable resource alloca-
tion. We aim to satisfy both the objectives of enhanced end-to-end 
video quality and reduced power consumption by formulating a bi-
objective utility function that acts as a pricing scheme by including 
both a benefit term and a cost term.

1.1. Related work

The problem of the resource allocation in multiple network 
nodes for effective video streaming has been examined in many 
studies [4–11] and various cross-layer techniques have been pro-
posed. Some of them [4–8] focus on the resource allocation (e.g. 
bit rate or joint source and channel coding rate) for the optimiza-
tion of a single objective, such as throughput maximization. Other 
works do not take into account the resulting power consumption, 
like the rate-distortion scheme in [12] which adapts the trans-
mission policy and encoding rate to channel capacity and vary-
ing correlation level of multiple scenes. Despite their effectiveness, 
these single objective methods do not address the crucial issue of 
QEPC.

On the other hand, other studies in the recent literature [9–11,
13,14] aim to allocate the network resources by utilizing bi-
objective approaches. In [9], the joint power control and schedul-
ing problem in wireless multihop networks is formulated as a total 
transmission power minimization problem, while QoS for individ-
ual sessions, in terms of payload rate and bit error rate, is guaran-
teed. Resource allocation schemes that enable relay node selection 
of each user in a cooperative network and formulate a bi-objective 
problem, aiming at the optimization of power consumption and 
throughput experienced by each node are proposed in [10]. Rec-
ognizing the fact that power control itself cannot meet the QoS 
requirements, a joint channel and power allocation scheme for 
cognitive radio networks is proposed in [11]. That scheme is de-
signed to maximize the overall throughput, while guaranteeing the 
proportional fairness and power distribution among the cognitive 
radio users.
A joint bi-objective optimization problem was formulated in 
[13] for a Orthogonal Frequency Division Multiple Access (OFDMA) 
system with the decode-and-forward relaying strategy. The formu-
lated problem was transformed in a two-stage problem in order 
to be solved. A similar bi-objective problem was proposed in [14]
in order to solve the admission control and fair resource alloca-
tion problem in a wireless multi-user (of constant and variable bit 
rate) amplify-and-forward relay network. Due to its combinatorial 
hardness, the authors proposed its transformation into an equiva-
lent one-stage optimization problem, which can be solved with a 
lower computational complexity.

It is important to note that most of the proposed bi-objective 
problem formulations target at network-related QoS metrics opti-
mization and not at end-to-end quality of the delivered informa-
tion. Furthermore, most of these problem formulations were solved 
by adopting problem decomposition techniques. Instead of explic-
itly optimizing network-related parameters, such as bit error rate 
or throughput, we propose a quality-driven optimization scheme, 
which aims at maximizing the delivered video quality in terms of 
the Peak Signal-to-Noise Ratio (PSNR) under the network’s power 
constraints across the physical, the data link and the application 
layer. Moreover, we are employing the Particle Swarm Optimiza-
tion algorithm that does not require modifications of the original 
optimization problem.

Both cooperative and non-cooperative game theoretic frame-
works have been proposed for efficient resource allocation in 
wireless networks following either a centralized or a distributed 
approach. Furthermore, various game-theoretic pricing schemes 
regulate the resource usage through a compromise between the 
users’ desire to optimize their own performance and the net-
work’s general need for efficient resource allocation. In this con-
text, a Nash equilibrium based power control method that assumes 
a wireless relay-assisted network is proposed in [15], where the 
users aim to optimize their transmission rate through the power 
allocation process, while the relay node aims at maximizing its 
total rate. The users make payments to the relay according to pre-
specified prices that enhance the relay’s gain, as they competitively 
adjust their transmission powers in order to increase the received 
signal-to-noise ratio. Another approach [16], also utilizes the Nash 
equilibrium with a joint pricing scheme in a Code Division Mul-
tiple Access (CDMA) based network, so that both the utilities of 
the users and the network utility are optimized. The users’ util-
ity comprises two factors related to the achieved throughput and 
the energy consumption, while the network utility reflects the net-
work energy consumption.

Many cooperative schemes utilize the Nash Bargaining Solution
(NBS) [17] to reach a beneficial single objective resource allocation 
for all nodes [4,6–8,11,13,18–20]. Cooperative resource allocation 
schemes are a promising approach for competitive wireless envi-
ronments that require proportional fairness and resource allocation 
among the nodes. An approach based on NBS is applied on OFDMA 
Cognitive Radio (CR) networks [11] and optimizes the overall sys-
tem throughput by assigning higher priority to primary CR users, 
while guaranteeing a minimum throughput for both primary and 
secondary CR users. The problem of fair resource sharing between 
two selfish nodes in cooperative relay networks is considered and 
solved by using NBS in [20]. An interesting two-stage approach 
that utilizes NBS to ensure fairness in the subcarrier and power 
allocation problem in a relayed uplink OFDMA system is proposed 
in [13]. Another work that formulates Nash bargaining assigns sub-
carriers, transmission powers and transmit precoders to the nodes 
of a multiple-input and multiple-output OFDMA system [19]. Fur-
thermore, a bi-objective NBS-based framework was applied to al-
locate bandwidth for elastic services in high-speed networks with 
fairness and in a distributed manner, while maximizing the net-
work revenue [21]. The previous work [4] was exclusively aiming 
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at the video quality enhancement over a multihop WVSN. An ex-
tension of this work was presented in [22], where the aggrega-
tion of video quality and transmission power was employed. The 
present work moves beyond previous work by providing a novel 
problem formulation based on cooperative Game Theory and by 
providing enhanced fairness in the resource allocation.

Fairness in allocation problems is an issue that has been exten-
sively studied through the years in many areas, notably in social 
sciences, welfare economics, and engineering [23]. However, due 
to the subjective interpretations of the notion of fairness, the dif-
ferent characteristics of allocation problems should be considered. 
In our case, for the evaluation of resource allocation schemes for 
video transmission, a metric that expresses the notion of fairness 
considering the unique video characteristics is required. Several 
approaches have been proposed, which however require the util-
itarian allocation (i.e. the criterion that maximizes the network 
utility) as a reference resource allocation scheme [23–25], or the 
Kalai–Smorodinsky bargaining solution as in [26].

1.2. Contribution of this paper and structure

Related work motivated us to propose a pricing scheme that is 
based on cooperative game theory, and particularly on the NBS. 
NBS has the advantage of satisfying sets of axioms that a fairness 
scheme should ideally satisfy [23,27]. We employ a bi-objective 
utility function that consists of a quality-related benefit term and 
a power-related cost term. These two terms effectively adjust the 
transmission power levels and at the same time result in enhanced 
QoS (in terms of end-to-end video quality). To the best of our 
knowledge, our proposed NBS-based pricing scheme has not been 
considered so far for similar resource allocation problems in the 
literature. Overall, this study moves beyond the state-of-the-art 
baseline by bringing the following contributions.

(i) Bi-objective Cross-layer Problem Formulation based on NBS: Many 
video transmission applications require the assignment of re-
sources by taking into account the multi-layer structure of 
WVSNs. On the one hand, regarding the physical layer, the 
power consumption has to be controlled in order to prolong 
the WVSN lifespan and simultaneously reduce the interference 
among the transmitted signals. On the other hand, as far as the 
application layer is concerned, the distortion of the delivered 
video sequences has to be minimized. In this cross-layer prob-
lem formulation, the allocated resources are the transmission 
power of the source and the relay nodes, the source coding 
rate at the application layer of the source nodes, and the chan-
nel coding rate at the data link layer of both the source and 
relay nodes. In order to solve this problem we propose to 
employ a pricing scheme that is based on cooperative game 
theory, and particularly on the NBS. In this solution, the em-
ployed bi-objective utility function consists of a quality-related
term and a payment term that adjusts the transmission power 
levels and enables the mediation between the nodes’ demands 
for high quality and the minimization of the power consump-
tion.

(ii) Proposing a Fairness metric of the resulting Video Quality: For 
the assessment of the resulting end-to-end video quality, we 
propose a fairness metric that computes the distance of the 
achieved end-to-end video quality from the maximum possi-
ble video quality for each node (which could be achieved in 
an error-free transmission) with no reference to other resource 
allocation schemes and provides an overall assessment of the 
fairness of the resulting video quality in the network.

(iii) Investigating the Video Quality-Power Consumption and Fairness-
Power Consumption Tradeoffs: The utility function that is em-
ployed by the proposed NBS is formulated with the aim of 
Table 1
Notations and parameters of the system model.

Notation Description

(αk, βk) Rate-distortion model parameters of a source node k.
(γ , δ) Weights of the QEPC tradeoff.
ρh,n Bit error probability for node n at the h-th hop.
ρn End-to-end bit error probability for node n.
φ Fairness index.
k = 1,2, . . . , K Index for source nodes.
m = 1,2, . . . , M Index for relay nodes.
n = 1,2, . . . , N Index for network nodes.
j = 1,2, . . . , |J| Index for interfering nodes at hop h.
E{Ds+c,k} Expected distortion for source node k.

En

I0 + N0
Energy-per-bit to MAI and noise ratio for node n.

L Spreading Code Length.
PSNRk Peak signal-to-Noise ratio for source node k.
RS

c,k Channel coding rate for source node k.

RR
c,m Channel coding rate for relay node m.

R y | y ∈ {k,m,n} Total transmission bit rate.(with N = K + M).

SS
k Transmission power of source node k.

SR
m Transmission power of relay node m.

P S
k Received power from source node k.

P R
m Received power from relay node m.

Rs,k Source coding rate for source node k.

W Channel bandwidth.

compromising the video quality and transmission power con-
sumption tradeoff. An overall inspection of this tradeoff has 
demonstrated significant results the consumed power and the 
video quality gain. Moreover, since in this multi-access system 
the resource allocation has an immediate effect on all nodes, 
a study on the fairness among nodes is required. Thus, we in-
vestigate the resulting fairness versus the transmission power 
consumption on the WVSN.

The remainder of the paper is organized as follows. Section 2
describes the considered system model. The QEPC problem for-
mulation and its constraints are detailed in Section 3, while the 
NBS-based optimization criteria and the employed optimization al-
gorithm are detailed in Section 4. The fairness metric is introduced 
in Section 5. The experimental results are presented in Section 6. 
Finally, Section 7 concludes the paper.

2. Description of the considered system model

In this section, we describe the considered model of our system. 
In order to enhance the reader’s convenience, Table 1 summarizes 
the frequently used notations and parameters of our system.

2.1. DS-CDMA based system architecture

We consider a DS-CDMA based network, where each node is 
associated with a spreading sequence of length L. Furthermore, Bi-
nary Phase Shift Keying (BPSK) is used as the modulation method. 
Let N be the number of nodes in a synchronous single-path 
BPSK channel, and An , bn(i), sn , un the amplitude, symbol stream, 
spreading code and noise of node n respectively. For the i-th bit, 
the received signal can be expressed as:

r(i) = √
q1 b1(i) s1 +

N∑
n=2

√
qn bn(i) sn + un , (1)

with n = 1, 2, . . . , N , i = 1, 2, . . . , L and q is the received normal-
ized power assigned per bit i. The receiver has knowledge of the 
spreading codes of all nodes and uses a bank of matched filters to 
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Fig. 1. Example of a multihop WVSN. The video data from the source nodes of Clus-
ter 1 reach the Base Station after two hops through Relay Node 1 and Relay Node 3. 
The outlined boxes show the set of interfering nodes J per hop for the source nodes 
of Cluster 1.

filter out the other nodes’ signals. We assume the worst-case sce-
nario where no interference is rejected and all interference is seen 
as noise by the receiver. The received power of a transmitting node 
n (in W) at the receiver is

Pn = En Rn , (2)

where En is the energy-per-bit and Rn the total transmission bit 
rate for source and channel coding in bits/sec, which is defined 
as:

Rn = Rs,n

Rc,n
, (3)

where Rs,n is the source coding rate in bits/sec and the dimension-
less number Rc,n is the channel coding rate. If we assume that the 
total transmission bit rate is constant, then a node that transmits 
with a lower source coding rate is able to use more bits for the 
channel coding. It can transmit with lower power and, as a conse-
quence, it causes less interference to other nodes’ transmissions.

We assume that the BS (receiver) is out of the transmission 
range of the source nodes, thus relay nodes are required to for-
ward the video data to the BS. Every source node sends its video 
data to the corresponding relay node of the cluster. Then, the relay 
node forwards the video data of all source nodes of the cluster to 
another relay node or to the BS. Fig. 1 depicts such an example of a 
WVSN that comprises source nodes organized in clusters according 
to their location. The transmission routes are predetermined based 
on the location of the WVSN nodes and the source nodes transmit 
the recorded videos to the BS via multiple hops. The video data 
from the source nodes of Cluster 1 reach the BS after three hops 
through Relay Node 1 and Relay Node 3. The shadowed boxes show 
the set of interfering nodes per hop for the source nodes of Clus-
ter 1. Particularly, in the first hop the interference is caused by the 
source nodes within a cluster. In the second hop the nodes from 
Cluster 3 cause interference to the transmitted signal, and at last 
Relay Node 2 causes interference in the last hop. So, we denote 
with J the set that consists of the interfering nodes for each hop h, 
and it is assumed that |J| ≤ N , where |.| is the cardinality of a set. 
As in the previous example, we assume that interference exists on 
each link across the path to the BS from nodes that are in the 
effective transmission range. Similar to other approaches [28], we 
model interference as Additive White Gaussian Noise (AWGN). The 
energy-per-bit to Multiple Access Interference (MAI) and noise ratio 
is different in each link, depending on the nodes causing interfer-
ence to the considered node n and can be expressed for the h-th 
hop of a path as follows:

En

I0 + N0
=

Pn

Rn
|J|∑

j=1, j �=n

P j

W
+ N0

, (4)

where I0/2 is the two sided noise power spectral density due to 
MAI, N0/2 is the two sided noise power spectral density of the 
background noise in W/Hz, W is the total bandwidth in Hz and P j
is the received power from node j ∈ J that causes interference to 
node n.

Depending on the terrain profile, different radio propagation 
models could be employed to calculate the required transmitted 
power of a node. For the present work, we assume clear line of 
sight and, therefore, employ a mixed scenario that consists of two 
propagation models; the Free Space (FS) and the Two Ray Ground Re-
flection (TRGR) models [29]. Particularly, for a given received power 
Pn at a distance y from a node n, the required transmitted power 
Sn is calculated based on the FS model when the communication 
distance is under a threshold (which is called the crossover dis-
tance y0), otherwise it is calculated based on the TRGR model, i.e.

Pn(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sn
Gt Grλ

2

(4π)2 y2l
if y ≤ y0 (FS Model)

Sn
Gt Grh2

t h2
r

y4l
if y > y0 (TRGR Model)

(5)

where y is the communication distance, l ≥ 1 is the system loss 
factor not related to propagation, λ the wavelength of the carrier 
signal, (Gt , Gr) and (ht , hr) are the antenna gain and height for the 
transmitter and the receiver, respectively. The cross-over distance 
y0 is calculated by equating the expressions for the FS and the 

TRGR model, i.e. y0 = 4πhrht
√

l

λ
. The used model takes advantage 

of the better accuracy of the TRGR model for long distances while 
it avoids its poor performance for short distances.

2.2. Channel coding

For the channel coding of the transmitted signal Forward Error 
Correction (FEC) is employed. In this work, we use the Rate Compat-
ible Punctured Convolutional codes (RCPC), which map information 
to code bits sequentially with an encoding process that involves 
convolution of the information data with a generator sequence. 
However, other error correction codes could be used instead.

The end-to-end bit error probability ρn for a node n in a mul-
tihop transmission of the video across an H-hop path is [30]:

ρn = 1 −
H∏

h=1

(1 − ρh,n) , (6)

where ρh,n is the bit error probability at hop h for the node n. 
When we refer to bit error probability at hop h, we mean the bit 
error probability for the transmission over the link that is counted 
as hop h. The different sources of interference are considered at 
each hop, i.e. at each video stream transmission over a link.1

Furthermore, the Viterbi upper bound for the bit error proba-
bility ρh,n can be given by:

1 This becomes clear from Eq. (8), where the pairwise error probability depends 
on the energy-per-bit to MAI and noise ratio per hop.
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ρh,n ≤ 1

T

∞∑
d=dfree

cdρd (7)

where T is the period of code, ρd is the pairwise error probability 
in choosing between two paths of mutual Hamming distance d, 
dfree is the minimum Hamming distance between two different 
coded sequences (free distance of the code) and cd is the informa-
tion error weight [31]. Considering an AWGN channel with BPSK 
modulation, the pairwise error probability from Eq. (7) is given 
by:

ρd = erfc

(√
d Rc

En

I0 + N0

)
(8)

where Rc is the channel coding rate and erfc(.) is the complemen-
tary error function given by:

erfc(z) =
(

2

∞∫
z

exp(−t2)dt
)
/
√

π. (9)

2.3. Source coding and video distortion estimation

For the compression of the video sequences used for transmis-
sion, the H.264/AVC video coding standard is utilized. H.264/AVC 
allows to maintain the same level of video quality as previous 
codecs at a significantly lower bit rate. The H.264/AVC standard 
covers two layers in order to offer a network-friendly design to 
both real-time and non-conversational applications. The first is the 
Video Coding Layer (VCL), which represents the video content as 
coded information achieving a high level of compression. The other 
is the Network Abstraction Layer (NAL), which formats the VCL data 
and provides information about the transmission of the encoded 
data over the network [32]. The VCL of H.264/AVC utilizes block-
based hybrid video coding.

Due to random errors that occur during the multihop transmis-
sion, the video distortion Ds+c,k of a source node k is a random 
variable. Thus, we calculate the value of the expected distortion 
E{Ds+c,k}. In order to calculate the expected distortion as a func-
tion of the bit error probabilities after channel decoding, we use 
the Universal Rate-Distortion Characteristics (URDCs) [33]. By defi-
nition, the URDC model provides an estimation of the expected 
video distortion due to compression and channel errors given a bit 
error probability for a specific source coding rate. This means that 
URDCs take into consideration the error propagation in the video 
stream in a macroscopic manner.

Owing to Eq. (6), the expected distortion due to lossy compres-
sion and channel errors can be derived by the model for the URDC 
of each source node k used in [6,8,34]:

E{Ds+c,k} = αk

[
log10

(
1

1 −
H∏

h=1
(1 − ρh,k)

)]−βk

, (10)

where parameters αk and βk are positive numbers that depend 
on the motion level of the transmitted video sequence and the 
source coding rate and may vary in time. Values of αk for high 
motion video sequences are generally greater than those for low 
motion video sequences. These parameters are determined using 
mean square optimization from a few (E{Ds+c,k}, ρk) pairs.

For the estimation of E[Ds+c,k] at the encoder, the Recursive 
Optimal per-Pixel Estimate (ROPE) algorithm [35] is used. The ROPE 
algorithm recursively calculates in real time the first and second 
moments of the decoder reconstruction of each pixel, while it ac-
curately takes into account all relevant factors that cause video 
distortion, namely quantization errors, packet losses, error prop-
agation and error concealment. The algorithm for all this process 
is detailed in [36]. Since parameters αk , βk depend on the varying 
motion levels of the recorded scenes, they need to be recalculated 
when the motion changes significantly. For small motion varia-
tions, parameters αk , βk values change slightly, thus the nodes may 
continue using the same WVSN resources. Besides, in such cases 
a resource reallocation would slightly affect the end-to-end qual-
ity and the total transmission power consumption. A continuous 
recalculation (e.g. per frame) of parameters αk , βk would burden 
our system with a high computational cost. Hence, we propose a 
periodic calculation of these parameters. If the recalculation of pa-
rameters αk , βk reveals a significant change of their values, then 
we transmit them to the BS. For transferring these parameters 
from each source node to the BS, we propose a low-cost in-band 
solution. Note that only a few bytes are enough for representing 
both αk and βk , therefore this information can be piggybacked on 
the header of data packets. In this way, we minimize the cost since 
we do not burden the wireless medium with extra packets.

From Eqs. (3)–(10), it follows that E{Ds+c,k} of the video of 
source node k is a function of the source coding rate Rs,k , the 
channel coding rate RS

c,k , the received power P S
k and the channel 

coding rate RR
c,m and the received power P R

m of each relay node m
that retransmits the video of k across its path to the BS. Moreover, 
due to interference (see Eq. (4)), the expected video distortion also 
depends on the received powers from the interfering nodes per 
hop.

3. Joint Quality Enhancement and Power Control: problem 
formulation

In this section, we describe the constraints and the formulation 
of the problem of the joint QEPC in a multihop DS-CDMA WVSN.

3.1. Constraints

Regarding the system which is described in Section 2, we make 
assumptions that impose the following constraints on the admissi-
ble values of source and channel coding rates, transmission bitrates 
and transmission powers of the considered WVSN’s source and re-
lay nodes.

Letting A be the discrete set of |A| valid source and channel 
coding rate pairs for each source node k and B the discrete set of 
|B| channel coding rate choices for each relay node m, we set that 
our resource allocation scheme is subject to:

(Rs,k, RS
c,k) ∈ A = {(R1

s , RS,1
c ), . . . , (R |A|

s , RS,|A|
c )}, (11)

R1
s

RS,1
c

= R2
s

RS,2
c

= . . . = R |A|
s

RS,|A|
c

= Rk ∀k , (12)

RR
c,m ∈ B = {RR,1

c , . . . , RR,|B|
c } . (13)

It is also important to take into consideration that each relay 
node m needs to use a sufficient bit rate for the simultaneous for-
warding of all received video data. This is related to the source 
coding rate of the transmitting source nodes. Since the relay nodes 
channel decode-and-forward the received video data, it is required 
to have enough bits for both the video data and the redundancy 
bits of the channel coding. Hence, the transmission bit rate of a 
relay m is

Rm ≥
∑
z∈Z

Rs,z

RR
c,m

, (14)

where Z is the set of the source nodes that use relay node m for 
their data forwarding and RR

c,m is the channel coding rate for relay 
node m.
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A last constraint imposed on the system concerns the admissi-
ble transmission power for the source and relay nodes. Particularly, 
both types of WVSN nodes have a lower and an upper transmission 
power bound, i.e. SS

k ∈ [
SS

min, SS
max

]
and SR

m ∈ [
SR

min, SR
max

]
. Obvi-

ously, using Eq. (5), this constraint is transformed into a constraint 
on the received power levels.

3.2. Problem formulation

In this context, we propose a technique that offers a prioritized 
enhancement of the end-to-end video quality and manages the 
transmission power allocation according to the importance of the 
video sequences of the WVSN source nodes. It aims at optimally 
allocating the source and channel coding rates and the transmit-
ted powers among the source nodes of a WVSN and at the same 
time the necessary channel coding rates and transmitted powers 
to the relay nodes. For the assignment of the available resources, 
a compromise between the power consumption and the distortion 
of the delivered video sequences has to be established. Therefore, 
we define the bi-objective QEPC problem that actually minimizes 
a function of both the expected distortions of the received videos 
and the received powers. Then, based on the employed radio prop-
agation models (see Eq. (5)) we compute the transmission powers.

We first define the following vectors for the received powers, 
source and channel coding rates of K source nodes and M relay 
nodes, respectively:

P = (P S
1, P S

2, . . . , P S
K , P R

1 , P R
2 , . . . , P R

M)
;
Rs = (Rs,1, Rs,2, . . . , Rs,K )
;
Rc = (RS

c,1, RS
c,2, . . . , RS

c,K , RR
c,1, RR

c,2, . . . , RR
c,M)
.

Our proposed method determines for each source node k the 
source coding rate Rs,k , the channel coding rate RS

c,k and the re-

ceived power P S
k and for each relay node m the channel coding 

rate RR
c,m and the received power P R

m , so that a function F(.) of 
the overall end-to-end expected video distortion E{Ds+c,k} for each 
source node k and the received power P from both the source and 
relay nodes is minimized, i.e.

(R∗
s , R∗

c , P∗) = arg min
Rs,Rc,P

F(E{Ds+c,1}, . . . , E{Ds+c,K }, P )

subject to the constraints described in Section 3.1. The type of the 
function F(.) is different for each one of the deployed optimiza-
tion criteria, which we delineate in Section 4.

For conveying the results of the optimization from the BS to 
the source and relay nodes, we propose an out-of-band solution, 
i.e. the use of a dedicated channel (e.g. a different spreading code). 
This information to be conveyed sums up to a few bytes, therefore 
the BS should include it in a single message and broadcast that 
message to the nodes. The use of a dedicated channel secures the 
timely delivery of the information from the BS to the nodes, while 
broadcasting a single message, each time the optimization process 
is performed, minimizes the bandwidth requirements.

4. Bi-objective optimization criteria

The described QEPC problem is solved using the NBS with equal 
or different bargaining powers, formulating two bi-objective cri-
teria. The first criterion employs the NBS with equal bargaining 
powers while the second criterion uses different motion-related 
bargaining powers.

4.1. Bi-objective utility function

Based on Game Theory, and particularly on the NBS, a bargain-
ing game is organized for the resource allocation among the WVSN 
nodes. The nodes of a DS-CDMA based multihop WVSN interfere 
with each other, as they all transmit simultaneously. Each node 
tries to increase its transmitted power, aiming at a better qual-
ity for its video, but this can also lead to the degradation of the 
quality of the other nodes’ videos. It is therefore essential that co-
operation exists among the nodes in the multihop path to the BS. 
In this way, the resources are allocated so that good video qual-
ity, namely a good PSNR, is achieved for all nodes. For the arising 
bargaining problem, a measure of satisfaction of the demands of a 
source node k is the utility function.

In the present paper, we formulate the utility function in a way 
that both the aspiration of node k to increase its benefit in terms 
of the video quality and its willingness to pay for the cost related 
to transmission power of all relay nodes employed for the video 
data forwarding of node k are demonstrated:

Uk = γ PSNRk − δ(P S
k +

Y∑
y=1

P R
y), (15)

where y = 1, 2, . . . , Y is a counter for the relay nodes that a source 
node k uses for transmission, parameters γ and δ are non-negative 
weights with γ + δ = 1, and PSNRk expresses the video quality 
in dB per source node k. The complementary weights show the 
relative importance of the different objectives. Moreover, by defi-
nition the convex hull of two objectives is their convex combina-
tion. Thus, the convex combination of the two objectives covers 
all points in the convex hull. PSNR is defined as a function of 

E{Ds+c,k}, i.e. PSNRk = 10 log10
2552

E{Ds+c,k} . Thus, it depends on the 

source and channel coding rate of the source node k, and the re-
ceived power from all nodes (because the received power plays 
important role during the transmission from the source node k to 
the BS through all relay nodes that are employed for the video 
data forwarding of source node k). The defined utility function of 
Eq. (15) depends on the same parameters, as well. The values of γ
and δ can be tweaked so that the tradeoff between the resulting 
PSNR and the used transmission powers is regulated.

The minimum utility the players expect to receive if nego-
tiations break down is expressed by the disagreement point d =
(d1, . . . , dK )
 . Theoretically, the utility of each player after the co-
operation is not allowed to be lower than it would be if the player 
did not join the bargaining game (as also inferred by the feasibility 
axiom provided in Section 4.2) [37]. This means that every coop-
erating player should either have a gain or remain with the same 
utility it had before the cooperation. In this particular bargaining 
game, the disagreement point d ∈ U expresses both the minimum 
acceptable quality (in terms of PSNR) for each video and the maxi-
mum allowed transmission power for both the source and its relay 
nodes, i.e.

dk = γ PSNRmin,k − δ(P S
max + Y P R

max) , (16)

where Y is the total number of the relay nodes that a source node 
k uses for transmission. It is important to notice that both the 
PSNRmin,k and the P S

max, P R
max values are specified by the QoS re-

quirements of a certain application.

4.2. Nash Bargaining Solution and related criteria

Based on the NBS, we define the bargaining game deployed in 
our resource allocation scheme as a pair (U, d), where the feasible 
set U ⊂ R

K is the set of all possible vectors U = (U1, U2, . . . , U K )
 . 
Each one of the possible vectors U results from different combina-
tions of the vectors of the received power from the K source nodes 
and the M relay nodes, the source coding rate of the source nodes 
and the channel coding rate for all nodes and represents the feasi-
ble payoffs (resource allocations) of the players (source nodes). It is 



E.G. Datsika et al. / Digital Signal Processing 50 (2016) 203–217 209
mandatory that this set is closed, bounded above, comprehensive, 
and that free disposal is allowed [38].

The NBS can be written as a function G(.) of U and d, i.e. 
G(U, d) ∈ U, and satisfies three axioms. These axioms guarantee 
that the solution is Pareto optimal, invariant to affine transforma-
tions, and independent from irrelevant alternatives [37]:

(i) G(U, d) ≥ d and y > G(U, d) ⇒ y /∈ U.
(ii) Given any strictly increasing affine transformation τ (.), G(τ (U),

τ (d)) = τ (G(U, d)).
(iii) If d ∈ Y ⊆ U, then G(U, d) ∈ Y ⇒ G(Y, d) = G(U, d).

The NBS of this multi-player cooperative bargaining game can be 
found by maximizing the Nash Product:

G(U,d) = arg max
U

K∏
k=1

(Uk − dk)
bk (17)

subject to the constraints: (Uk − dk) > 0, 
K∑

k=1
bk = 1, and those de-

scribed in Section 3.1.
The value bk refers to the bargaining power of a source node k. 

The bargaining power indicates the advantage the node has in the 
bargaining game. It is assigned in accordance with the rules of the 
bargaining game. A node with a higher bargaining power is favored 
by the rules of the bargaining game compared to a node with a 
lower bargaining power.

4.2.1. NBS-based criteria
Similar to [8], we consider two different NBS-based criteria ac-

cording to the different definition of the bargaining powers of the 
nodes as follows.

(i) Using equal bargaining powers (e.NBS): This criterion assumes 
that all bargaining powers are assigned the same value, i.e.

bk = 1

K
. (18)

(ii) Using motion-related bargaining powers (w.NBS): This criterion 
assigns to each node a different bargaining power which is 
motion-related according to parameters αk of Eq. (10), i.e.

bk = αk

K∑
i=1

αi

, with i = 1,2, . . . , K . (19)

4.3. Optimization algorithm

In the proposed scheme, the received and transmitted powers 
are assumed to take continuous values within a specified range, 
whereas the source and channel coding rates take discrete val-
ues. Thus, the formulated optimization problems are mixed integer 
problems. For this reason, a stochastic optimization technique is 
selected, namely Particle Swarm Optimization (PSO) [39,40].

PSO is an efficient, adjustable, and easily implementable popu-
lation-based algorithm for black-box optimization. It was inspired 
by the social dynamics observed in hierarchically organized soci-
eties. Essentially, PSO mimics the behavior of a fixed-size popu-
lation, called a swarm. It consists of a number of search agents, 
called the particles, which iteratively probe the search space in or-
der to find solutions for the problem at hand.

Each particle has a memory where it stores the best position 
it has ever visited during its search, i.e., the position with the 
lowest function value (in minimization problems). Also, the par-
ticles exchange information among them, based on abstract com-
munication schemes. These schemes can be represented by graphs 
where nodes correspond to particles and interconnections repre-
sent communication links among them. These schemes are also 
called neighborhood topologies, and they can have crucial impact 
on the information flow within the swarm.

4.3.1. Motivating the use of PSO
The PSO algorithm is one of the most popular population-based, 

stochastic optimization algorithms. Its efficiency has been shown 
in a plethora of engineering problems, along with its superior-
ity against other (deterministic and stochastic) global optimization 
methods (e.g. see applications in [39,41–43]). Moreover, PSO is 
accompanied by strong theoretical results regarding its stability, 
convergence properties, and parameter settings (see [40,44–47]). 
Recently, PSO was used in relevant applications with remarkable 
success [18,36,48]. In fact in [18], it was shown to be more effi-
cient than deterministic approaches that are typically used in such 
problems.

In various multi-objective engineering problems, it is common 
to apply normalization of the objectives prior to the mathematical 
solution of the problem. However, when it comes to metaheuristic 
optimization algorithms, the merit of normalization is mostly re-
lated to the interpretation of the solutions rather than the solver 
itself. PSO has been applied in a plethora of problems without nor-
malizing the objective functions (see [49]).

All these reasons, along with the high nonlinearity of the in-
volved objective functions in our problem as well as PSO’s tol-
erance in noisy environments that are usually met in real-world 
applications, were our main incentives for the use of the specific 
algorithm.

4.3.2. Using a rough estimation for swarm initialization
In the present work, we use PSO with a different swarm ini-

tialization scheme based on a Rough Estimation (PSO-RE). This 
initialization scheme, introduced in [36], offers the advantage of 
faster convergence compared to PSO. Let Q = {

x1, x2, . . . , x|Q|
}

be 
a swarm consisting of |Q| particles, where |.| denotes the car-
dinality of a set. Each particle is defined as a multi-dimensional 
vector, xi ∈ X , i = 1, 2, . . . , where X is the search space. In our 
problem, xi consists of resources that need to be allocated, namely 
the parameters P S

k , Rs,k and RS
c,k for each source node k and of 

the parameters P R
m and RR

c,m for each relay node m, as defined in 
Section 3.2.

For the swarm initialization, according to PSO-RE, we use a 
rough first estimation of the resource allocation, based on the 
expected received power of each node as proposed in [36]. Par-
ticularly, for the source nodes we use the following equation:

P̂ S
k = αk

min(α)
P S

min, (20)

where α = (α1, α2, . . . , αK )
 is the vector of the αk values for each 
source node k, and min(α) is the minimum element of vector α. 
We use the same equation for the rough estimation of the ex-
pected received power P̂ R

m of each relay node, since we observed 
from the conducted experiments and our previous work [4] that 
the relay nodes require a power level proportional to the power 
level of the cluster nodes in their reception range. For half of the 
particles of the swarm, we initialize the components that corre-
spond to the expected received power as computed by Eq. (20). 
For the integer components of the swarm, namely the source and 
channel coding rates, we randomly assign to them one of the avail-
able values. The other half of the swarm is randomly initialized in 
the search space, as performed in the traditional PSO algorithm.

Moreover, letting vi be the corresponding velocity, pi ∈ Q the 
best position of the i-th particle, and t the current iteration of the 
algorithm, then the velocity and current position of xi are updated 
according to the equations [43]:
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Table 2
Key parameters and values for the experiments.

Description Notation Topology I Topology II

Number of source nodes K 20 15
Number of clusters C 4 3
Number of relay nodes M 4 2
Transmission bit rate for relay nodes (kbps) Rm ∀m: 480 m = 1: 480, m = 2: 960
Channel bandwidth (MHz) W t 5 4

Transmission power of source nodes (W) SS
k ∀k : [0.1,0.5] ∀k : [0.1,0.5]

Transmission power of relay nodes (W) SR
m ∀m : [0.1,5] m = 1: [0.1,2.5], m = 2: [0.1,5]
vi(t + 1) = χ
[

vi(t) + c1R1
(

pi(t) − xi(t)
)

+ c2R2
(

pgi (t) − xi(t)
)]

, (21)

xi(t + 1) = xi(t) + vi(t + 1), (22)

where χ is a parameter called the constriction coefficient, c1, c2
are positive acceleration parameters called cognitive and social pa-
rameter, respectively, and R1, R2 are vectors with components 
uniformly distributed in the range [0, 1]. All vector operations in 
Eqs. (21) and (22) are performed componentwise. Also, the best 
position pgi of each particle i is updated as soon as it discovers a 
better one. Clerc and Kennedy [43] proposed parameter values that 
promote convergence of the algorithm towards the most promising 
solutions in the search space. Based on this study, the default set 
of parameters is defined as χ = 0.729, c1 = c2 = 2.05.

5. Fairness of the resource allocation based on the delivered 
video quality

In video transmission systems, the end-to-end video distortion 
is a result of compression errors and transmission errors. Thus, the 
overall distortion is the superposition of these two types of distor-
tion. Due to the different rate-distortion characteristics, each video 
has different average MSE value after the video compression for 
the different source coding rates. If we considered that the trans-
mission of a video is error-free, then its average MSE value at the 
receiver would be equal to its MSE value after video encoding. 
This MSE value in terms of PSNR is the maximum quality PSNRmax, 
which could be ideally achieved in an error-free transmission.

We propose to define the fairness of the resulting resource al-
location with regard to the distance of the resulting PSNR values 
from their corresponding maximum video quality values PSNRmax. 
We assume that PSNRmax,k is utopian. We consider as fair resource 
allocation the one that achieves the same video quality distance 
for all nodes from its utopian quality value. This consideration is 
expected to provide a better assessment of the fairness of the re-
source allocation among the WVSN nodes. For this reason, based 
on a quantitative measure that was first proposed for operation 
systems resource allocation [50] (and has been used before in sim-
ilar resource allocation problems [10,11] for different notions), we 
define the fairness index φ, as follows:

φ =

(
K∑

k=1
PSNRmax,k − PSNRk

)2

K
K∑

k=1
(PSNRmax,k − PSNRk)

2

, (23)

where PSNRk reflects the end-to-end video quality of source node 
k and PSNRk < PSNRmax,k . The proposed metric φ assumes val-
ues in (0, 1] and is equal to one when all achieved PSNR values 
are equally distant from their utopian quality values. On the con-
trary, when the difference values PSNRmax,k −PSNRk of the different 
source nodes are dispersed, φ reduces.
Fig. 2. The first considered WVSN topology, Topology I, for the experiments.

6. Experimental results

In this section, we evaluate the performance of the proposed 
method, which is tested in two topologies with different network 
configurations.

6.1. Experimental settings

6.1.1. Considered WVSN scenarios and topologies
For the experimental settings, we assume that neighboring vi-

sual sensors monitor the same area. Due to this assumption, the 
neighboring nodes are organized with respect to their location in 
clusters and transmit video sequences of the same motion level. 
Thus, the (αk, βk) parameters of nodes in a cluster are considered 
to be equal. The main parameters of the presented experiments 
and their values for each topology are reported in Table 2.

In order to further assess the performance of our method, sev-
eral cases with different motion levels (low, medium and high) 
per cluster have been considered. The terms “low”, “medium” and 
“high” motion are used for video sequences of similar motion lev-
els with the 10-second, 15 fps, “Akiyo”, “Salesman” and “Foreman” 
QCIF video sequences, respectively.

Topology I: In the first considered WVSN topology, which is illus-
trated in Fig. 2, 20 source nodes are organized in four clusters 
{C1, C2, C3, C4} of the same cardinality. As the BS is out of the 
transmission range of the source nodes, one of the relay nodes 
{R1, R2, R3, R4} is committed to each cluster in order to channel-
decode-and-forward the video data to the BS. Interference exists 
among the nodes within a cluster as they transmit their videos to 
their corresponding relay node, for example for each one of the 
source nodes of C1 the rest source nodes of C1 cause interference 
in the first hop. Moreover, the four relay nodes interfere with each 
other when they retransmit videos to the BS. Regarding the motion 
level of each cluster, C1’s nodes transmit high motion videos while 
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Fig. 3. The second considered WVSN topology, Topology II, for the experiments.

the nodes of cluster C2 transmit low motion videos and the nodes 
of clusters C3 and C4 transmit different medium motion videos.

Topology II: The second WVSN topology, Topology II, consists of 
15 nodes, organized in three clusters {C1, C2, C3}, as depicted in 
Fig. 3. The BS is out of the transmission range of the source nodes 
in clusters C1 and C2, thus two relay nodes are used {R1, R2} for 
the retransmission of videos of these clusters to the BS. The source 
nodes of cluster C3 directly transmit the videos to the BS. Sim-
ilarly to the first topology, interference exists among the source 
nodes in the same cluster. The relay nodes R1 and R2 interfere 
with the source nodes in clusters C2 and C3, respectively. The 
nodes of each cluster transmit video sequences of the same mo-
tion level. In particular, the nodes of C1 transmit low motion level 
videos, the nodes of C2 medium motion videos and the nodes of 
C3 transmit high motion level video.

6.1.2. Experimental settings and parameters
The main parameters of the presented experiments and their 

values are reported in Table 2. Since our proposed method is 
quality-driven, we consider that the resulting video quality is at 
least of equal preference as the power consumption. Hence, re-
garding the values of (γ , δ), we consider the range [0.50, 1.00]
for γ and [0.00, 0.50] for δ. In order to reduce the infinite num-
ber of points in these ranges, we assume that γ and δ can 
take values within the following sets with a step size equal 
to 0.01: γ ∈ {0.50, 0.51, . . . , 0.99, 1.00} ⊂ [0.50, 1.00] and δ ∈
{0.00, 0.01, . . . , 0.49, 0.50} ⊂ [0.00, 0.50], so that γ + δ = 1.

In both tested topologies, the transmission bit rate of the source 
nodes is 96 kbps and the transmission bit rates of the relay nodes 
are reported in Table 2. The minimum acceptable PSNR (a.k.a. the 
disagreement point) is set to 24 dB. We also set Gt = Gr = 3 dB, 
ht = hr = 3 m and N0 = 1 pW/Hz, while RCPC codes with mother 
rate 1/4 are used.

In the present formulated problem, source and channel coding 
rates are selected from a discrete set and are available as combi-
nations of (Rs, Rc) for the source nodes and as single choices, Rc, 
for the relay nodes. Specifically, as also displayed in Table 2, we 
assumed the following code set and correspondences:

(i) for the source nodes: 1 for (32 kbps, 1/3), 2 for (48 kbps, 1/2) 
and 3 for (64 kbps, 2/3);

(ii) for the relay nodes: 1 for 1/3, 2 for 1/2 and 3 for 2/3.

Thus, our optimization problem is a mixed-integer one, since the 
transmission powers are continuous and the source-channel coding 
rate combinations are discrete (in our case they can take values 
1, 2, and 3). Note that instead of 1, 2 and 3, we could use three 
other successive numbers (e.g. 7, 8, 9). Due to the fact that PSO 
particles probe the search space in the continuous range defined 
by its frontiers, in order to solve this mixed-integer problem, the 
source and channel coding rates were represented with continu-
ous values. Taking into consideration that we have assumed the 
aforementioned correspondences for the valid source and chan-
nel coding rates, we have used the continuous range [0.6, 3.4]. (If 
three other successive integer numbers were used for these cor-
respondences, then this range would be different, e.g. for {7, 8, 
9} the range would have been [6.6, 9.4].) However, these values 
are rounded to the nearest integer before each particle xi objective 
function evaluation, namely xi = �xi + 0.5�. For example, if we as-
sume that for a particle the source and channel coding rate value 
is probed in 0.875 value, then before the particle’s objective func-
tion evaluation 0.875 will be rounded to 1. So, 1 will be used to 
evaluate the objective function value for the specific particle.

6.2. Results and discussion

In the presented results, we compare the performance of the 
proposed QEPC method with the method introduced in [4], which 
performs resource allocation without power control (γ = 1.00, δ =
0.00). Moreover, we compare the results of the NBS-based crite-
ria with two aggregation criteria, EWAD and MWAD, formulated 
in [22] and shown in Table 3. These criteria minimize the weighted 
aggregation of expected distortion of source nodes and the aggre-
gation of the received powers of source and relay nodes. They ei-
ther treat all source nodes equally (EWAD criterion) or use motion-
related weights in order to prioritize the quality enhancement of 
higher motion videos (MWAD criterion). We build our discussion 
around the important issues of the WVSN power consumption, its 
tradeoff with end-to-end video quality and the resulting fairness 
based on the results for Topology I. For Topology II, the proposed 
method has a very similar performance with analogous results, 
thus the same observations and conclusions are drawn.

6.2.1. Allocated source and channel coding rates
Table 4 reports the resulting source and channel coding se-

lection for each cluster from the set A and the channel coding 
selection for relay nodes from the set B for different values of 
(γ , δ). As far as the resulting channel coding rates for the relays 
are concerned, the highest rate has been selected in all cases for 
all relays, i.e. equal to 2/3. Besides this, we observe that the high-
est source coding rate is selected for the cluster with high amount 
of motion videos in almost all cases. Moreover, the motion-aware 
criteria w.NBS and MWAD use lower source coding rates for the 
nodes of low and medium amount of motion, compared to the 
other two criteria. This, in combination with the fact that video se-
quences of low amount of motion are more robust to errors, means 
that lower transmission power is required for those nodes.

6.2.2. Transmission power consumption
The allocated transmission power for the source nodes in a 

cluster and their respective relay nodes are plotted in Fig. 4 and 
Fig. 5, respectively. A close inspection of the figures reveals that the 
allocated transmission powers for each cluster and for each relay 
are in line with the motion levels of the recorded scenes. The effect 
of power control is witnessed intensely in Fig. 4, where we notice 
that for γ = 1.00 all source nodes are allocated the maximum ad-
missible transmission power. Moreover, for γ < 1.00, w.NBS and 
MWAD tend to restrict the range of the assigned transmission 
power for low and medium motion source nodes and their cor-
responding relay nodes, compared to e.NBS and MWAD. This can 
be explained from the fact that by using the motion-aware criteria, 
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Table 3
State-of-the-art criteria used for results assessment.

Name Acronym Formulation

Equally Weighted Aggregation of Distortion EWAD F =
K∑

i=1
E{Ds+c,i} +

K+M∑
j=1

P j

Motion-related Weighted Aggregation of Distortion MWAD F =
K∑

i=1
wi E{Ds+c,i} +

K+M∑
j=1

P j , with wi = αk

K∑
i=1

αi

Table 4
Source and channel coding rates per cluster and relay for the various values of γ .

Criterion e.NBS w.NBS EWAD MWAD

Cluster C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

γ = 0.50 1 2 2 2 3 1 1 1 3 2 1 2 3 1 1 2
0.51 ≤ γ ≤ 0.53 1 2 2 2 3 1 1 1 3 2 2 2 3 1 2 2
0.54 ≤ γ ≤ 0.69] 3 2 2 2 3 1 1 1 3 2 2 2 3 1 2 2
0.70 ≤ γ ≤ 0.75 3 2 2 2 3 1 1 2 3 2 2 2 3 1 2 2
0.76 ≤ γ ≤ 0.83 3 3 2 2 3 1 1 2 3 2 2 2 3 1 2 2
0.84 ≤ γ ≤ 1.00 3 3 2 2 3 1 2 2 3 2 2 2 3 1 2 2

Relay R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

0.50 ≤ γ ≤ 1.00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
we intend to favor the clusters in proportion to the amount of mo-
tion. So, in order to enhance the video quality of the high motion 
nodes, the motion-aware criteria increase the transmission power 
of these nodes and concurrently reduce the transmission power of 
all other clusters and relay nodes. This increases the energy-per-bit 
to MAI and noise ratio for the high motion nodes and their relay 
nodes, while at the same time it reduces it for the other clusters 
and their corresponding relay nodes.

Network lifetime is one of the most important metrics for the 
evaluation of a sensor network, due to the fact that it is energy-
constrained and that it can fulfill its purpose as long as its sensors 
are “alive”. Several definitions for sensor lifetime have been pro-
vided in the literature [3,51,52]. According to [51], it is the time 
until the first sensor is drained of its energy. Fig. 4 reveals that the 
motion-aware criteria use higher transmission power for the high 
motion source nodes of C1 for most (γ , δ) pairs. This observation 
is more intense for MWAD, which allocates the maximum trans-
mission power to the source nodes of C1 for γ ≥ 0.50. Regarding 
the transmission power of the relay nodes, Fig. 5 indicates that em-
ploying EWAD results in the highest admissible power for R1 (that 
is committed to C1) for all (γ , δ) pairs. Overall, according to this 
sensor lifetime definition, the employment of the NBS-based cri-
teria enhances the WVSN lifetime compared to EWAD and MWAD 
for γ ≥ 0.50.

6.2.3. Video quality and power consumption tradeoff
Fig. 6 illustrates the expected video quality at the receiver ver-

sus the total consumed transmitted power in the network. The 
different values of resulting quality and total transmission power 
derive from different choices of (γ , δ). To better demonstrate the 
impact and benefits of power control on the delivered video qual-
ity, we compare the PSNR for γ < 1.00 with the PSNR for γ = 1.00
(when no power control is applied).

Considering the definition of [52], according to which lifetime 
is defined as the time until all nodes have been drained of their 
energy, the following conclusions are drawn. This definition is di-
rectly related to the total transmission power consumption, which 
is illustrated for all criteria in Fig. 6. Regarding the WVSN transmis-
sion power consumption, the four criteria use different total trans-
mission power for the different (γ , δ) pairs. A first observation 
from this figure is that EWAD consumes the highest total trans-
mission power for most γ values, i.e. γ ≤ 0.95, while for γ > 0.95
e.NBS uses the highest total transmission power. On the other 
hand, it is evident, that w.NBS requires the lowest total transmis-
sion power than all other criteria for all considered (γ , δ) pairs. For 
γ ≥ 0.84, the total transmission power of MWAD is less than 1 W 
higher compared to w.NBS total transmission power. Considering 
all the above observations and the definition of [52], we conclude 
that w.NBS prolongs the WVSN lifetime. Finally, as previously ob-
served in Fig. 4, it is important to point out that in case we do not 
apply power control, all source nodes use the highest admissible 
transmission power. This means that in this case all source nodes 
will drain their energy at the same time, according to both of the 
aforementioned lifetime definitions.

From the video quality point of view, as anticipated e.NBS and 
EWAD favor the low motion nodes by achieving better quality than 
w.NBS and MWAD can provide for all values of γ . However, with 
e.NBS a degradation of the quality of videos of the high motion 
nodes is experienced, when the total transmitted power is higher 
than 22 W. A slighter degradation of the quality of videos of the 
high motion nodes is also experienced with EWAD. Particularly, 
for γ = 0.50 the PSNR value is 0.42 dB higher for the low mo-
tion nodes than it is for γ = 1.00, while 5.38 W less are spent 
in total. Moreover, EWAD requires higher total transmission power 
than e.NBS for most values of (γ , δ). In contrast, the motion-aware 
criteria offer considerably higher PSNR to high motion nodes for 
all values of γ when compared with e.NBS and EWAD. Regard-
ing the low and medium motion videos, the performance of w.NBS 
is inferior to that of e.NBS. However, MWAD enhances the perfor-
mance for low and medium motion videos compared to w.NBS, 
since PSNR is improved by 0.27–3.52 dB for all values of γ .

Furthermore, we observe that, when we use the proposed QEPC 
method, we can achieve similar video quality compared to the case 
when no power control is applied (i.e. γ = 1.00), while we con-
sume less transmission power in total. As an illustration of this 
remark, consider as an example the case of γ = 0.99 for w.NBS 
criterion in Fig. 6(b). In this case, w.NBS achieves almost the same 
video quality for all clusters as it would if no power control were 
used. Concurrently, 18.25% (namely 4 W) less transmission power 
is consumed in total. For the same γ , in the case of MWAD crite-
rion (Fig. 6(d)), the expected video quality at the receiver slightly 
drops, while the transmission power savings are 17.40%. Consider-
ing all these observations, we conclude that when power control is 
omitted (γ = 1.00, δ = 0.00), the consumption of the total trans-
mission power is excessive for a rather small video quality gain. 
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Fig. 4. Transmission Power per cluster node versus different (γ , δ) pairs for all three 
criteria.

Moreover, the prioritized optimization criteria succeed in enhanc-
ing the network lifetime in comparison to the other criteria at 
a rather small expense on the quality performance. Furthermore, 
w.NBS provides acceptable video quality (namely higher than the 
minimum quality requirement threshold PSNRmin) for all source 
Fig. 5. Transmission Power per relay node versus different (γ , δ) pairs for all criteria.

nodes, even when low transmission power is allocated to both 
source and relay nodes.

6.2.4. Fairness of the resulting video quality versus transmission power
Fig. 7 depicts the resulting φ versus the total transmission 

power for all optimization criteria for all considered (γ , δ) values. 
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Fig. 6. Video Quality-Transmission Power tradeoff per cluster using all optimization 
criteria.

Juxtaposing the φ values of the proposed QEPC method with the 
values when no power control is applied, we observe that fairness 
is degraded when no power control is applied. Another observa-
tion is that NBS criteria result in more fair resource allocation for 
Fig. 7. Fairness index φ versus the Total Transmission Power for all criteria.

the whole WVSN, while consuming less total transmission power 
compared to the other two criteria for most (γ , δ) pairs. We have 
to note that for those (γ , δ) pairs that EWAD and MWAD achieve 
higher φ values, the transmission power for NBS-based criteria in 
most cases is lower. Additionally, an interesting observation is that 
the NBS-based criteria result in the same or higher φ values com-
pared to the other two criteria (for different (γ , δ) values) and for 
much lower total transmission power. For example, w.NBS achieves 
φ = 0.76 using 9.20 W, while MWAD achieves the same φ value by 
consuming 14.50 W (57.6% more than w.NBS). Moreover, we ob-
serve that the criteria that consider motion-related prioritization 
have lower levels of fairness. This is due to the fact that in order to 
provide higher priority to the nodes of higher motion and increase 
their PSNR values, the resources allocated to those nodes are in-
creased. This results in higher interference to the other WVSN 
nodes that degrades their end-to-end video quality. Finally, it is ob-
vious that e.NBS and w.NBS achieve higher degree of fairness over 
the whole WVSN, while consuming less total transmission power 
compared to EWAD and MWAD criteria.

6.3. Performance of PSO and PSO-RE

As explained in Section 4.3, the PSO-RE algorithm was intro-
duced in [36], achieving superior performance than traditional PSO. 
In our experimental setting, the dimensions of the underlying op-
timization problems were D = 16 for Topology I and D = 10 for 
Topology II. For each problem instance, 30 independent experi-
ments were conducted for both PSO-RE and PSO, in order to ex-
tract sound information regarding their performance. We note that 
in case of a real-time process, only a single experiment is con-
ducted.

Besides convergence speed, we tested the validity of PSO-RE 
also in terms of solution quality, i.e., the resulting resource alloca-
tion. Both PSO and PSO-RE converged to the same optimal solution 
F∗ with an accuracy of 12 decimals. For all criteria and (γ , δ) val-
ues, both algorithms achieved the same solutions, although PSO-RE 
required far less computational resources. This performance was 
verified for both Topology I and II.

In Fig. 8, we illustrate an example of convergence speed of the 
two solvers to the same solution F∗ for e.NBS and w.NBS, for 
(γ = 0.85, δ = 0.15). We only present the first 100 iterations for 
visibility issues. At each diagram, the best solution per algorithm 
iteration is plotted. We can clearly observe that using PSO-RE re-
sults in faster detection of F∗ , despite the fact that it uses smaller 
swarm size.

Regarding the swarm size and maximum number of iterations 
of the two PSO solvers, it is common practice in metaheuristics 
to set parameters after a preprocessing phase. In this phase, pre-
liminary experimentation is performed in order to identify proper 
parameter values. In our case, PSO-RE required significantly lower 
computational resources than PSO since it is equipped with the 
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Fig. 8. Comparison of the convergence of the optimization algorithms.

estimation scheme described in Section 4.3.2. Nevertheless, de-
termining optimal parameter values for stochastic optimization 
algorithms is still an open optimization problem itself, while ex-
perimental evidence suggests that it is always dependent on the 
considered optimization problem.

In Table 5, we report the maximum swarm size (|Q|) and maxi-
mum number of algorithm iterations (Iter) that are required for all 
(γ , δ) values for the presented results. As observed, the required 
|Q| and Iter are not identical for each topology. This is due to the 
fact that these parameters depend on the dimension of the opti-
mization problem. Also, they depend on the special characteristics 
of the objective function F , which is not identical for the different 
network configurations (e.g., there are different numbers of hops 
per source node).

For Topology I, the maximum number of function evaluations 
required by PSO-RE (given as the product |Q| · Iter) is 90% lower 
Table 5
Comparison of PSO and PSO-RE for Topology I and II.

Algorithm |Q| Iter Texe (sec)

Topology I PSO 200 3000 304.56
PSO-RE 80 650 24.65

Topology II PSO 50 500 12.47
PSO-RE 30 100 1.25

than the corresponding number required by traditional PSO. For 
Topology II, PSO-RE requires 88% less function evaluations. To fur-
ther verify the faster convergence of PSO-RE compared to PSO, as 
well as the feasibility of the proposed method, we report in Ta-
ble 5 the average execution time Texe for an experiment on an 
Intel Core i7-4510U CPU @2.00 GHz using Cygwin with 2 GB of 
RAM reserved. As we can see, on average, PSO-RE is 91.91% faster 
than PSO for Topology I and 89.98% faster for Topology II.

7. Conclusion

In this paper, we propose an effective methodology for solv-
ing the QEPC problem in cooperative multihop WVSNs by jointly 
allocating the transmission powers to all nodes, the source coding 
rates to the source nodes and the channel coding rates to all nodes. 
For this reason, we defined bi-objective optimization criteria. Both 
e.NBS and w.NBS, are based on the NBS and employ a utility func-
tion that reflects the benefit in terms of quality along with the cost 
in terms of transmission power. We compared the NBS-based cri-
teria with other two criteria, EWAD and MWAD, that aggregate the 
distortion and the transmission powers of all nodes. More specif-
ically, w.NBS and MWAD are prioritized so as to favor specific 
WVSN nodes in proportion to the motion level of the recorded 
scenes. The evaluation results confirmed that the proposed QEPC 
method achieves to effectively balance the QoS in terms of end-to-
end video quality and the total transmission power consumption. 
Particularly, in many cases, excessive transmission power is used 
when power control is omitted for a rather small quality gain for 
certain nodes. This important observation is also verified by the 
overall fairness assessment results. Concluding, NBS-based criteria 
that employ the proposed utility function are the prominent choice 
to effectively balance the video quality fairness and WVSN lifetime 
tradeoff.
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