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Abstract-In recent years, video delivery over wireless visual 
sensor networks (VSNs) has gained increasing attention. The 

lossy compression and channel errors that occur during wire­
less multimedia transmissions can degrade the quality of the 
transmitted video sequences. This paper addresses the problem 
of cross-layer resource allocation among the nodes of a wireless 
direct-sequence code division multiple access (DS-CDMA) VSN. 
The optimal group of pictures (GoP) length during the encoding 
process is also considered, based on the motion level of each 
video sequence. Three optimization criteria that optimize a 
different objective function of the video qualities of the nodes 
are used. The nodes' transmission parameters, i.e., the source 
coding rates, channel coding rates and power levels can only 
take discrete values. In order to tackle the resulting optimization 
problem, a reinforcement learning (RL) strategy that promises 
efficient exploration and exploitation of the parameters' space 
is employed. This makes the proposed methodology usable in 
large or continuous state spaces as well as in an online mode. 
Experimental results highlight the efficiency of the proposed 
method. 

Keywords-Cross-layer optimization, group of pictures length, 
Markov decision processes, reinforcement learning, resource allo­
cation, visual sensor network. 

I. INTRODUCTION 

During the last years, wireless communications and net­
working have enjoyed huge conunercial success thanks to 
advances in wireless technologies and industrial standards. The 
rapid growth of broadband wireless networks has enabled the 
development of wireless visual sensor networks (VSN s) [1]. 
VSNs support a plethora of potential applications, ranging 
from security to environmental monitoring, health care, and 
teleconference systems. Thus, video delivery over such net­
works has gained increasing attention, while considerable 
progress has been made in solving numerous wireless sensor 
networking challenges. 

Nevertheless, a great concern in most VSNs' applications 
is to provide mechanisms able to guarantee high levels of 
quality of service (QoS) in the real-time delivery of multimedia 
content. The time-varying nature and error-prone environment 
of wireless networks, as opposed to the delay-sensitive and 
bandwidth-intensive real-time multimedia applications, poses 
the need for the optimal configuration of the wireless trans­
mission system. Furthermore, the errors that occur during 
wireless multimedia transmissions, in conjunction with the 
lossy source coding techniques, deteriorate the quality of the 
video sequences at the decoder. Thus, careful treatment is also 
required during video encoding in order to acquire high coding 
performance and robustness to transmission errors. 

In our previous works [2], [3], we assumed a wireless 
VSN, where an application-driven cross-layer optimization 

978-1-4673-5807-1/13/$31.00 ©2013 IEEE 

scheme was proposed for the dynamic adjustment of the sensor 
nodes' transmission parameters across all network layers. Such 
a scheme provides the opportunity for increased network 
resource usage and user profit maximization, at the same time. 
A literature review demonstrates that, whereas joint source and 
channel coding as well as energy consumption minimization 
have been the main objectives in wireless VSN research [2], 
[3], [4], [5], [6], little evidence is available for the investigation 
of efficient coding techniques by applying adaptive group of 
pictures (GoP) length, at the same time. This latter approach 
aims at the enhancement of video resiliency to channel errors 
during wireless transmissions. The works presented in [7] 
and [8] propose GoP structures adaptive to video content, 
without addressing resource allocation issues, at the same time. 

The H.264/AVC video coding standard defines three frame 
types for video coding: intra frames (IDR, I), predictive frames 
(P) and bidirectionally predictive frames (B). Intra frames are 
coded without reference to other frames, while the difference 
between P-frames and B-frames is the number of reference 
frames they are allowed to use for coding. An instantaneous 
decoding refresh (IDR) frame is a regular I-frame with the 
constraint that pictures appearing after it in the bitstream 
cannot use the pictures appearing before it as references. A 
GoP, which is a group of successive pictures within a coded 
video stream, always begins with an IDR-frame, and therefore 
the propagation of any errors within the GoP structure is 
stopped by the next IDR-frame. 

The aim of this paper is twofold. Firstly, it studies the 
cross-layer resource allocation problem among the nodes of 
a wireless VSN and secondly, it deals with the optimal IDR­
frame placement during the encoding process, based on the 
motion level included in each video sequence. The resource 
allocation issue is tackled using three optimization schemes. 
The first one minimizes the average video distortion of all 
nodes [2], the second one is the Nash bargaining solution 
(NBS) [3] and the last scheme maximizes the sum of all nodes' 
utilities. 

In our study, we have to deal with a discrete optlmlza­
tion problem, since all nodes' transmission parameters, i. e. , 
source coding rates, channel coding rates and power levels 
can only take discrete values. Discrete optimization problems 
were also resolved in our previous works [2], [3]. However, 
in the current work, each node can select among a larger 
number of possible values for the power levels. Furthermore, 
an extra element of the present study is the assumption about 
four different levels of motion in the scenes captured by 
the nodes, as opposed to the coarser approach of only two 
motion levels of our previously published works. Combining 
these two considerations about more possible choices for the 
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nodes' power levels and more levels of motion included in the 
scenes captured by the nodes, it is clear that the problem' s 
dimensionality significantly increases, rendering the use of 
the brute-force search algorithm rather impractical. Hence, the 
current work abandons the traditional exhaustive search (ES) 
algorithm used in [2], [3], and enjoys the benefits of other 
innovative optimization methods extracted from the area of 
reinforcement learning (RL) [9]. 

RL provides an elegant framework for making decisions 
under uncertainty based on the maximization of the expected 
utility functions. A significant contribution of this work is 
the incorporation of an RL scheme in the resource allocation 
problem, which allows the controller to make optimal decisions 
in unknown environments with very large or continuous state 
spaces. RL has been used extensively in control strategies for 
video quality processing [10], surpassing a lot of difficulties in 
the particular field. More specifically, RL discovers an optimal 
or near-optimal policy in the early stages of the learning 
process, while at the same time it is able to adapt to potential 
changes of the environment. The benefit of the latter feature 
clearly emerges in the online case, where the environment 
changes dynamically over time. 

In this work, we use the tabular SARSA algorithm which 
is a model-free on-policy algorithm that belongs in the family 
of temporal difference (TD) algorithms [9]. The resource 
allocation problem examined in the present paper is modeled 
appropriately as a Markov decision process (MDP) [11]. The 
particular approach exploits the received raw experience, dis­
covering the optimal combination of the nodes' transmission 
parameters in a more efficient way. Roughly speaking, SARSA 
constructs a map that allows us to explore the best parameters 
with the minimum effort, starting from any randomly selected 
parameters' combination. Last but not least, the specific RL 
approach gives the opportunity for the proposed scheme to be 
used in an online mode. 

The rest of the paper is organized as follows: Section II 
describes the basic architecture of the considered wireless 
DS-CDMA VSN. Section III presents the video distortion 
model, accounts for the necessity for efficient GoP structures 
and describes how the adaptive GoP structure is applied in 
this work. In Section IV, the employed resource allocation 
schemes are presented and Section V describes the proposed 
RL approach for tackling the discrete optimization problem of 
this study. Experimental results are provided in Section VI and 
conclusions are drawn in Section VII. 

II. VISUAL SENSOR NETWORK 

VSNs are networks of wireless, interconnected smart de­
vices, the so-called sensors, each of which is equipped with 
a video camera that enables capturing visual data. Apart 
from the data acquisition, sensor nodes are also capable of 
processing multimedia streams in real-time, since they have 
some local image processing and communication capabilities. 
The centralized control unit (CCU), which lies at the network 
layer, collects the data from the wireless transceivers and 
transmits information to the nodes in order to request changes 
in their transmission parameters, i. e. , the source coding rates, 
channel coding rates, and power levels that are taking place 
at the application layer, data link layer, and physical layer, 
respectively. 

Direct-sequence code division multiple access (DS­
CDMA) is the channel access method considered in the current 
study. DS-CDMA systems are usually interference-limited and, 
thus, it is conunon for the thermal and background noise to 
be neglected. The power level for each node, k, is given by 
Sk = EkRk; Ek is the energy per bit and Rk is the total 
bit rate. It equals Rk = Rs,k/ Rc,b where Rs,k represents the 
source coding rate and Rc,k the channel coding rate. Since the 
unit measure for the Rs,k is bits per second (bps), and taking 
into account that Rc,k is a dimensionless number, it follows 
that Rk is also measured in bps. 

Low-motion video sequences can be encoded using a lower 
source coding rate. Thus, given that a target bit rate constraint 
is imposed on every node of the wireless VSN, low-motion 
nodes can use a larger bit rate for channel coding. Conse­
quently, the power level required for the transmission of low 
motion scenes is kept at low levels. Since DS-CDMA allows 
all nodes to transmit over the same channel, transmissions 
of one node cause interference to the transmissions of the 
other nodes. Moreover, considering that the nodes are battery­
operated, the need for power conservation is imperative. On 
the other hand, power levels should be adequately high to 
permit data transmissions and maintain the quality of the video 
reception. 

In our investigation, we assume that interference can be 
approximated by additive white Gaussian noise (AWGN) [6]. 
Thus, the energy per bit to multiple access inteiference (MAl) 
ratio is given by: 

",K s· ' 
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k= 1,2, . . .  ,K, (1) 

where No/2 is the two-sided noise power spectral density due 
to MAl and Wt is the total available bandwidth. The index 
k refers to the corresponding node and j to each interfering 
node. 

For the channel coding, we assume rate compatible punc­
tured convolutional (RCPC) codes [12], which allow the use of 
Viterbi' s upper bounds on the bit error probability Pb. Assum­
ing binary phase shift keying (BPSK) as the employed modula­
tion scheme, Pb satisfies the inequality Pb � * L�dr,ee 

CdPd, 

where Pd = � erfc ( J d1v�';I. The parameter P is the period 

of the code, dfree is the free distance of the code and Cd is the 
information error weight. The complementary error function 
is denoted as erfcO, while Rc is the channel coding rate. 

III. VIDEO CODING AND TRANSMISSION 

The quality of a video sequence is highly related with 
the lossy compression techniques applied at the encoder as 
well as with the number of occurred errors during wireless 
data transmissions. Consequently, in order to achieve the 
maximization of the network QoS, in this paper, we focus on 
both these problem aspects. 

A. Video Distortion Model 

Our previous experience with universal rate distortion 
characteristics (URDCs) [2], [3], has shown that it is an 
efficient tool that can be used to express the expected distortion 



E[Ds+c,k] of node k, as a function of the bit error probability 
(bit error rate), Pb, after channel decoding. Similarly, in this 
paper, we make use of URDCs given by the model: 

E[Ds+c,k] = a [loglO (�b) ] - (3 
(2) 

where a and (3 are two positive parameters. In the end of the 
next subsection, we explain how the parameters a and (3 are 
obtained. 

B. GoP Structure 

The H.264/AVC codec has the flexibility to determine the 
frequency of IDR-frames on the encoding side. Since IDR­
frames are independently coded frames, the errors that occur 
within a GoP propagate to the following frames until the 
next IDR-frame is found. Generally, the more IDR-frames 
are included in a video stream, the more editable it is and 
the greater its size is. Since predictive coding techniques are 
applied during encoding, the effect of channel errors on the 
video can have a tremendous impact after video transmission 
over error-prone environments. Thus, it is important to apply 
techniques that ensure a tolerable level of QoS. 

It is widely accepted that scene changes or large variations 
can happen at any location in a video stream. This means 
that it is important to consider the video content in order to 
wisely arrange each of the IDR-, P- and B-frames in a Gop. 
Clearly, in the beginning of a new scene or after an abrupt 
scene change, an IDR-frame insertion is required in order to 
prohibit poor prediction for the next frames, since this type 
of intra frames does not allow the following frames to use 
frames appearing before it as references. Alternatively, when 
low levels of motion are included in a video stream, it is more 
efficient to use more P- or B-frames, instead of IDR-frames, 
to enhance video coding performance. 

In this work, we experiment on the GoP length, i. e. , 
the distance between two consecutive IDR-frames, during the 
encoding process of the video sequences. We assume that the 
nodes of the considered VSN record four different levels of 
motion: low, low-medium, medium-high and high. Thus, they 
are clustered in four motion classes, based on the motion 
level included in the scenes they record. Figure 1 presents the 
different motion levels represented by each considered video 
sequence. 

Each of the video sequences is compressed using four dif­
ferent GoP lengths, at three different source coding rates. We 
simulate video transmission through the channel by dropping 
packets from the video streams, at three different bit error rates. 
Due to the fact that channel errors and packet drops occur 
randomly, the video distortion attributed to lossy compression 
and channel errors is a random variable. In light of this, the 
video distortion is averaged over a number of independent 
experiments. The parameters a and (3 of Eq. (2) are then deter­
mined through a mean-squared-error optimization procedure, 
using a small number of (E[Ds+c,kJ, Pb) pairs. 

Hence, each motion class has its own set of a and (3 
parameters, which also depend on the source-channel coding 
rate and GoP length. Having compressed each video bit stream 
using four different GoP lengths, we test all possible GoP 

Fig. 1. Motion level represented by each video sequence. 

length combinations of all video bitstreams. Each different 
combination results in different values for the a and (3 param­
eters. For each (a,(3) pairwise values, we run the optimization 
procedure using each of the schemes described in the next 
section. Those (a,(3) values that satisfy the objective of each 
scheme are chosen as optimal. The GoP length for each motion 
class that produces the optimal (a,(3) values is proven to be the 
most efficient one, since it leads to the ultimate video quality 
enhancement. 

I V. RESOURCE ALLOCATION SCHEMES 

Given that the K nodes of the VSN are grouped into M 
motion classes, we substitute Eq. (1) into Pd'S equation, Pd 
into Pb' s equation, and finally Pb into Eq. (2). Then, it follows 
that the expected distortion E[Ds+c,ctl for the motion class d 
is a function of the source coding rate, for class d, channel 
coding rate, for class d, and power levels of all motion classes. 

Before the presentation of the resource allocation schemes, 
it is necessary to define the utility function. The utility 
function, Uel, constitutes a measure of relative satisfaction 
for motion class d. In our problem, it is defined equiva­
lently to the peak signal to noise ratio (PSNR) [3], i. e. , 
Uel = 10 log 10 (2552 / E[Ds+c,ctl), and is measured in decibel 
(dB). The quantity E[Ds+c,ctl represents the expected distortion 
given by Eq. (2). The larger the value of the utility function, 
the better the video quality for motion class d, and vice versa. 

In the following, we summarize the optimization criteria 
used in order to determine the nodes' transmission parameters. 

1) Minimum Average Distortion (MAD) 
This criterion aims at the minimization of the average 
distortion of the M motion classes of the network: 

1 
M 

min M L E[Ds+c,ct] (Rs,el, He,el, S), (3) 
el=l 

while it does not assert fairness among the M motion 
classes. Hence, distortion is allowed to vary significantly 
among the motion classes as long as the average 
distortion is kept to minimal levels. 

2) Nash Bargaining Solution (NBS) 
This bargaining solution, based on its fairness axioms [3], 
can be determined as: 

M M 

ff>adx II (Ucl(Rs,el, Rc,el, S) - dPct)acl, L ael = 1. 
- P el=l el=l 

(4) 
The vector U includes the utilities of the M motion 
classes and the vector dp is the disagreement point, which 
includes the minimum utilities that each motion class 
expects by joining the game, without cooperating with 
the other classes. In the present work, the disagreement 
point is imposed by the designer of the system. The 



amount ael corresponds to the bargaining power assigned 
to each motion class cl and declares the advantage of 
that class in the resource allocation game. The larger the 
value of the bargaining power is, the more advantaged the 
motion class is, and vice versa. In our implementation, 
we assumed that all K nodes of the network are equally 
advantaged. Thus, given the node clustering into M 
motion classes, the bargaining power assigned to each 
motion class cl is proportional to its cardinality Nel. 
Therefore, ael = Nell K. 

3) Maximum Total Utility (MTU) 
In some cases, all the nodes of the network aspire to 
maximize the total system utility. Therefore, assuming 
again a node clustering into M motion classes, we have 
to maximize the function: 

M 

max L Uel(Rs,el, Rc,el, S), 
el=l 

(5) 

where Uel corresponds to the utility of the motion class 
cl. 

V. RESOURCE ALLOCATION USING REINFORCEMENT 

LEARNING 

At this point, we introduce the formulation of the resource 
allocation problem as a Markov decision process (MDP) [11] 
and we also present the reinforcement learning (RL) scheme, 
which is incorporated in the controller, i. e. , the CCU. The 
resource allocation problem considered in this study is treated 
as a discrete optimization problem (discrete nodes' transmis­
sion parameters). Although in the past this problem had been 
encountered using the heuristic optimization methodology of 
exhaustive search (ES) [2], [3], this is not feasible in the 
specific work. In our case, the controller has to select among 
a considerably larger set of possible variable combinations 
compared with the previous works. Nevertheless, the major 
handicap of the ES algorithm is its computational complexity, 
which renders its use prohibitive in the online mode. 

According to our proposed methodology, the learning 
optimization problem is formulated in a sequential decision 
framework and is modeled as an MDP [11]. Roughly speaking, 
an MDP involves a decision agent (controller) that repeatedly 
observes the current state of the controlled system, takes a de­
cision among the ones allowed in that state, and then observes a 
new state as well as a reward that will drive its future decisions. 
The MDP is typically denoted as a tuple {X, U, n, P, I}

' 
where X and U are the state and action spaces, respectively; 
n is the reward function that specifies the importance of each 
transition; P is the state transition distribution; and I E [0, 1] 
is the discount factor that determines the importance of the 
future rewards. 

In the learning problem of resource allocation studied in 
this paper, we consider the state space as the Cartesian product 
of eight sets; 

X��x�x�x�x�x�x�x�. 

In this way, a state is represented as an eight-dimensional 
vector. Each of the first four variables denotes the source­
channel coding rate combination for the motion class cl (Cel E 

{I, 2, 3}) and each of the remammg variables denotes the 
power level for the motion class cl, (Sel E {5, 7, 9, 11, 1 3, 15}), 
cl = {I, . . .  ,4}. Moreover, the action space consists of 
17 actions, two for each dimension. At each time step, the 
controller can increase or decrease one of the state variables. 
Additionally, we give the ability to the controller to leave the 
state variables unchanged, by remaining at the same state. 
Regarding the reward function, it specifies the gain obtained 
during a transition from the current state x to the next state x', 
as given by the difference between the values of the objective 
functions corresponding to the specific states. 

A stationary policy 7r : X --+ U is a mapping from 
states to actions and denotes a mechanism for choosing actions 
appropriately. The notion of value function is of central interest 
in RL tasks. Given a policy 7r, the value V7l" (x) of a state x is 
defined as the expected discounted sum of rewards, obtained, 
starting from this state and following the policy: 

(6) 

This is actually a Bellman equation, which expresses a re­
lationship between the value of a state and the values of 
its successor states. Similarly, the state-action value function 
Q(x, u) denotes the expected cumulative reward as received 
by taking action u in state x, and following policy 7r: 

The objective of an RL task is to estimate an optimal policy 7r* 

by choosing actions that yield the optimal state-action value 
function: 7r* (x) = arg maxu Q* (x, u) . 

The temporal difference (TD) family of algorithms [9] pro­
vides an elegant framework for solving prediction problems. 
The main advantage of this class of algorithms is its ability 
to learn directly from raw experience, without any further 
information. One of the most popular TD algorithms is the 
SARSA algorithm [13], which is a bootstrapping technique. 
More specifically, this is an on-policy control method, which 
is based on the state-action value function estimation. The 
predicted Q value of the new visited state-action pair and the 
received reward are used to calculate an improved estimate for 
the Q value of the previous visited state-action pair: 

The above quantity is known as the one-step TD error and is 
used for adjusting the weights of the policy, by performing a 
stochastic gradient descent scheme: 

(9) 

where the parameter 'T} is the learning rate that controls the 
update rule. Moreover, we can combine the SARSA algorithm 
with the eligibility traces, SARSA(>-) [13], allowing the update 
rule to propagate the TD error backward over the current 
trajectory of states. It has been proven that TD algorithms 
are able to find the optimal policy with probability 1 [14]. 
This fact gives us the opportunity to find the optimal variable 
combination with certainty, starting from each initial state and 
following the learned policy. 



VI. EXPERIMENTAL RESULTS 

In this work, the K = 100 nodes of the network were 
clustered into M = 4 motion classes, with each class con­
sisting of 25 nodes. All video sequences (Fig. 1) were at 
quarter common intermediate format (QCIF) resolution and 
the H.264/AVC High profile for 4: 2: 0 color format video was 
selected to compress each of them. The RCPC codes had 
mother rate 1/ 4 [12], the total bandwidth was Wt = 20 
MHz and the target bit rate Rk = 9 6  kbps. The tested GoP 
lengths were {3, 5,10, 30}. The set of admissible source and 
channel coding rate combinations was C E {1: (3 2,1/ 3),2 : 
(4 8,1/ 2),3: (64,2/ 3)) and the power levels assumed values 
from the set S = {5, 7, 9,11,1 3, 15} mW. The disagreement 
point was dp = (25,25,25,25) T dB. In order to encourage 
exploration in the adopted RL scheme, the initial state-action 
value functions were selected optimistically [9]. The specific 
optimization problem was treated as a continuous task, where 
the optimal solution was reached, when the controller remained 
in the same state for a maximum number of steps (stopping 
criterion). 

In the following, Table I presents the optimal determination 
of the transmission parameters for all considered criteria. 
Although all possible combinations for the GoP length for each 
video sequence were tested, due to lack of space we cite only 
three cases. Case 1: all video sequences are compressed with 
GoP length 30 (relatively infrequent IDR-frame placement), 
Case 2: all video sequences are compressed with GoP length 
3 (relatively frequent IDR-frame placement) and Case 3: each 
motion class selects the optimal GoP length. 

Let index 1 denote the high motion class, index 2 the 
medium-high motion class, index 3 the low-medium motion 
class and index 4 the low motion class. Thus, GOPel, Sel and 
Gel refer to the GoP, power level and source-channel coding 
rate combination for the class el, el = {1, . . .  ,4}. From the 
obtained results, we observe that when the optimal GoP length 
is selected for each motion class, we receive an increase in the 
total PSNR (sum of the PSNRs) of all motion classes up to 
4 . 2 dB compared to the case when GoP length is 30 and up 
to 9. 6 dB when GoP length is 3. 

Furthermore, as Fig. 2 shows, for the MAD and NBS 
criteria, when optimal GoP length is selected, all video se­
quences increase their own utilities compared to the other two 
GoP length considerations. For the MTU criterion, only the 
"Foreman" video sequence augments its utility compared to 
the other two GoP length considerations. However, the total 
PSNR increase achieved using the optimal GoP length is 7 . 8 
dB compared to Case 2, and 3. 7 dB compared to Case 1, which 
is a considerable PSNR increase. 

In the following, Fig. 3 compares the PSNR values 
achieved by each considered criterion, for all tested video 
sequences. The MAD favors the video sequences including 
high and medium-high amounts of motion, while the MTU 
is preferred by the nodes that capture low and low-medium 
amounts of motion. Regarding the NBS, it is the criterion that 
presents the smallest discrepancy between the PSNR values of 
all video sequences, being a compromise between the values 
of MAD and MTU, for all video sequences. 

Last but not least, Fig. 4 depicts the mean number of steps 
that the SARSA algorithm requires compared to the ES algo-
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Fig. 2. PSNR achieved for all video sequences for 3 different GoP lengths. 

rithm. It is obvious that SARSA needs a significantly smaller 
number of steps and hence less time, in order to discover the 
optimal combination of nodes' transmission parameters, for all 
considered criteria. This is attributed to the efficient way that 
the particular algorithm uses the received information from the 
environment. These two approaches, i. e. , SARSA and ES, will 
become non comparable in the case of online processing. 

VII. CONCLUSIONS 

This work dealt with the problem of cross-layer resource 
allocation among the nodes of a wireless DS-CDMA VSN. 
Additionally, the optimal GoP structure for the encoding of 
each video sequence captured by the nodes was the other main 
objective of this paper. For the determination of the nodes' 
transmission parameters, three optimization criteria were used. 
Allowing the nodes to select among various GoP lengths for 
the encoding of the video they capture, considering the motion 



TABLE l. RESOURCE ALLOCATION FOR ALL CONSIDERED CRITERIA. 

39 

37 

35 

a: 33 

� 31 

29 

27 

25 

23 

Case 

1 
2 
3 

Case 

1 
2 
3 

Case 

1 
2 
3 

GoP, 

30 
3 

30 

GoP, 

30 
3 

30 

GoP, 

30 
3 

30 

Coastguard 

GoP2 GoP3 GoP. S, 

30 30 30 15 
3 3 3 15 
3 30 30 15 

GOP2 GOP3 GoP4 S, 

30 30 30 11 
3 3 3 15 
3 30 30 15 

GoP2 GoP3 GoP. S, 

30 30 30 5 
3 3 3 11 
3 30 30 5 

PSNR Comparison 

Foreman Salesman Akiyo 
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level included in those scenes, video quality enhancement was 
observed compared to fixed GoP length considerations. Fur­
thermore, the RL approach adopted in this paper to tackle the 
resulting optimization problem was proven extremely efficient 
compared to the brute-force search approach. Although both 
ES and SARSA algorithms are able to reach to the optimal 
solution, SARSA requires far less steps, making the proposed 
methodology applicable in online form. 
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