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Abstract— In this paper we consider the problem of 
resource management for a Direct Sequence Code Division 
Multiple Access (DS-CDMA) wireless Visual Sensor 
Network (VSN) in a generalized fading environment. In a 
VSN application, the primary goal is ensuring that 
maximum video quality is achieved in spite of the 
prevailing network resource constraints. The Nash 
Bargaining Solution (NBS) was used in determining the 
transmission power and source and channel coding rates 
for each node. The nodes in the network negotiate in order 
to determine their transmission parameters. The task is to 
optimize the transmission powers (which are continuous) 
and the source and channel coding rates (which are 
discrete) for all the network nodes. Particle Swarm 
Optimization (PSO) is used to solve the mixed-integer 
optimization that arises. The analysis was carried out for a 
myriad of wireless multipath fading environments using a 
unified moment generating function (MGF) approach.    

Keywords — visual sensor network, cross layer 
optimization, Nash bargaining solution, game theory, 
multipath fading, particle swarm optimization, moment 
generating function.   

I. INTRODUCTION 

Present day service demand requires that wireless systems 
should be able to support heterogeneous types of data (audio, 
images, video) at different data rates. However, wireless video 
communications suffer from several network resource 
constraints such as bandwidth, energy and computational 
complexity limitations. The performance of a wireless Visual 
Sensor Network (VSN) can be affected by the bit rate 
available for video transmission. This work focuses on 
wireless Direct Sequence Code Division Multiple Access (DS-
CDMA) VSN. Challenges involved in wireless VSN include 
bandwidth and power limitations, problems due to channel 
conditions such as multipath fading, interference and 
background noise.  

Our framework considered spatially distributed nodes, each 
equipped with a camera capable of recording scenes with high 
motion and low motion. In order to reduce the effect of 
interference and operate optimally within the limits of the 
network resource constraints, we need to establish a joint 
network resource allocation scheme that can enhance the 
global video quality. The goal of this paper is to coordinate the 

behavior and performance of each individual node of a VSN 
with the aim of optimizing the overall performance of all the 
nodes, in terms of video quality.  

We shall employ game theory as a means of dynamically 
managing the available network resources for optimum 
performance. 

Previous research in this field focuses on the important issue 
of controlling power consumption in VSN [1, 2, 3]. However, 
solutions presented in [1, 2] did not optimize the overall end-
to-end video quality.  In other recent work, several approaches 
have been presented towards achieving an end-to-end video 
quality by reducing the intra-cell interference with the aid of 
cross-layer optimization schemes [4, 5, 6]. Though more often 
than not, wireless communication systems are affected by 
multipath fading channels. In previous work, the authors did 
not consider multipath fading environment, only AWGN 
channel environments were considered. Hence, there is a need 
to have proper characterizations of the available solutions in a 
generalized fading environment. We employed a Moment 
Generating Function (MGF) approach which has a lower 
computational complexity compared to other methods for 
fading environment analysis; in addition to that, it can be 
easily generalized as long as the MGF of the fading 
environment exist. 

In this paper, the cross-layer resource allocation scheme is 
based on the Nash Bargaining Solution (NBS) from game 
theory. Previous research work has been able to show that the 
NBS provided a better result than the Minimization of the 
Average Distortion (MAD) and the Minimization of the 
Maximum Distortion (MMD) [4]. Resources are allocated by 
the NBS based on negotiations between the nodes, coordinated 
by the centralized control unit. Our method ensures fair 
allocation of resources to obtain satisfactory utilities for all 
nodes and takes into consideration the various channel 
conditions, the video content characteristics, and the resource 
needs of the other nodes so as to achieve the required level of 
Quality of Service (QoS). The source coding rate and the 
channel coding rate take discrete values, whereas the 
transmission power is allowed to take value from a continuous 
set. Hence, the resulting optimization problem is a mixed-
integer problem, and it is solved using the Particle Swarm 
Optimization (PSO) [7].  

The remainder of the article is organized as follows; in 
Section II, we discuss the system model and derive the 
expected distortion expression under fading environment. The 
node clustering and optimization framework is presented 
briefly in Section III. Selected computational results are 
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provided in Section IV which is followed by some concluding 
remarks in Section V.   

II. SYSTEM MODEL 

The focus of this work is the analysis of a multi-node cross-
layer optimization technique for resource management in 
visual sensor networks. The technique assumes that three 
different layers (physical, data link, and application) cooperate 
with each other for network performance optimization, in 
terms of video quality. Transmission powers are determined at 
the physical layer; optimal channel coding rates are selected at 
the data link layer, while compression rates are chosen at the 
application layer. The Centralized Control Unit (CCU) 
coordinates collaboration among the layers by communicating 
with all nodes on the network in order to request changes in 
transmission parameters.  

Our framework assumes that the network nodes access the 
wireless VSN using the DS-CDMA channel access method. 
The VSN is comprised of low-weight spatially distributed 
video cameras (referred to as nodes) and a CCU which 
coordinates the resource allocation activities of the nodes so as 
to maintain good end-to-end video quality. All nodes in a DS-
CDMA system transmit over the same bandwidth, while a 
unique spreading code is used to identify the transmission of 
each node. The power Sk of node k (measured in Watts) is 
given by k k kS E R , where Ek is the received energy-per-bit 

and Rk is the total transmission bit rate which is defined as 

, , ,k s k c kR R R for a node 1,2,..., .k K ,s kR is the source 

coding rate, and ,c kR is the channel coding rate. Therefore, the 

energy-per-bit to multiple-access-interference (MAI) ratio can 
be defined as: 
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where 0 2N is the two-sided power spectral density due to 

MAI, and it is measured in Watts/Hertz. tW is the total 

bandwidth measured in Hertz. The subscript k denotes the 
current node while j denotes the interfering nodes.  

The H.264/MPEG-4 AVC video coding standard was used 
to encode the videos captured at the source nodes. Since severe 
video degradation can result from errors in the transmitted 
compressed video, channel coding is required to provide 
system resistance/immunity to channel errors. In this paper, 
channel coding is achieved by using the Rate Compatible 
Punctured Convolutional (RCPC) codes [8]. RCPC codes are 
families of codes that can be decoded with the same Viterbi 
decoder. The Viterbi upper bound for bit error probability, Pb 
is: 
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where P is the code period, dfree is the free distance of the code, 
cd is the information error weight and Pd is the probability that 
the wrong path at distance d is selected. In an AWGN channel 
using Binary Phase Shift Keying (BPSK) scheme, Pd is:  
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Rc is the channel coding rate, and 0kE N is the energy-per-bit 

normalized to the MAI ratio for the corresponding node k. 
As mentioned earlier, the work of the CCU is to allocate 

network resources to the nodes. Degradation due to lossy 
compression and channel error affects the video received by 
the CCU. Changes in the network resources may be requested 
by the CCU of the nodes, therefore it is expedient for the CCU 
to be able to estimate the expected video quality at the receiver 
prior to resource allocation. In this work, in order to estimate 
the expected video distortion ,[ ]s c kE D  for each node k at the 

receiver, we assumed the Universal Rate Distortion 
Characteristics (URDC) for each node k: 
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where α and β are positive parameters which depend on both 
the motion level sequence and the source coding rate of each 
node k [6]. Their values are determined by using the mean 
square optimization from some ,( [ ], )s c k bE D P pairs that are 

obtained experimentally. Rather than calculating the URDCs 
based on experimental results for every possible Pb, we 
calculated the expected distortion for a few packet loss rates 
associated with specific bit error rates using experiments and 
then use the model given in (4). 

It is worth mentioning here that limitations exist concerning 
the total available bit rate that can be used by each node for 
both source and channel coding. Each node should transmit 
data with the same maximum bit rate. It therefore implies that 
the source coding rate and channel coding rate are 
interdependent.  

Taking into considerations the required constraints, the goal 
is to enable the CCU to optimize the allocation of network 
resources (source coding rate, channel coding rate, and the 
power level) to each node k in order to minimize the end-to-
end expected distortion. Combining all previous equations, the 
expected distortion ,[ ]s c kE D  for node k can be written as a 

function of the source coding rate ,s kR , the channel coding rate

,c kR , as well as of the transmission powers, 

1 2( , ,..., )KS S S S  of all nodes participating in the network. 
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where 1,2,...,k K denotes the corresponding node.  
 
Fading Channel 

The expected distortion in a BPSK modulation scheme for 
each node can be evaluated under a multipath fading 



environment. In fading channels where the channel gain 
changes within a symbol period or where interleaving occurs, 
the average error probabilities should be used instead of (3). 
Using the identity in [10], given by: 

   1 12
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where 1 1 10.2938, 1.0483, 0.5070a b c    

the union bound for dP given in (3) can be shown as: 
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where 0c kdR E N   

The above expression is a very good approximation for Pd [10]. 
Moreover, the above expression is in a desirable exponential 
form, and averaging over fading distribution is simply the 
Laplace Transform of the applicable pdf, i.e., 
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where )(s is the moment generating function. It is 

interesting to note that even in different fading environments; 
the expression in (8) is very close to the actual result. 

The moment generating function of different fading 
distribution can be expressed in general form as [11] 
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For instance, using the parameters in Table 1, the moment 
generating function for a Nakagami fading channel will be 
expressed as 

( )
m
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TABLE 1. MGF PARAMETERS 

 A B C 
Rayleigh 1 0 1 
Nakagami m 0 m 
Rice 1+K K 1 

 
Therefore, it follows that the expression for the expected 

distortion ,[ ]s c kE D  for node k under multipath fading 

environment can be obtained by simply replacing the Pd 
expression of (3) which was used in (5) with the expression 
derived in (8).  
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III. NODE CLUSTERING AND OPTIMIZATION FRAMEWORK 

To characterize the notion of heterogeneous data, one group 
of node cluster captures videos with high levels of motion 
whereas the other group cluster captures video with low levels 
of motion or relatively stationary fields. Hence, after node 

clustering and taking into consideration the constraint, the 
vectors can be identified as Rs+c,high = (Rs,high, Rc,high)

T ,   
Rs+c,low = (Rs,low, Rc,low)T , and S = (Shigh, Slow)T, where Rs+c,high 
is a vector that represents the high-motion class nodes, Rs+c,low 
represents the low-motion class nodes and S is a vector that 
includes the powers for the high and low motion class 
respectively.  

 For the network resource allocation, we employed quality-
driven optimization criteria using the Nash Bargaining 
Solution (NBS) [12], which is based on game theory. In NBS, 
the nodes tries to find the Nash equilibrium based on the 
bargaining power of each node and the disagreement point.  

Nash Bargaining Solution 
The bargaining solution that fulfils the following axioms 

[13] for the feasible set U and the disagreement point dp is 
known as the Nash Bargaining Solution (NBS). 

1. a) Individual Rationality (IR):F(U, dp) ≥ dp  
b) Pareto Optimality (PO): Uk > F(U, dp) UUk    

2. Invariance to Affine Transformations (INV): Given any 
strictly increasing affine transformation τ(.) then 

)),(())(),(( dpUFdpUF    

3.   Independence of Irrelevant Alternative (IIA):  
If UYdp   then ),(),(),( dpUFdpYFYdpUF   

The first axiom states that the solution should lie in the 
bargaining set. The second axiom implies the invariance to 
affine transformations, which means that the solution is not 
affected by an affine transformation scaling of the utility 
function or the disagreement point.  

The NBS is the solution that maximizes the Nash product: 
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   for each node k. 

ak is the bargaining power of each node and shows the 
advantage of each player in the game. A higher bargaining 
power implies the player has more advantage and vice versa.  
Since we are considering node grouping (clustering) into high- 
and low-motion class of nodes, the vectors of utility and 
disagreement points for the motion classes become U = (Uh, 
Ul)

T and d = (dh, dl)
T, respectively. Therefore considering the 

node classes, the Nash product given earlier becomes 
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such that ah + al = 1.  
The utility function, Uk, constitutes a measure of relative 

satisfaction for each user. In our problem, it is defined 
equivalent to the PSNR: 
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In order to achieve global optimization among the nodes, we 

employed the particle swarm optimization (PSO) algorithm. 
PSO was used due to its ease of implementation, the provision 
of optimal global solution, and its quick convergence. These 



are essential characteristics for optimality in several wireless 
VSN applications. 

IV. COMPUTATIONAL RESULTS 

We considered a VSN comprising of 100 nodes, clustered in 
two motion classes. The bit error probabilities that were used 
for the calculation of expected video distortions were Pb = 10-7, 
10-6, and 10-5, while the distortions for each video sequence 
was assessed on an average over 300 repetitions. The RCPC 
codes used for channel coding had a mother code rate ¼. Since 
the total bit rate constraint is Rk = 96 kbps, the following are 
the available source-channel coding rate pairs (Rs,k, Rc,k): 

        , ,, 32 ,1 3 , 48 ,1 2 , 64 , 2 3s k c kR R kbps kbps kbps  

Subscript k represents the class of nodes (high, low). The 
transmission power S can take continuous values from 5.0 to 
15.0 measured in Watts. The disagreement point dp = (28,28). 

 For the implementation of the NBS, two assumptions were 
made concerning the bargaining powers. The first approach 
consider that each node has the same weight and it is referred 
to as n.NBS criterion, on the other hand the second approach 
consider that each class of nodes has an equivalent role in the 
resource allocation game and it is referred to as c.NBS 
criterion. 

The bandwidth, Wt is chosen to be 100 MHz and the 
disagreement point dp is taken to be (28, 28)T dB. The result 
listed in Table 2 is for the n.NBS criterion for AWGN channel, 
while Table 3 result is for Nakagami fading channel (with 
fading index m=3), and Table 4 is for a Rice fading channel 
(with the Rice fading index K=5). Similar results were 
obtained for the c.NBS criterion as well.  

 

TABLE 2.  

N.NBS for various node distributions, Rk = 96 kbps,  
Wt = 100 MHz, dp = (28,28)TdB (AWGN Channel) 

Node 
Distribution 

Rc,high Rc,low Sh/Sl PSNRh PSNRl 

90 - 10  2/3  1/2 1.4691 41.8039 46.9773 

70 - 30  2/3  1/2 1.4641 42.3367 47.4992 

50 - 50  2/3  1/2 1.4583 42.901 48.0508 

30 - 70  2/3  1/2 1.4517 43.4985 48.6334 

10 – 90  2/3  1/2 1.4445 44.1312 49.2485 
 

TABLE 3.  

N.NBS for various node distributions, Rk = 96 kbps,  
Wt = 100 MHz, dp = (28,28)TdB (Nakagami Channel, m=3) 

Node 
Distribution 

Rch Rcl Sh/Sl PSNRh PSNRl 

90 - 10  1/3  1/3 1.6994 26.7766 33.4653 

70 - 30  1/3  1/3 1.6884 26.9114 33.7543 

50 - 50  1/3  1/3 1.6775 27.0515 34.0496 

30 - 70  1/3  1/3 1.6666 27.1977 34.3531 

10 – 90  1/3  1/3 1.6558 27.3513 34.667 
 

TABLE 4.  

N.NBS for various node distributions, Rk = 96 kbps,  
Wt = 100 MHz, dp = (28,28)TdB (Rice Channel, K=5) 

Node 
Distribution 

Rch Rcl Sh/Sl PSNRh PSNRl 

90 - 10  1/3  1/3 2.2021 25.1814 30.6481 

70 - 30  1/3  1/3 2.1712 25.3102 31.0093 

50 - 50  1/3  1/3 2.144 25.4453 31.3669 

30 - 70  1/3  1/3 2.12 25.589 31.7276 

10 – 90  1/3  1/3 2.0987 25.745 32.0992 
 

Fig. 1 and Fig. 2 illustrated the performance of the NBS 
under different channel condition. Fig. 1 is the plot for the 
n.NBS criterion while Fig. 2 is the corresponding plot for the 
c.NBS criterion. As expected the system performed better 
under AWGN channel condition in comparison to the 
multipath fading environment. The low motion class always 
result into higher PSNR compared to the high-motion class.  

 
Fig.  1. PSNR under different channel condition using n.NBS  

 

 
Fig.  2. PSNR under different channel condition using c.NBS 
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Fig. 3 shows a plot of the power ratios for the two 
schemes under different fading environments. It can be seen 
that the power ratio stays relatively constant across all node 
distributions considered for the n.NBS criterion regardless of 
the fading environment whereas there is significant changes in 
the power ratios for the c.NBS criterion for different node 
distributions. 

 

 
Fig.  3. Power ratios for n.NBS and c.NBS  

V. CONCLUSION 

We considered the problem of optimizing network resources 
(source coding rate, channel coding rate, and transmission 
powers) between a high-motion and a low-motion class of 
nodes in multi-rate wireless DS-CDMA VSN. We have been 
able to derive required equations for adequate characterization 
and analysis in multi-path fading environment using the 
moment generating function approach. Previous research work 
either only considered AWGN channel or derived cumbersome 
equations for analysis. Our results revealed that fading should 
be an important consideration in developing algorithms meant 
for airborne communications, since there are significant 
differences between the outputs at the application layer 
(measured with the Quality of Service metric, Peak Signal to 
Noise Ratio (PSNR) ) under AWGN channel conditions, in 
comparison to more realistic fading environments. Our MGF 
approach provides a simple and generalized method for 
analysing the VSN in multipath fading environment.  
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