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Abstract 

MAP (Maximum A Posteriori) -based resolution 
enhancement technique with Huber-Markov random field 
(HMRF) as the image prior has been proposed in the 
literature, and better preserves image discontinuities 
when compared with a Gaussian prior model. The 
reconstruction relies on the choice of Huber function 
parameter, or threshold T. There is no explicit selection 
of T in the previous studies. In this paper, we propose a 
method for choosing the threshold of the HMRF image 
prior in MAP based resolution enhancement. The method 
is based on the fact that the threshold T of the Huber 
function in the HMRF image priors is physically the 
trade-off between high-frequency components and low-
frequency components for imagery data. High-pass 
filtering using the discrete Laplacian kernel along with 
the Huber function is used as the smoothness measure. 
When the high-passed value is less than T, the measure is 
a parabola function, while when the value is larger than 
T, the smoothness measure becomes a linear function. 
We hence define two different sets and derive the MAP 
estimator as a function of T. Experimental results are 
presented and conclusions are drawn. 
 
Keywords: Resolution enhancement, Huber-Markov 
random field, threshold, MAP estimation. 
 
 

1. INTRODUCTION 
 

The goal of resolution enhancement is to estimate a 
high-resolution image from a sequence of low-resolution 
images while also compensating for blurring due to the 
point spread function of the camera lens and the effect of 
the finite size of the photo-detectors, as well as additive 
noise introduced by the capturing process. Resolution 
enhancement using multiple frames is possible when 
there exists subpixel motion between the captured 
frames. Thus, each of the frames provides a unique look 
into the scene. 

In this paper, we propose a method for the selection of 
the threshold of the HMRF image prior in MAP-based 

resolution enhancement. The rest of the paper is 
organized as follows. In section 2, the MAP-based 
resolution enhancement algorithm is presented along 
with the HMRF-based prior model. In section 3, 
experimental results are presented. Finally, in section 4, 
conclusions are drawn. 

 
2. MAP-BASED RESOLUTION 

ENHANCEMENT TECHNIQUE WITH 
HMRF IMAGE PRIOR 

 
2.1 Review of MAP Based Technique 
 

Several resolution enhancement techniques have been 
proposed in the literature. In this review, we concentrate 
on Bayesian methods. Maximum A Posteriori (MAP) 
estimation with an edge preserving Huber-Markov 
random field (HMRF) image prior is studied in [1], [2]. 
In our previous work [3], we proposed a joint MAP 
registration (estimation of the relative motion between 
frames) and high-resolution image estimation algorithm 
using an HMRF prior model. In [3], two approaches were 
proposed, which differ in the selection of image 
smoothness measure. The first approach employs a 
measure that is based on a discrete Laplacian kernel, 
while the second approach uses a finite difference 
approximation of second order derivatives at each pixel 
of the high-resolution image estimate. There are two 
important parameters in this technique, the tuning 
parameter λ and the threshold T of the Huber function. 
The former one is further studied in [4], leaving the 
threshold T as the focus of this paper. 

 
2.2 Observation Model 

The image degradation process is modeled by a linear 
blur, motion, subsampling by pixel averaging and an 
additive Gaussian noise process. All vectors are ordered 
lexicographically. Assume that p low-resolution frames 

are observed, each of size 21 NN × . The desired high-

resolution image z is of size 2211 NLNLN =  and 1L  



 

and 2L  represent the down-sampling factors in the 

horizontal and vertical directions, respectively. Thus, the 
observed low-resolution images are related to the high 
resolution image through blurring, motion shift and 
subsampling. Let the kth low-resolution frame be denoted 

as [ ]tMkkkk yyy ,2,1, ,, �=y  for pk �,2,1= and 

where 21NNM = . The full set of p observed low-

resolution images can be denoted as 

[ ] [ ]tpM

tt
p

tt yyy ,,,,,, 2121 �� == yyyy .   (1) 

The observed low resolution frames are related to the 
high-resolution image through the following model:  
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for Mm �,2,1=  and pk �,2,1= . The weight 

)(,, krmkw s  represents the “contribution”  of the rth high-

resolution pixel to the mth low resolution observed pixel 

of the kth frame. The vector [ ]tKkkkk sss ,2,1, ,, �=s , is 

the K registration parameters for frame k, measured in 

reference to a fixed high resolution grid. The term mk,η  

represents additive noise samples that will be assumed to 
be independent and identically distributed (i.i.d.) 

Gaussian noise samples with variance 2
ησ . 

The system can be modeled in matrix notation 

nzWy s += ,                               (3) 

where matrix [ ]TT
p

TT
,2,1, ,,, ssss WWWW �= contains the 

operation of blur, motion, subsampling by pixel 
averaging.  
 
2.3 HMRF Image Prior and Laplacian 
Smoothness Kernel 

 
A general form of the HMRF density is 
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where A is a constant, λ is the temperature or tuning 
parameter of the density, c is a local group of points 
called clique and C denotes the set of all cliques in the 

image. cd is a coefficient vector for clique c and ( )•ρ  is 

the Huber function: 
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where T is the threshold of the Huber function.  

In this paper, we use the second smooth measure in 
[3], measuring the image smoothness at a given pixel 
using a Laplacian kernel, i.e., 
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with jid , a Laplacian smoothness kernel defined as  
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The corresponding cost function is: 
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where TN is set { }TNii t
i ≤∈ zd),,,2,1( �  and 

C
TN is the complement set of TN . 

 
2.4 Joint MAP Registration Algorithm 

 
The above cost functions can be minimized using the 

coordinate-descent method. This iterative method starts 
with an initial estimate of z obtained using interpolation 
from a low-resolution frame. Then, for a fixed z, the cost 
function is minimized with respect to s. Thus, the motion 
of each frame is estimated. Then, for fixed s, a new 
estimate for z is obtained. This procedure continues until 
convergence is reached, i.e., z and s are updated in a 
cyclic fashion. In order to update the estimate z, we first 
estimate 
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Also, the gradient can be obtained from 

k
k z

L
g

∂
∂= )(

)(
sz,

sz, .                      (10) 

The step size nε  can be found by solving 
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Then z can be updated recursively as 
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until convergence is reached. n is the iteration number 
starting from 0. 

 
2.5 Choice of Threshold T of HMRF Prior 

Threshold T of HMRF image priors is physically the 
trade-off between high-frequency components and low-
frequency components for imagery data. For the 



 

synthetic test, the original high-resolution image is 
known, threshold T can be set such that  

ρ=
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Here ( )zf  is the discrete smoothing norm from the 

2-D filtering using Laplacian kernel, and )(zTf is the 

smoothness norm when threshold T is taken into consider 
(any value lower than T is set to zero). ρ is a 

predetermined cutoff ratio, roughly corresponding to the 
percentage of high-frequency components in the image. 
Therefore, T can be determined in the synthetic test for a 
specific ρ . And ρ is usually chosen within ]5.0,0(  

under the assumption than there is more energy for the 
low-frequency components than that for the high-
frequency components. If no prior information of the 
energy distribution is available, ρ can be set as 0.5 to 

allow enough high-frequency components appear in the 
constructed high-resolution image, and we name the 
corresponding T as T0.5. In Fig. 1, we show the plot of 
threshold versusρ for “Cameraman” and “Lena”  image, 

with T0.5=2 and T0.5=2.25 respectively. For real data, the 
threshold T can be selected within a reasonable range, 
which is usually chosen to cover the range of the 
threshold T found from the synthetic tests. 

From Equation (5), we can easily see that if the 
threshold T is large enough, ρ becomes one and the 

HMRF prior reduces to a GMRF prior.  
 

3. EXPERIMENTAL RESULTS 
 
A number of experiments were conducted, some of 

which are presented here. To test the performance of our 
algorithm, we first use the 256x256 “Cameraman” and 
“Lena”  images for synthetic tests. 16 low-resolution 
frames were generated via Gaussian blurring (variance 

1.7), global motion shift of { } { }3,2,1,03,2,1,0 × in 

the high-resolution grid, subsampling by L1 = L2 =4 and 
addition of AWGN noise (variance 1). The threshold T is 

set to 5.0T . The first frame is selected as reference frame 

and bilinear interpolation plus CLS (Constraint Least 
Squared) filtering of the first frame is chosen as the first 
estimate of the high-resolution image z. Algorithm is 
carried out for 20 iterations or until convergence is 

reached when 6221 10ˆ/ˆˆ −+ <− nnn zzz .  

The PSNR of the reconstructed images for 
“Cameraman” and “Lena” using three methods (Bilinear, 
GMRF and HMRF/T0.5) are listed in Table 1. 

The bilinear interpolation of the first low-resolution 
frame and the reconstructed “Cameraman” and “Lena” 

images from GMRF and HMRF/T0.5 are shown in Fig. 
2(a)-(c), 3(a)-(c), respectively. 

Table 1 Results of “Cameraman” using the three methods 
PSNR (dB) Bilinear 

Interpolation 
GMRF HMRF/T0.5 

Cameraman 21.26 23.87 23.94 
Lena 23.20 26.55 26.75 

 
4. CONCLUSION 

 
As expected, HMRF gave a good reconstruction result 

and preserve more information at the edges than when 
using Gaussian prior model. In this paper, we proposed a 
method for the choice of threshold T for HMRF prior, 
which is the physical trade-off between high-frequency 
components and low-frequency components for imagery 
data. Synthetic test verify the validity of out algorithm. 
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Fig. 1. Threshold vs. cutoff ratio of “Cameraman”  and 

“Lena” images, with T0.5=2 and T0.5=2.25 respectively. 



 

 
Fig. 2(a). Bilinear interpolation of first low-resolution frame of 

“Cameraman”   
 

 
Fig. 2(b). Reconstruction of “Cameraman”  using GMRF as the 

image prior 
 

 
Fig. 2(c). Reconstruction of “Cameraman”  using HMRF as 

the image prior and threshold of Huber function set to T0.5 

 
Fig. 3(a). Bilinear interpolation of first low-resolution frame 

of “Lena”   

 
Fig. 3(b). Reconstruction of “Lena”  using GMRF as the 

image prior 
 

 
Fig. 3(c). Reconstruction of “Lena”  using HMRF as the 

image prior and threshold of Huber function set to T0.5 


