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ABSTRACT Video super-resolution is a fundamental task in computer vision, aiming to enhance the
resolution and visual quality of low-resolution videos. Plug-and-Play Priors is one of the most widely
used frameworks for solving computational imaging problems by integrating physical and learned models.
Traditional approaches often rely on handcrafted priors, which are computationally expensive and may not
generalizewell to diverse video content. In this paper, we propose a novel approach for video super-resolution
using Plug-and-Play Priors with motion estimation. By leveraging the power of deep learning and the
flexibility of the Plug-and-Play framework, our method achieves promising results while maintaining
computational efficiency. Experimental results on benchmark datasets demonstrate the superiority of our
approach in terms of both quantitative metrics and visual quality.

INDEX TERMS Video, super-resolution, plug-and-play, motion estimation.

I. INTRODUCTION
Super-resolution (SR) involves the generation of high-
resolution images or videos from their low-resolution
counterparts, presenting a complex challenge within the field
of computer vision. Its applications span diverse domains,
including medical imaging, surveillance, remote sensing,
and multimedia. The enhancement of resolution and visual
quality in low-resolution videos is a particularly demanding
task within super-resolution, as it aims to address issues
like motion, subsampling, additive noise, and point spread
function (PSF) blurring between frames in a low-resolution
(LR) sequence [1].

Researchers have, over time, introduced various techniques
and algorithms to tackle the intricate problem of super-
resolution. Within a low-resolution sequence, each frame
captures only a fraction of the original high-resolution (HR)
image’s information due to inherent degradations. However,
frames with subpixel motion offer unique partial information
of the original HR image. Consequently, with sufficient LR
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frames containing distinct information, the HR image can be
reconstructed through digital image or video processing [2].

In the realm of video super-resolution, the accurate
estimation of motion assumes a pivotal role. This process,
essential for enhancing the resolution of low-resolution
videos, involves aligning and consolidating information from
multiple frames to generate a high-resolution output [3].

The deterioration of images in video super-resolution
commonly involves the representation of a linear blur,
motion, subsampling, and Gaussian noise. This is typically
conceptualized through an observation model, assuming the
acquisition of multiple low-resolution (LR) images through
a specific process [4]. According to this model, the LR
input images are obtained from the high-resolution (HR)
original scene through operations such as warping, blurring,
and downsampling. It is assumed that the HR image remains
constant during the acquisition of several LR images [5].
Numerous algorithms and techniques have been proposed

over the years to address the enhancement of resolution in
both images and videos. The initial attempt was made by
Tsai and Huang [6], utilizing the shifting property of the
Fourier Transform and the aliasing relationship between the
continuous Fourier transform (CFT) and the discrete Fourier
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transform (DFT). Tekalp et al. [7] extended this method,
incorporating a least squares approach to solve a system
of equations and introducing a linear shift-invariant (LSI)
blur point spread function (PSF). Kim et al. [8] further
improved this technique by introducing a weighted least
squares algorithm to handle noisy data. However, these
methods are limited to scenarios where global motion is
known in advance. Other spatial domain methods include
the projection onto convex sets (POCS) approach introduced
by Stark and Oskoui [9]. This method intersects convex
constraint sets representing desirable image characteristics,
such as positivity, bounded energy, fidelity to the data, and
smoothness, with the HR image space. POCS has been
extended to handle time-varying motion blur [10] and [11],
using block matching or phase correlation for registration
parameter estimation [10].
Stochastic methods form another category of resolution

enhancement algorithms, with maximum likelihood (ML)
and maximum a posteriori (MAP) approaches falling under
this group [12]. The MAP estimation, employing an
edge-preserving Huber-Markov random field image prior,
is examined in [13], [14], and [15]. Resolution enhance-
ment with simultaneous registration parameter estimation is
proposed in [16], [17], [18], and [19]. This method uses a
Gibbs-Markov random fields (GMRF) image prior with a
local clique. The regularization parameter is crucial to the HR
image reconstruction, and the L-curve method is employed
for its estimation in [20], selecting the desired ‘‘L-corner’’ or
point with maximum curvature on the L-curve.

A thorough comprehension of the point spread function
(PSF) and precise registration of subpixel motion are
crucial elements for reconstructing high-resolution (HR)
images. However, in practical applications, ensuring accurate
knowledge of these parameters is often challenging. Lee
and Kang [21] presented a regularized adaptive HR recon-
struction method that accommodates inaccurate subpixel
registration. Assuming Gaussian noise for the registration
error, with a standard deviation (STD) proportional to
the registration error’s magnitude, two approaches were
developed to estimate the regularization parameter for each
low-resolution (LR) frame (channel). Experimental results
demonstrated the convergence of these methods to a unique
global solution, although the synergy of these approaches was
not extensively demonstrated. In [22], a hierarchical Bayesian
framework was employed to address image restoration in the
presence of partially known blurs, using stationary zero-mean
white noise to model the unknown component of the PSF.
Evidence analysis (EA) was utilized to propose two iterative
algorithms resembling the regularized constrained total least
squares filter and the linear minimum mean square-error
filter [23], [24], [25].

Robust super-resolution techniques have been introduced
in [23], [24], and [25], specifically designed to handle
anomalies (data that deviate from the model). In [23], the
iterative HR image acquisition method incorporates a median
filter, showcasing robustness when errors from outliers are

symmetrically distributed. However, determining whether
bias arises from aliasing or outlier information requires a
threshold, and the method’s mathematical justification is
not thoroughly examined. In [24] and [25], a robust super-
resolution approach was proposed, incorporating the norm in
both the regularization term and the measurement term of the
penalty function. A robust regularization based on bilateral
priors was introduced to accommodate various data and noise
models, providingmathematical support for a ‘‘shift and add’’
approach related to norm minimization when relative motion
is purely translational, and the PSF and decimation factor are
common to all LR images.

Subsequently, the methodology introduced in [16], [17],
[18], and [19] was extended to handle scenarios where low-
resolution (LR) frames suffer from additive white Gaussian
noise (AWGN) with varying variances in each frame [18].
The fundamental idea involves adjusting the residual term
of the cost function by the inverse of the variance for each
frame (channel) when AWGN with distinct variances is the
sole additional noise source in the LR images. Moreover,
to mitigate errors introduced by other types of noise during
the resolution enhancement reconstruction phase, weighting
should be applied to each channel. Additionally, He and
Kondi proposed an image super-resolution algorithm in [4]
that takes into account imprecise estimates of registration
parameters and the point spread function. These inaccurate
estimates, coupled with additive Gaussian noise in the LR
image sequence, result in varying noise levels for each frame.
In the proposed algorithm, LR frames are adaptivelyweighted
based on their reliability, and the regularization parameter is
simultaneously estimated, assuming a translational motion
model.

Image super-resolution using deep learning has gained sig-
nificant attention due to its ability to generate high-resolution
images from low-resolution inputs. Various deep learn-
ing architectures and methods have been proposed for
image super-resolution. Among them there is SRCNN [26],
FSRCNN [27], ESPCN [28], VDSR [29], SRGAN [30],
EDSR [31], RCAN [32], IDPT [33] and DBTC [34]. The
emergence of deep learning has showcased the substantial
potential of convolutional neural networks (CNNs) in video
super-resolution. Tao et al. [35] introduced a CNN-based
framework for video super-resolution that effectively har-
nessed both spatial and temporal information. Their network
learned spatio-temporal dependencies in videos, leading to
improved resolution and visual quality.

To further reinforce the performance of CNN-based
video super-resolution, researchers explored the incorpo-
ration of recurrent neural networks (RNNs) to model
long-term temporal dependencies. Caballero et al. [36]
proposed a recurrent video super-resolution network
(RVSR) that integrated a recurrent structure to cap-
ture temporal information across frames. The recurrent
connections facilitated a better understanding of tem-
poral dynamics, resulting in superior super-resolution
outcomes.
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In addition to approaches based on deep learning,
there have been endeavors to exploit alternative priors
and constraints in video super-resolution. For example,
Huang et al. [37] proposed a method that incorporates
non-local self-similarity to harness redundancy within
video frames. By enforcing self-similarity constraints, their
approach achieved enhanced reconstruction quality and
reduced artifacts.

Another direction in video super-resolution involves
the utilization of generative adversarial networks (GANs).
Ledig et al. [30] introduced an SRGAN-based framework
for single-image super-resolution, later extended to address
video super-resolution. With a generator-discriminator archi-
tecture, SRGAN effectively captured high-frequency details,
resulting in visually pleasing super-resolved videos.

Moreover, researchers have explored the fusion of multiple
frames to enhance the resolution of video sequences.
Huang et al. [38] proposed a multi-frame video super-
resolution method that combines a temporal fusion module
with a spatial attention mechanism. By selectively fusing
information from multiple frames, their approach achieved
improved super-resolution results.

It is crucial to emphasize that the assessment of video
super-resolution methods relies significantly on evaluation
metrics and datasets. The use of benchmark datasets, such
as Vimeo-90K [39] and REDS [40], has facilitated fair
comparisons and benchmarking of various algorithms.

The Plug-and-Play Priors (PPP) framework is recog-
nized as one of the extensively used methodologies for
addressing computational imaging challenges through the
integration of physical and learned models. PPP takes
advantage of high-fidelity physical sensor models and
robust machine learning techniques for data pre-modeling,
incorporating cutting-edge reconstruction algorithms. PPP
algorithms follow a cycle of minimizing data fidelity terms to
uphold data consistency and enforcing learned regularization
through image denoising [41]. Recent achievements of PPP
algorithms span applications in biomicroscopy, computed
tomography, magnetic resonance imaging, and joint pty-
chotomography [42].
This article proposes a video super-resolution method,

based on the Plug-and-Play (PnP) framework. To our
knowledge this is the first attempt to use PnP framework in
video super-resolution, using motion estimation.

II. PLUG-AND-PLAY PRIORS
Plug-and-Play Priors (PPP) stands out as a widely adopted
framework that integrates physical and learned models
to address computational imaging challenges. It is a
robust framework that merges conventional optimization
techniques with modern denoising methods and priors to
efficiently tackle inverse problems [43]. Initially introduced
by Venkatakrishnan et al. [42], PPP has garnered significant
attention across various domains of computer vision
and image processing. This literature review delves into

key contributions that have shaped the development and
application of PPP.

The original PPP framework proposed by Venkatakrish-
nan et al. [42] showcased its efficacy in solving inverse
problems, such as image denoising and deblurring. Their
work demonstrated that by alternately applying denoising
and data fidelity steps, PPP achieves state-of-the-art results.
The denoising step employs robust algorithms likeNon-Local
Means (NLM) or Block-matching and 3D filtering (BM3D)
[44] to eliminate noise and enhance image quality. The
data fidelity step ensures consistency between the denoised
image and the observed measurements. Despite the original
formulation relying on ADMM [45], PPP proves equally
effective when combined with other proximal algorithms
like primal-dual splitting (PDS) [46] and fast iterative
shrinkage/thresholding algorithm (FISTA) [47].

To further enhance denoising capabilities within PPP,
Zhang et al. [48] introduced a deep denoising network
named DnCNN. Integrating DnCNN into the PPP framework
demonstrated its effectiveness in tasks such as image
super-resolution and inpainting. The utilization of deep
neural networks within PPP provides a more flexible and
potent denoising tool, surpassing traditional handcrafted
denoisers in performance.

Ghassab and Bouguila [49] explored the utilization of a
Student-t mixture model as a promising tool for the recon-
struction of video super-resolution. The Student-t mixture
model, renowned for its heavy tail, was deemed robust and
well-suited for the prior of video frame patches, offering
a mixture model with a rich log-likelihood for information
retrieval. Edge-preserving filtering was implemented to
address potential data uncertainties and preserve areas with
abrupt lighting changes in video frames. The Plug-and-Play
Priors (PPP) structure was subsequently employed to inte-
grate the Student-t mixture prior model and edge-preserving
filtering into the super-resolution algorithm. Empirical eval-
uations conducted on various video frame sets, demonstrated
the effectiveness of the proposed algorithm. Comparisons
with eight other state-of-the-art super-resolution methods
affirmed that the proposed framework generally outperforms
others across different super-resolution scales, even in the
absence of leveraging motion estimation to exploit frame
correlations.

PnP-ADMM is widely recognized for its efficiency and
fast empirical convergence within the realm of frequently
employed operators in computational imaging. However,
it demands the computation of the proximal map, in contrast
to PnP-FISTA, which solely requires the computation of
the gradient ∇g. While the gradient is theoretically less
complex than the proximal map, numerous applications
enable the efficient computation or approximation of the
proximal map. General techniques such as conjugate gradient
or specialized methods, particularly when the forward model
incorporates a spatial blurring operator computed through
fast Fourier transform (FFT), can be employed for this
purpose [50].
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The incorporation of an extra state variable, employed as an
initiation for the proximal minimization problem, streamlines
this procedure. An iterative solver, commencing from this
initialization, performs a series of steps to estimate the
minimization effectively. This state variable also converges
with the outer loop, resulting in decreased computational
requirements through partial updates while maintaining the
accuracy of the final solution [51].

In the research work reported in [52], scientists introduce
a straightforward and robust super-resolution framework
applicable to individual images and easily adaptable to
videos. The foundation of the framework is rooted in the
observation that the denoising of both images and videos
can be effectively accomplished through various meth-
ods. By leveraging the Plug-and-Play-Prior framework and
adopting the Regularization-by-Denoising (RED) approach,
the researchers illustrate how denoisers can be harnessed
to tackle both Single-Image Super-Resolution (SISR) and
Video Super-Resolution (VSR) challenges using a unified
formulation. Instead of incorporating motion estimation
between frames, the VBM3D video denoiser was employed
in this approach.

Our paper attempts to introduce a PnP method for video
super-resolution, using motion estimation, which has not
been done yet.

III. OUR METHOD
The acquisition model we are assuming is:

y = Ax+ ε, (1)

where:

• y is the full set of LR frames, described as y =
[ y1T , y2T , . . . , ypT ] T , where yk , k = 1, 2, . . . , p
are the p LR images. Each observed LR image is of
size N1 × N2. Let the kth LR image be denoted in
lexicographic notation as yk = [ yk,1, yk,2, . . . , yk,M ] T ,
for k = 1, 2, . . . , p and M = N1N2.

• x is the desired HR image, of size L1N1 × L2N2,
written in lexicographical notation as the vector x =
[ x1, x2, . . . , xN ] T , where N = L1N1L2N2 and L1 and
L2 represent the up-sampling factors in the horizontal
and vertical directions, respectively. x is the ideal
un-degraded image that is sampled at or above the
Nyquist rate from a continuous scene which is assumed
to be band-limited.

• ε = [ ε1, ε2, . . . , εp] T , where εk is the noise vector for
frame k and contains independent zero-mean Gaussian
random variables.

• A = [ A1,A2, . . . ,Ap] T is the degradation matrix
which performs the operations of blur, motion and
subsampling.

Assuming that each LR image is corrupted by additive
noise, we can then represent the observation model as [5]:

yk = Akx+ εk for 1 ≤ k ≤ p (2)

where

Ak = SBkMk . (3)

Mk is a warp matrix of size L1N1L2N2 × L1N1L2N2, Bk
represents a L1N1L2N2 × L1N1L2N2 blur matrix, and S is a
N1N2 × L1N1L2N2 subsampling matrix. In our case Bk = I ,
since we assumed no added blur on video frames.
The goal is to find the estimate x̂ of the HR image x from

the p LR images yk by minimizing the cost function

x̂ = arg min
x∈RN

f (x) with f (x) = g(x)+ h(x), (4)

where g(x) =
∑p

k=1
1
2∥Akx − yk∥22 is the ‘‘fidelity to the

data’’ term, and h(x) is the regularization term, which offers
some prior knowledge about x. In this work, we utilize the
Plug-and-Play Priormethodology, where h(x) is not explicitly
defined. Instead, the ADMM algorithm is modified so that
the proximal operator that depends on h(x) is replaced by a
denoising neural network [53].

We next outline the steps of the proposed algorithm.
1) The first step of our algorithm is to evaluate the

term Mk from Eq. (3), by using optical flow motion
estimation. The motion estimation method used is a
popular optical flow method, called the Farneback
algorithm, named after its creator, Gunnar Farneback.
The Farneback algorithm generates an image pyramid,
where each level has a lower resolution compared to the
previous level. The Farneback method employs a dense
approach, meaning it estimates the motion vector for
every pixel in the image. The algorithm consists of the
following steps [54]:
a) Preprocessing: The input frames are preprocessed

to enhance their quality. Preprocessing steps
include noise reduction, image denoising, and
color space conversion.

b) Image pyramids: The Farneback algorithm con-
structs a Gaussian pyramid for each frame.
This involves creating a series of downsampled
versions of the original image, forming a hier-
archy of images with decreasing resolution. The
pyramids enable capturing motion at multiple
scales, improving the accuracy of the optical flow
estimation.

c) Optical flow estimation: For each level of the
pyramid, the Farneback algorithm computes the
optical flow using a combination of polynomial
expansion and spatial filtering. It estimates the
local flow vectors by calculating the phase differ-
ence between the polynomials corresponding to
neighboring image patches.

d) Upsampling and refinement: Once the optical
flow is computed at the coarsest level of the
pyramid, it is successively refined by upsam-
pling the flow field and incorporating the local
information from higher-resolution levels. This
refinement process improves the accuracy of the
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flow estimation, particularly for small and fast-
moving objects.

The result of the Farneback method is a dense
optical flow field, where each pixel has an associated
motion vector. These vectors represent the direction
and magnitude of the motion of objects in the scene
between consecutive frames.
We assume that one of the LR images, ymid (typically
the middle one), is produced from the HR image x,
by applying only downsampling, without motion shift.
Thus, Mmid = I . Optical flow is calculated between
ymid and the rest of the LR images. Following that,
we getMk for the remaining p− 1 images.

2) The second step of our algorithm is based on the PnP-
ADMM method. Specifically, we run PnP-ADMM,
following the steps described in Algorithm 1 until con-
vergence, where x0 is the initial value of the HR image,
obtained from ymid multiplied by the pseudo-inverse of
Amid , followed by denoising using DnCNN, while D is
the image denoising operator (neural network) and g is
defined as g(x) =

∑p
k=1

1
2∥Akx− yk∥22.

Algorithm 1 : PnP-ADMM [42]

1: u0 = 0, x0, and γ > 0
2: for k = 1, 2, . . . , t do
3: zk ← proxγ g(xk−1 − uk−1)
4: xk ← D(zk + uk−1)
5: uk ← uk−1 + (zk − xk )
6: end for
7: return xt

One important property of ADMM is that it does not
explicitly require knowledge of g(x) or their gradients, relying
instead on the proximal operator, which is defined as:

proxγ g(x) := arg min
x∈RN
{
1
2
∥x− z∥22 + γ g(x)}. (5)

IV. PROOF OF CONVERGENCE
The crucial conceptual observation lies in the fact that PnP
algorithms incorporating black-box denoisers often struggle
to address optimization problems. In other words, while the
original ADMMalgorithm effectively solves the optimization
problem, the introduction of a black-box denoiser, denoted
as D, disrupts this process by eliminating a corresponding
function h for minimization. Specifically, the numerical
assessment of widely employed denoisers, such as BM3D and
DnCNN, demonstrates that their Jacobians lack symmetry,
suggesting that these denoisers do not function as either
gradient descent steps or proximal maps [55].

Nevertheless, it remains feasible to establish a criterion
for the converged solution in PnP by employing a consensus
equilibrium formulation, as proposed by [56].

x = G(x− u) and x = D(x+ u), (6)

where G := proxg and x, u are the converged values of PnP-
ADMM.

FIGURE 1. Original ‘‘Calendar’’ Image.

FIGURE 2. Original ‘‘City’’ Image.

Notably, within the consensus equilibrium expression
in (6), x represents the final reconstruction and u can be
construed as noise, eliminated by the denoiser in x = D(x+u)
on one hand and counterbalanced by the fidelity to the data
effect in x = G(x − ux) on the other. To derive (6), it is
important to recognize that the fixed points z, x, and u of the
PnP-ADMM iteration satisfy

z = G(x− u), x = D(z+ u),u = u+ z− x. (7)

From the last equation we conclude that x = z, which leads
directly to (6). Also, the first-order optimality condition for
the minimization problem x = G(x− u) = proxγ g(x− u) is
0 = x− (x− u)+ γ∇g(x), so u = −γ∇g(x).
The application of monotone operator theory, as outlined

in [57], allows for the illustration of the convergence of
PnP algorithms. In this approach, the initial phase involves
identifying a fixed point for a high-dimensional operator that
can be iteratively used to discover a solution, provided the
appropriate assumptions are met. In the proof of PnP-ADMM
convergence presented in [56] and [58], the initial step is
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FIGURE 3. Result of ‘‘Calendar’’ Image.

to establish a one-to-one correspondence between the fixed
points of PnP-ADMM and those of the operator:

T := (2G− I )(2D− I ). (8)

After a linear coordinate transformation, Algorithm 1 is
essentially identical to the Mann iterations of T , expressed
as vk ← 1

2v
k−1
+

1
2T (v

k−1) [56]. This results in linear
convergence towards a unique fixed point when T functions
as a contraction, a condition satisfied when g is strongly
convex and R := I − D serves as a suitably strong contrac-
tion [58]. Weaker conditions lead to sublinear convergence,
reaching a potentially non-unique fixed point [59]. Additional
notable theoretical findings on PnP-ADMM encompass its
convergence for implicit proximal operators [43], appli-
cability with bounded denoisers [60], and suitability for
linearized Gaussian mixture model (GMM) denoisers [50].
Even CNN-based denoisers can be trained to meet these
contractive, non-expansive, or Lipschitz conditions through
the implementation of spectral normalization techniques [58],
[61]. Conversely, when g exhibits onlymild convexity and the
denoiser D is strongly non-expansive, the iteration converges
sublinearly towards its fixed point [62].

V. RESULTS
We implemented our PnP method in SCICO [63],
which is an open source library for computational

imaging that includes implementations of PnP
algorithms.

We conducted extensive experiments on benchmark sub-
sets ‘‘calendar’’ and ‘‘city’’, from Vid4 dataset to evaluate the
performance of our proposed method. Specifically, we used
p = 3 frames, with the second in order being the zero-
motion image, and we added Gaussian noise with a standard
deviation of 0.02. The up-sampling factors in the horizontal
and vertical directions were L1 = L2 = 4. For the denoising
operator D, the DnCNN neural network [48] was used, as it
was pre-trained by SCICO. Finally, we compared our results
against other successful video super-resolution techniques
in terms of both quantitative metrics, such as PSNR (Peak
signal-to-noise ratio), and visual quality.

The results that were compared to ours were acquired by
APGM (accelerated proximal gradient method) [45], BM3D
(Block-matching and 3D filtering) [64], Total Variation [44],
bicubic, SOF-VSR (Super-resolving Optical Flow for Video
Super-Resolution) [65] and EDVR (Video Restoration with
Enhanced Deformable Convolutional Networks) [66].
Table 1 show PSNR results for the two datasets for all the

methods tested. It can be seen that average PSNR for our
method is 22.86 dB for ‘‘Calendar’’ dataset and 25.74 dB
for ‘‘City’’ dataset, while all the other methods have lower
values. The highest PSNR values for Frame 17 of ‘‘Calendar’’
(Fig. 1) and Frame 14 of ‘‘City’’ (Fig. 2).
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FIGURE 4. Result of ‘‘City’’ Image.

TABLE 1. Average PSNR values for the two datasets for all the methods.

FIGURE 5. PSNR values of the 29 images of ‘‘Calendar’’ dataset for all the
methods tested.

Apart from the numerical results, the visual proofs are also
in favor of our method, since the super-resolved pictures are
clearer than the pictures produced with the other methods.
Examples of the results can be seen in Fig. 3 and Fig. 4, which
are the results for the original Fig. 1 and Fig. 2. It should be
noted that there is no image result for EDVR, since results
were taken from [67].

FIGURE 6. PSNR values of the 29 images of ‘‘City’’ dataset for all the
methods tested.

Fig. 5 and Fig. 6 show the results in terms of PSNR for the
images of ‘‘Calendar’’ and ‘‘City’’ datasets accordingly, for
all the methods tested.

Frames 9, 10 and 11 from ‘‘Calendar’’ dataset show a
much lower PSNR for APGM, BM3D, and TV, because these
images have greater difference from the others and these
methods are more motion-sensitive than ours.

The results demonstrate the superior performance of our
approach in terms of reconstruction accuracy and preserva-
tion of fine details and textures. It is worth mentioning that
our method needs no training, since DnCNN is pre-trained.
Finally, the runtime of our method per frame is 12 seconds,
ran in Google Colab with T4 GPU.
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VI. CONCLUSION
PnP techniques have established themselves as a standard
tool for computational imaging since their introduction in
2013. They have been utilized in a remarkable variety of
applications that provide cutting-edge performance. They
were arguably the first practical approach to integrating
learnedmodels with imaging physics to solve inverse imaging
issues when they were first introduced. The ease with which
they can be implemented was a major factor in their rapid
popularity. Since then, alternative strategies have emerged
that, in some cases, result in improved reconstruction
performance; however, this is achieved at the expense of a
potentially time-consuming and data-dependent application-
specific training procedure. In this paper, we proposed a PnP
method for video super-resolution (resolution enhancement)
with motion estimation. The convergence property of the
proposed algorithm is analyzed in detail. More importantly,
experimental results show the validity of our algorithm and
its superiority compared to other state-of-the-art methods.
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