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ABSTRACT Advanced microscopic techniques such as high-throughput, high-content, multispectral, and
3D imaging could include many images per experiment requiring hundreds of gigabytes (GBs) of memory.
Efficient lossy image-compression methods such as joint photographic experts group (JPEG) and JPEG
2000 are crucial to managing these large amounts of data. However, these methods can get visual quality
with high compression ratios but do not necessarily maintain the medical data and information integrity. This
paper proposes a novel and improved medical image compression method based on color wavelet difference
reduction. Specifically, the proposed method is an extension of the standard wavelet difference reduction
(WDR) method using mean co-located pixel difference to select the optimum quantity of color images that
present the highest similarity in the spatial and temporal domain. The images with large spatiotemporal
coherence are encoded as one volume and evaluated regarding the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM). The proposed method is evaluated in the challenging histopathological
microscopy image analysis field using 31 slides of colorectal cancer. It is found that the perceptual quality
of the medical image is remarkably high. The results indicate that the PSNR improvement over existing
schemes may reach up to 22.65 dB compared to JPEG 2000. Also, it can reach up to 10.33dB compared to
a method utilizing discrete wavelet transform (DWT), leading us to implement a mobile and web platform
that can be used for compressing and transmitting microscopic medical images in real time.

INDEX TERMS Imaging, microscopy, image compression, color wavelet difference reduction.

I. INTRODUCTION
Medical image compression has become a prevalent tool
with a significant impact on diagnosing diseases in clinical
practice [1]. The problem of compressing and transmitting
an image in real-time, given the bandwidth of the com-
munication channel, is of great importance, especially in a
low-speed connection environment. This problem is not easy
to solve because medical images typically contain a huge
amount of important diagnostic information, so distortion
is not allowed [2]. Real-time constraints limit image com-
pression applications for transmission purposes. On the other
hand, image compression applications for storage purposes
are less stringent since most algorithms are not executed in
real time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Zuo .

There is a wide variety of image transform-based cod-
ing techniques, which amongst others, are based on dis-
crete cosine transform (DCT) and discrete wavelet transform
(DWT) [3]. The DCT method proposed by Nasir [4] trans-
forms image pixels from the spatial domain into the frequency
domain, allowing redundancy to be found. The Hungarian
mathematician Alfréd Haar created the first DWT method.
The main characteristic of this method is that the wavelets
are discretely sampled, and it has a temporal resolution that
allows capturing both frequency and location information [5].

Regarding compressing volumetric medical datasets,
it appears that three-dimensional (3D) wavelet-based
encoders outperform DCT-based solutions while providing
the required functions such as quality scaling, resolution,
random access, and region coding [6]. Narmatha et al. [7]
proposed a two-stream method for encoding and decoding
medical images by dividing and merging different regions of
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the wavelet subbands. Amri et al. [8] created three medical
image compression approaches by combining image reduc-
tion and expansion techniques, digital watermarking, and dif-
ferent lossless compression standards into a single processing
pipeline. The lossless compression standards included the
joint photographic experts group lossless standard (JPEG-LS)
and the tag image file format (TIFF).

In recent years, much effort has been paid to volumetric
medical image compression, where 3D medical images can
be viewed as time sequences or volume tomographic slices
of an object. Bruylants et al. [9] employed the wavelet trans-
formation to allow support for volumetric image datasets.
Ravichandran et al. [10] have also used the wavelet transform
to compress 3D medical images. Based on the fact that most
medical images are being captured in hospitals and medical
organizations using two-dimensional (2D) and 3D monitor-
ing techniques, their simulation results have shown that 3D
medical images have high-frequency patterns. Therefore, the
waveform technique allows higher peak signal-to-noise ratio
(PSNR) values even at the highest compression ratio than
2D medical images. Senapati et al. [11] proposed the 3D
hierarchical listless block (3D-HLCK) algorithm, a modified
3D block coding algorithm containing a listless variant. Tang
and Pearlman [12] created the 3D set partitioning embedded
block method (3D-SPECK), which encodes 3D volumetric
image data by utilizing the dependencies in each dimension.
Chen et al. [13] developed an end-to-end learning-based
framework for 3D volumetric image compression. The frame-
work uses the intra-slice and inter-slice information to predict
the entropy coding distribution. Also, it utilizes two novel
gating mechanisms for better aggregation of the intra-slice
and inter-slice features. Nagoor et al. [14] proposed a lossless
compression algorithm that trains a neural network as a 3D
data predictor for medical image volumes containing images
with 65,536 levels of colors and tones.

Additionally, Zerva et al. [15] proposed an extension of
the standard wavelet difference reduction (WDR) method
using mean co-located pixel difference (MCPD) to select the
optimal number of slices that exhibit the highest similarity
in the spatial and temporal domain. The slices with large
spatiotemporal coherence are encoded together as one vol-
ume in terms of higher PSNR and structural similarity index
(SSIM). It is found that the perceptual quality of the medical
image is remarkably high. The results indicate that the PSNR
improvement over existing schemes may reach up to 3.8 dB
and can guide us to implement amobile andweb platform that
can be used for compressing and transmiting medical images
in real-time.

According to our knowledge, the compression of micro-
scopic images using set partitioning methods has not been
tried yet. Color pictures display more information than
grayscale images since color pictures display the same num-
ber of grayscale tones as in grayscale images plus a number
of colors on every image, thus, improving contrast resolu-
tion. From a medical point of view, color images disclose
important information, which can be critical for diagnostic

purposes. Therefore, it motivated us to propose an extension
of the original WDR method to effectively compress micro-
scopic images, namely color wavelet difference reduction
(CWDR).

Our main contribution is designing a medical image com-
pression method that can be easily reproduced. It is suitable
for use in various color medical images of big sizes, such as
microscopic images. It achieves state-of-the-art compression
results with a high compression ratio and small information
loss within an acceptable range. Extensive evaluations have
been performed in a custom-created dataset containing image
data extracted using the Hamamatsu NanoZoomer 210. The
dataset contained 31 slides of colorectal cancer, and the pro-
posed CWDR algorithm achieved high compression ratios in
all images while maintaining high visual quality.

II. RELATED WORK
Current practice in the medical image compression field
is to reduce the size of medical image files by reversible
(lossless) [16] compression, which offers up to 3 times
size reduction, or irreversible (lossy) [17] compression. Irre-
versible compression allows for a much larger (between 8 and
25 times) size reduction without significant loss of visual
quality of the material.

There are many irreversible standards used for compress-
ing images. One of the most popular ones for medical appli-
cations is the standard from joint photographic experts group
(JPEG) [18]. The vital feature of JPEG is that it enables com-
pression at various levels, thus allowing the user to choose the
quality of the compressed image so that information losses
are not visible to physicians. JPEG 2000 [19] is the successor
of the JPEG standard that provides compression with no
or very little information loss, so the image quality does
not deteriorate but approximates the image quality without
compression. Compared to the JPEG standard, the JPEG
2000 standard provides a typical compression gain of 20%
on average, depending on the image features. In low-bitrate
applications, studies have shown that JPEG 2000 is superior
to H.264 intra-coding [20].

Among reversible compression algorithms, Huffman cod-
ing is one of the oldest methods of compressing image
data. Developed by Huffman [21], it is used to reduce cod-
ing redundancy without degrading the quality of the recon-
structed image. Other reversible compression algorithms are
arithmetic coding and lossless predictive coding. Arithmetic
coding converts a string of data symbols to a code string that
can be decoded back to the original data using an encoding
and decoding algorithm. Arithmetic coding is a group of
codes having the same property of considering the code string
as a magnitude [22]. Lossless predictive coding is a two-stage
approach that utilizes a lossless adaptive predictor followed
by arithmetic coding [23].

Recent lossless approaches involve the multi-dimensional
compression by substring enumeration (MCSE) by
Dubé [24]. CSE is a compression algorithm for bit strings
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FIGURE 1. General elements of an irreversible compression technique.
An irreversible compression technique is, in general, a three-stage
process. The procedure begins by decomposing or transforming the
image, followed by a quantization and symbol encoding process.

that was generalized to higher dimensions to handle all types
of images. Makarichev et al. [25] modified the irreversible
discrete atomic compression (DAC) algorithm by adding
compressed data describing the difference between the orig-
inal image and the compressed one inside the correspond-
ing DAC file. The addition combined with the compressed
image results in a reconstructed image without any distor-
tions. Lee et al. [26] developed a high-throughput image-
compression technique using the Golomb-Rice coding and
its hardware architecture. Descampe et al. [27] proposed
the JPEG XS compression algorithm for visually lossless,
low-latency lightweight image coding. It is an international
standard that achieves similar (slightly lower) compression
ratios compared to JPEG 2000 method. One advantage over
JPEG 2000 is that it consumes significantly less power and
requires fewer logic resources in hardware implementations.

A significant number of approaches utilize artificial neural
networks (ANNs) for specific tasks to increase the compres-
sion ratio. Min et al. [28] created a hybrid approach to com-
press three-dimensional (3D) medical images. The hybrid
algorithm utilizes the medical images’ anatomical features
to divide the medical data into specific areas. Then, a deep
neural network creates optimal predictors in each area. The
predictors can be switched adaptively according to the area’s
characteristics being compressed. Finally, the residuals are
compressed using an entropy coding scheme. Yang et al. [29]
created an image compression-encryption algorithm with the
help of a fractional-order memristive BPF chaotic circuit
and a back-propagation (BP) trained neural network. The
neural network compresses the image while the encryption
process is done using a zigzag algorithmwith a xor operation.
Rhee et al. [30] created a lossless compression technique
based on the multi-layer perceptron (MLP) neural network.
The MLP outputs prediction errors and contexts which
are introduced as input to adaptive arithmetic encoders.
Zhu et al. [31] used a long short-term memory (LSTM) neu-
ral network for building a predictor, which is used in lossless
compression.

In contrast, among the irreversible compression algorithms
(created by the need to produce significantly lower bit rates),
there are various approaches to lossy image compression,
such as vector quantization, coding prediction [32], and trans-
form coding. The general components of a lossy image com-
pression technique involve the three stages (decomposition or
transformation, quantization, and symbol encoder) shown in
Fig. 1.

There are various transformations used in image compres-
sion. The Karhunen-Loève transform (KLT) [33], [34], [35] is
an orthogonal linear transformation technique which removes
pairwise statistical correlation amongst the transform coeffi-
cients. The piecewise Fourier transform (PFT) [36] can main-
tain image quality by compressing the images’ bandwidth.
The discrete Walsh-Hadamard transform (DWHT) [37], [38]
is an orthogonal transformation type that breaks down a signal
into a series of Walsh functions (orthogonal and rectangular
wave-forms). Finally, the wavelet transform algorithms [39],
which have prevailed in the compression of medical images,
are used as frequency analysis and signal coding tools in
complex non-stationary signals.

Recent irreversible compression algorithms include the
work of Xu et al. [40], which improved the singular value
decomposition (SVD) method using a singular vector sparse
reconstruction strategy. Guo et al. [41] developed an image
compression framework for computer vision applications
in embedded systems. The framework makes use of the
trade-off between memory traffic and vision performance.
Sadchenko et al. [42] created a compression algorithm based
on the samples decimationmethod for medical images, which
considers medical image peculiarities.

Some lossy approaches utilize ANNs to increase the com-
pression ratio. Dua et al. [43] used a convolutional neural
network (CNN) for compressing hyperspectral images. The
algorithm combines CNN’s auto-encoder, convolution, and
max-pooling layers to reduce the image’s dimensions and
produce a compressed image. The image can be restored
with some loss of information by reversing the CNN’s steps
using the CNN’s decoder and transpose convolution layer.
Zhao et al. [44] utilized multiple description CNNs to com-
press images for transmission. Multiple description coding
(MDC) is used for signal transmission in unreliable and non-
prioritized networks. Mishra et al. [45] proposed a two-stage
auto-encoder-based framework for compressing and decom-
pressingmalaria red blood cell images. The above irreversible
methods managed to get high compression ratios, but they are
unsuitable for medical images since they can lose potentially
valuable medical information.

III. MEDICAL IMAGE COMPRESSION EVALUATION
METHODS
Several methods evaluate the clinical acceptance of the com-
pression level [46]. The first is the numerical analysis of
the pixel before and after compression [47]. This simple
method is recommended for calculating the mean pixel error
for the compressed image but has no correlation with radi-
ologists’ evaluations and therefore has no clinical signifi-
cance. A secondmethod uses a subjective observer to evaluate
with a focus on visual acceptance and presumptive diagnos-
tic value. Many approaches have been proposed, including
image scores from the least to the most compressed or sub-
jective evaluations of the onset of a pathological process.
None of this leads to reliable and reproducible results. A third
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method is the objective measurement of diagnostic accuracy
using blind method evaluation. This category of methods is
the most reliable.

The relationship between ‘‘optically lossless’’ compression
and ‘‘diagnostically lossless’’ is complex. There is evidence
that despite the apparent visual degradation from compres-
sion, high performance equivalent to that of uncompressed
images for certain details, body parts, and diagnostic methods
can be achieved. This equivalent does not alter the ability of
a radiologist to successfully interpret a poor-quality image
(perhaps with less confidence). On the other hand, many
physicians are reluctant to interpret compression-degraded
images, so the ‘‘visually lossless’’ limit may be the limiting
factor despite the ‘‘diagnostically lossless’’ limit, assuming
that the former implies less compression than that. Con-
versely, although it is often assumed that if there is no visual
quality loss, there can be no diagnostic loss. The above claim
has not been sufficiently investigated, and there is a possibil-
ity that the experimental way which defines the thresholds for
visual perception without losses is insufficient to guarantee
diagnostic performance. Challenging tasks, including low-
contrast detection, must maintain high-frequency informa-
tion, or they will be vulnerable to high compression rates,
which are misinterpreted as false-positive findings [48].

Simple mathematical measurements that quantify the dif-
ference between the original and the decompressed image,
such as PSNR and mean square error (MSE), are poorly
correlated with visual or diagnostic performance, and more
advanced measurements have been developed. SSIM [49] is
a method for measuring the similarity between two images.
The SSIM index can be considered a measure of the quality
of one of the images being compared, provided that the other
image is considered of excellent quality. Another method
based on mathematical models simulates human physiology.
These software tools could help measure image similarity
or differences and determine noticeable difference (JND),
signal-to-noise ratio (SNR) ratios, or levels. Probability for
detecting differences in the number of pixels. Here, the struc-
tural similarity method (SSIM) is an improvement over tradi-
tional methods such as PSNR and MSE because it appears to
be more consistent with HVS performance [50].

The amount of ‘‘information’’ in an image is described
as its ‘‘entropy.’’ which can be estimated mathematically,
with varying degrees of complexity. A simple measure is the
zero-order entropy (sum of the environmentally independent
probabilities of each pixel value). The degree to which an
image can be compressed using reversible compression can
also be used as a measure of entropy. An image’s entropy
determines its compression ratio before the difference is visu-
ally or diagnostically detectable. A significant factor in a
medical image’s entropy is the amount of rectangular pixel
panel occupied by the body part (e.g., consider a small versus
a large breast on a fixed-size mammography scanner). Also
important is the amount of noise in any unstable background
(non-static) or area that has been separated [51].

High entropy images should probably be processed with
lower compression ratios to irreversible compression than
those with more uniform content. A simple approach is to
measure the file output size of a reversible image compres-
sion method (JPEG lossless or JPEG 2000), which should
be larger for images with higher entropy. Other reliable
methods, such as image compositional complexity (ICC),
fractal dimension (FD), or region of interest (ROI), may be
more effective at computing and creating images. more noise
resistant [52].

IV. WAVELET TRANSFORM
The wavelet transform combines low-pass and high-pass fil-
tering into a spectral signal decomposition and extremely fast
implementation. Before considering the wavelet transforma-
tions of 2D images, it is useful first to consider the wavelet
transformations of one-dimensional (1D) signals [53], [54].
Given a 1D signal s0[n], its 1-level wavelet transform is the
mapping s0[n] → (s1[2n]|d1[2n]) defined by the formulas (1)
and (2).

s1[2n] =

M∑
k=−M

aks0[2n+ k] (1)

d1[2n] =

N∑
k=−N

βks0[2n+ k + 1] (2)

The signals s1[2n] and d1[2n] are respectively low-pass and
high-pass filterings of s0[n]. These filterings have also been
down-sampled and are defined over the indices {2n} rather
than {n}. Viewed as sampled, signals are sampled at half the
rate as s0. The coefficients {ak} are the low-pass coefficients
and the coefficients {βk} are the high-pass coefficients [53].

These coefficients have some basic properties which are
shared by other wavelet systems. One important property
is that they define an invertible transform. Perhaps just as
importantly, the high-pass coefficients satisfy

∑
βk = 0 and∑

kβk = 0. Consequently, if s0 is linear (or approximately
linear) over the indices 2n, 2n+1, 2n+2, then d1[2n] = 0 (or
d1[2n] ≈ 0).When s0 is obtained from samples of a piecewise
smooth function, the high-pass filtering d1 will be essentially
zero-valued (except near transitions between pieces of the
piecewise smooth function). This provides the foundation
for compression. When the transform sm → (sm+1|dm+1) is
iterated on the low-pass outputs s1, s2, . . . , then many levels
of transformation will produce large numbers of zero values
(or almost zero values) at high-pass outputs d2, d3, . . . Such
high redundancy of zero values, in d1, d2, d3, . . . , allows for
significant compression [53].

A wavelet transform for 1D signals can easily be general-
ized to 2D images by applying it separately to each dimen-
sion. The first level of a discrete particle transformation of a
matrixF = J×K , where J andK are both even, is obtained in
a two-step manner. The first step can be seen in equation (3)
and involves transforming each row of F with a 1D particle
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FIGURE 2. WDR block diagram. The encoding step of the WDR algorithm
involves importing an uncompressed image that undergoes a wavelet
transformation phase. Then, it is sent as input to the WDR encoder, which
produces the compressed image’s bits. The reconstructed image is
produced by importing the compressed image bits to the WDR decoder.
The decoded data undergo an inverse transform procedure, producing the
final reconstructed image.

transformation by taking a matrix F̃ .

F →


s11|d

1
1

s12|d
1
2

...

s1j |d
1
j

 (3)

The second step, shown in formula (4) transforms each col-
umn of F̃ by the same 1D transform where A1,V 1,H1, and
D1 are each J

2 ×
K
2 sub-matrices. Steps one and two are

independent and may be performed in either order [53].

F →

(
A11|V

1
1

H1|D1

)
(4)

The wavelet transform can be iterated on the row-low-
pass/column-low-pass outputs (two-level transform). Doing
this on A1 produces submatrices A2,V 2,H2, andD2. As with
1D signals, the second level sub-matrices are responses to the
2D image values having twice the range of pixels (twice the
scale) as the first level sub-matrices [53].

V. THE WDR METHOD
The WDR algorithm follows the basic concepts of the set
partitioning in hierarchical trees (SPIHT) algorithm by incor-
porating extra features that aggregate the coefficients to an
area of interest (Fig. 2). By reducing the difference between
the wavelet coefficients, it recognizes the important wavelet
coefficients and improves their accuracy to achieve high com-
pression ratios. During WDR encoding, the generated com-
pressed output consists of the most important coefficients and
the sequence of bits, which briefly describe the exact position
of the significant values. It offers good perceptual quality and
a high compression rate while maintaining the edges of the
image. It is suitable for compressing low-resolution medical
images at a low bit rate per pixel [55].

The WDR algorithm consists of five parts, as shown in
Fig. 3. In the Initialization section, an initial threshold value
of T0 is selected so that all transform values are less than
T0 and at least one is greater than or equal to T0 = 2. The

FIGURE 3. WDR compression diagram. The WDR algorithm initially
calculates the image’s DWT, then classifies the particle transformation
coefficients from the largest scale to the finest scale and sets an initial
T -threshold. The next steps are the significance pass and the refinement
pass. The latter gets the improvement values from all significant factors
except those found in the classification step of the current iteration
round. Finally, the loop divides the threshold by two and repeats the
process from step 2.

purpose of the loop indicated in Fig. 3 is to encode signifi-
cant transformation values by the bit-level encoding method.
In relation to the quantity T0, a binary expansion is calculated
for each transformed value. The loop is the process by which
these binary extensions are calculated. As the threshold is
halved, the significance pass and refinement pass calculate
the next bit.

The general model of the WDR method is shown in the
following distinct steps of the algorithm.

• Initialize: Calculate the DWT of the original image
• Threshold/2: Classify the particle transformation coeffi-
cients from the largest scale to the finest scale and set an
initial T threshold.

• Significance pass: Find the significant coefficients’
positions relative to the T -threshold and export these
significant coefficients.

• Refinement pass: Get the improvement values of all sig-
nificant factors, except those found in the classification
step of this iteration round.

• Loop: Divide the threshold T by two and go to step 2.
Specifically, each step of the WDR algorithm can be seen

in Algorithm 1.
The WDR method is equipped with a built-in encoding

scheme that can achieve any compression ratio and is com-
petitive with other image compression algorithms

VI. THE CWDR METHOD
The family of set partitioned methods was initially designed
for grayscale image compression. To apply them to color
images, we must first understand color space. The color
image is usually in RGB format. The RGB color spaces are
highly correlated, so transformation to a less correlated space
is required for efficient lossy compression. The original RGB
images were transformed using standard transformations to
code the YCbCr color space such that the luminance channel
Y is stored as one byte for each pixel. On the other hand,
the two chrominance channels are stored as one byte for
each block of, say, n × n × n pixels, i.e., Cb and Cr are the
blue component and red component related to the chroma
component.

The proposed method, CWDR, is an extension of WDR
for color images. This method compresses each color plane
at the coding stage and generates three separate bitstreams of
the same bitrate. Then, the generated bitstream of each color
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Algorithm 1 : The WDR Method
Step 1: (Initialize). Choose an initial threshold T0 so that

all transform values satisfy |xm| < T0 and at least one
transform value satisfies |xm| ≥

T0
2

Step 2: (Update threshold). Let Tk =
Tk−1
2

Step 3: (Significance pass). Perform the following proce-
dure while scanning through insignificant values for
higher thresholds

1: Initialize step counter C = 0
2: Let Cold = 0
3: repeat
4: Get next insignificant index m
5: Increment step-counter C by 1
6: if |xm| ≥ Tk then
7: Output sign xm and set qm = sgn(xm) · Tk
8: Move m to the end of significant indices sequence
9: Let n = C − Cold

10: if n > 1 then
11: Output reduced binary expansion of n
12: else if |xm| < Tk then
13: Let qm retain its initial value of 0
14: end if
15: end if
16: until end of insignificant indices
17: Output end-marker
18: The end-marker is a plus sign followed by the reduced

binary expansion of n = C + 1 − Cold and a final plus
sign

Step 4: (Refinement pass). Scan through significant values
found with higher threshold values Tj, for j < k (if k =

1 skip this step). For each significant value xm, do the
following

19: if |xm| ∈ [|qm|, |qm| + Tk ] then
20: Output bit 0
21: else if |xm| ∈ [|qm| + Tk , |qm| + 2Tk ] then
22: Output bit 1
23: Replace value of qm by qm + sgn(qm) · Tk
24: end if
Step 5: (Loop). Repeat steps 2 through 4 (exiting at any point

if bit budget is exceeded)

space would be serially concatenated. The proposed system
structure flowchart is shown in Fig. 4 while its algorithmic
structure can be seen in Algorithm 2. The operation starts
by selecting suitable colors and image scales. The next step
represents the application of variable filters of the wavelet
transforms. Then, some quantization processes are performed
to show the elements of a big set in terms of a smaller set to
lower the number of bits necessary to indicate all possible
values of mapping outputs to fewer bits.

In the RGB color model, a color image can be represented
by the following intensity function.

IRGB = (FR,FG,FB) (5)

FIGURE 4. System Flowchart.

where FR(x, y) is the intensity of the pixel (x, y) in the
red channel, FG(x, y) is the intensity of pixel (x, y) in the
green channel, and FB(x, y) is the intensity of pixel (x, y)
in the blue channel. The intensity of each color channel
is usually stored using eight bits, which indicates that the
quantization level is 256. That is, a pixel in a color image
requires total storage of 24 bits. A 24 bit memory can express
224 = 16777216 distinct colors. The number of colors should
adequately meet the display effect of most images. Such
images may be called true color images, where each pixel’s
information is kept using a 24-bit memory.

To split the RGB image into three streams, we separately
save each channel to different variables as seen in (6).RG

B

 =

IRGB(FR, 0, 0)IRGB(0,RG, 0)
IRGB(0, 0,RB)

 (6)

After splitting the RGB image into three streams, it was
converted to the YUV format using the following formula.YU

V

 =

 0.299 0.587 0.114
−0.14713 − 0.28886 0.436
0.615 − 0.51499 − 0.10001

RG
B

 (7)

Thus, the color wavelet difference reduction (CWDR)
algorithm follows the basic concepts of WDR [56] by incor-
porating extra features that aggregate the coefficients to an
area of interest. It is suitable for compressing medical images
at a low bit rate per pixel.
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Algorithm 2 : The CWDR Algorithm
Input: Original uncompressed image.
1: Convert to YUV- Divide into three streams.
2: for all streams do
3: Calculate the DWT of the stream.
4: while (Predetermined number of bits is not reached)

do
5: Sort the wavelet transform coefficients from the

larger scale to the finer scale.
6: Set an initial threshold: Tn = 2N , where N =

log2(max(i,j) ∨γ (i, j)), with n = 1, where γ (i, j) are
the wavelet coefficients in the set of non-significant
coefficients and N is the total number of bit planes.

7: Sorting pass: Find the positions of the significant
coefficients concerning the threshold, and keep the
coefficients that satisfy the condition: γ (i, j) ≥ Tn.

8: Improvement process: Get the improvement rates of
all significant coefficients, except those found in the
sorting pass step of the current iteration.

9: Update threshold: n = n+ 1;Tn−1 = Tn;Tn =
Tn
2

10: end while
11: end for
12: Combine three streams.
Output: Compressed image.

After theWDRprocess, we converted theYUV image back
to RGB, using the following formula:RG

B

 =

1.164 0 1.596
1.164 − 0.392 − 0.813
1.164 2.017 0

YU
V

 (8)

Finally, we combined the three streams back into one RGB
image. To combine the three streams into an RGB image,
we save them to one variable, a.k.a.:

RGB = I (R,G,B) (9)

VII. EVALUATION METRICS
The PSNR, SSIM, and compression ratio (CR) were com-
puted to evaluate the results [57].

A. PSNR
PSNR computes the peak signal-to-noise ratio between two
images in decibels (dB). This ratio is a quality measurement
between the original and the compressed image. PSNR can
take values up to infinity; the higher the PSNR, the better
the compressed image quality. Since the MRI exams in the
TCIA dataset contain 16-bit images, in this case, the PSNR
is computed as [58]:

PSNR = 10 log10

(
(216 − 1)2

MSE

)
(10)

where MSE =

∑N−1
i=0

∑M−1
j=0 (x(i,j)−x̂(i,j))2

NM , with x(i, j) and x̂(i, j)
correspond to the pixel value at position (I , j) of the ground
truth x (original uncompressed image) and the compressed

image x̂ of dimensions N × M , respectively. Note that the
term 216 − 1 is the maximum pixel value in the input image
data type. Since our images have three channels, PSNR is
calculated for each channel separately, and the total PSNR
is calculated as follows:

PSNR =
PSNRR + PSNRG + PSNRB

3
(11)

B. SSIM
SSIM is a metric that represents a visual distortion between
a reference image and the observed/compressed image. The
SSIM is a function between two images x, and x̂ and is
computed between pairs of local square overlapping windows
x and x̂ of the two images [58]. The SSIM calculation is
defined in the formula (12).

SSIM (x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ 2
x + σ 2

x̂ + C2)
(12)

Since the images used in the experimental part have three
channels, SSIM is calculated for each channel separately, and
the total SSIM is calculated using the formula in (13).

SSIM =
SSIMR + SSIMG + SSIMB

3
(13)

C. CR
The CR is defined in equation (14) as the original image’s
bitstream to the compressed image’s bitstream ratio [58].

CR =
Total bits in original. image
Total bits in compressed image

(14)

VIII. RESULTS
The proposed method is evaluated in the demanding field
of histopathological microscopy image analysis. The diag-
nosis and prognosis systems based on histological image
analysis present significant growth during the last five
years, utilizing whole slide scanning technologies, computa-
tional resources management, distributed systems, and mul-
tiple cores. According to the medical question, histological
microscopy images are extracted using standard tissue prepa-
ration procedures. The employed dataset has been extracted
using the Hamamatsu NanoZoomer 210, scanning 31 slides
of colorectal cancer. The scanning system provides two opti-
cal magnification options (20× and 40×), which can scan
210 slides automatically. According to digitalization, each
pixel of aWhole Slide Image (WSI) corresponds to a physical
area of several tens of nm2.
Specifically, in 40× magnification mode, the Hamamatsu

NanoZoomer scanner extracts an image where the size of
each pixel edge corresponds to 227 nm. The above image
digitization procedure provides an appropriate resolution
for most histological findings. In most cases, the extracted
images are stored in compressed JPEG-based or uncom-
pressed TIFF format. The resolution of a typical WSI in
40× magnification is about 100K × 100K pixels, whereas
an uncompressed format could require hundreds of GBs of
memory. Commonly, the challenge of compressing images
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TABLE 1. Evaluation of CWDR model in terms of PSNR and SSIM for the
31 images.

focuses on image size minimization, along with the high per-
formance of quality measures (Signal to Noise Ratio - SNR,
Peak Signal to Noise Ratio - PSNR, Structural Similarity –
SSIM). However, the most significant issue for histological
microscopy images must be the image quality assessment of
the medical regions of interest, such as cells and nuclei, cell
degeneration and cancer, inflammation and fibrosis areas, and
other histological lesions. For the above reason, parts from
each WSI after applying the compression procedure, were
extracted for evaluation by a specialist.

Table 1, Fig. 5, and Fig. 6 show the results in terms of
PSNR and SSIM for the 31 images of our dataset using the
CWDR algorithm at a bit rate of 0.5 bit per pixel, which gives
a compression ratio of 16. It can be seen that PSNR varies
from 32,01 to 47,49. On the other hand, SSIM varies from
0,68 to 0,98, with 30 out of 31 images having an SSIM value
of 0,92 or higher.

PSNR values over 30 indicate a very good image quality,
and values over 40 indicate that the image quality is excellent
(i.e., very close to the original image). It can be seen that
the proposed method gives auspicious results since 23 out of
31 images have PSNR values over 40.

Additionally, SSIM values are close to the absolute 1
(which implies that the two images are entirely the same),
further supporting the promising results of our method.

The Wilcoxon signed-rank test was used to compare the
PSNR values of the proposed method with the respective

FIGURE 5. PSNR values of the 31 images. This figure depicts the PSNR
values for all 31 images. It can be seen that the proposed CWDR method
managed to achieve values over 30 in all cases, which indicates very good
results. Additionally, 74.19% of the cases got an even higher PSNR value
(> 40), indicating excellent image quality.

FIGURE 6. SSIM values of the 31 images. This figure depicts the SSIM
values for all 31 images. It can be seen that the proposed CWDR method
managed to achieve values very close to 1 in 30 out of 31 cases which
indicates that the compressed images are completely the same as the
original uncompressed ones.

values for DWT, JPEG 2000, HEIC (high-efficiency image
format) and WEBP (web picture format) methods. High-
Efficiency Image File Format is a container format for storing
individual digital images and image sequences. The standard
covers multimedia files that can also include other media
streams, such as timed text, audio and video. WEBP is a
modern image format that provides superior lossless and
lossy compression for images on the web. The Wilcoxon
signed-rank test is a non-parametric statistical hypothesis test
used either to test the location of a population based on a
sample of data or to compare the locations of two populations
using two matched samples. The results obtained with those
statistical tests are shown in Fig. 7 and indicated statistically
significant differences between the CWDR and the other four
methods.

We also compared the SSIMvalues of the proposedmethod
with the respective values for Lossless Compressing Using
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FIGURE 7. Scatter plot representation and the Wilcoxon signed-rank test
results of the comparison for each of the two well-known compression
methods (Lossless Compressing Using DWT Technique [59], JPEG 2000,
HEIC and WEBP) with the CWDR method regarding PSNR values. Stars
links join significantly different values; three stars (***) stand for
p < 0.001, which means that if the null hypothesis tested were indeed
true, there would be a one in 1,000 chance of observing results at least as
extreme.

DWT Technique [59], JPEG 2000, HEIC, and WEBP meth-
ods using theWilcoxon signed-rank test. The results obtained
with those statistical tests are shown in Fig. 8 and indicated
statistically significant differences between the CWDR and
the other four methods.

It should be noted that the images that WEBP method can
compress are limited to 16383 pixels in height and width.
Therefore, we could only compress 16 out of our 31 images.
It can be seen in Fig. 9, and Fig. 10, that the decoded images
maintain all the diagnostically important information. Thus,
they can be considered as ‘‘visually and diagnostically loss-
less.’’ Even in Fig. 10, which depicts the results of the image
with the worst SSIM value (image 1870-18H_3), the result is
visually and diagnostically lossless.

IX. DISCUSSION
The proposed method is evaluated in the demanding field
of histopathological microscopy image analysis. Utilizing
the advantages of whole slide scanning technologies, com-
putational resources management, distributed systems, and
multiple cores, the diagnosis and prognosis systems based
on histological image analysis presented significant growth
during the last five years. Histological microscopy images are
extracted after standard tissue preparation procedures. The
employed dataset has been extracted using the Hamamatsu
NanoZoomer 210, which scanned 31 slides of colorectal
cancer. The scanning system provides two optical magnifi-
cation options (20× and 40×), which can scan 210 slides

FIGURE 8. Scatter plot representation and the Wilcoxon signed-rank test
results of the comparison for each of the two compression methods
(Lossless Compressing Using DWT Technique [59], JPEG 2000, HEIC and
WEBP) with the CWDR method regarding the SSIM values. Stars links join
significantly different values; three stars (***) stand for p < 0.001.

FIGURE 9. 7438-16D_1: (a) Original uncompressed image and
(b) compressed image using the CWDR method for compression. It can be
seen from both images that they are visually and diagnostically lossless.

automatically. According to digitization, each pixel of a
whole slide image (WSI) corresponds to a physical area of
several tens of nm2. Specifically, in 40×magnification mode,
the Hamamatsu NanoZoomer scanner extracts an image
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FIGURE 10. 1870-18H_3: (a) Original uncompressed image and
(b) compressed image using the CWDR method for compression. It can be
seen from both images that they are visually and diagnostically lossless.

where the size of each pixel edge corresponds to 227 nm. Such
image digitization provides appropriate resolution for most
histological findings. In most cases, the extracted images
are stored in compressed JPEG-based or uncompressed TIFF
format. The resolution of a typical WSI in 40×magnification
is about 100K × 100K pixels, which uncompressed format
could require hundreds of GBs of memory. Commonly, the
challenge of compressing images focuses on image size min-
imization, along with a high performance of quality measures
(SNR, PSNR, and SSIM). However, themost significant issue
for histological microscopy images must be the image quality
assessment of the medical regions of interest, such as cells
and nuclei, cell degeneration and cancer, inflammation and
fibrosis areas, and other histological lesions. Due to this, after
applying the compression procedure, parts from each WSI
have been extracted for evaluation by a specialist.

The perceived quality of the compressed images was eval-
uated with a Mean Opinion Score (MOS) scale ranging
from 1 to 5 (bad, poor, fair, good, and excellent). Even though
its suitability may be debatable, the MOS scale provides a
different method of gauging the quality and depicting how
specialists evaluates it [60]. Four qualified histopathologists
evaluated the quality of the compressed images without
blindly consulting each other. The proposed compression
method met high qualitative criteria obtaining similar image

FIGURE 11. Spearman’s rank-order correlations were to examine the
association between the MOS score of original uncompressed images
and compressed images using the proposed method. There were positive
and significant associations between the two MOS scores, (rs = 0.9539,
N = 31, p < 0.001).

quality rating score, with a statistically significant association
comparing to original uncompressed images (Fig. 11).

X. CONCLUSION
The purpose behind extending the original WDR method
for color images was to create an easily reproducible com-
pression method for large-size medical images. Specif-
ically, extensive evaluations have been performed in a
custom-created dataset containing 31 slides on colorectal
cancer. It achieved state-of-the-art compression results with a
high compression ratio and slight information loss within an
acceptable range. The image quality was evaluated using the
MOS scale, where four qualified histopathologists verified
that the compressed images met highly qualitative criteria.
The statistical significance of the proposed method was com-
pared with four compression algorithms (DWT Technique,
JPEG 2000, HEIC and WEBP) using the Wilcoxon signed-
rank test. The statistical test’s outcome found significant dif-
ferences between the proposed algorithm and the other four
compression methods. Future work includes implementing a
mobile and web platform that may be used to compress and
transmit medical images in real time.
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