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The difference between (d,p) "Stripping into Cont inuum" and (n,n) Elastic Scattering on 
the same target has been investigated and discussed in terms of a non-local force and its 
local equivalent. In general our results indicate an influence of non local effects. In 
particular with the inclusion of the non locality a possible spin assignment for the levels 
at the excitation energies Ex=3 .359MeV and 3.519MeV in the reaction 15N(d,p)N16 
(unbound) has been indicated. 

1. Introduction 

Transfer reactions to unbound states have been 
treated with many theoretical methods. Huby  and 
Mines [1] used the post interaction form of the 
DWBA but encountered difficulties in the slow con- 
vergence of the radial matrix elements. Vincent and 
Fortune [2] considered these difficulties by introduc- 
ing the method of contour integration in the com- 
plex r-plane. A formulation in the momentum space 
has been given by Noble [3] while Gamov  states 
have been used by Berggren [4] and Bang and Zi- 
manyi [5] and deuteron break-up approaches have 
been proposed by Baur and Trautman [-6] who have 
also made a study in terms of a coupled channels 
model [7]. 
In particular there has been a new development 
originated by Lipperheide and his colaborators out- 
lined in [8] and references cited there, in which it is 
shown that in PWBA or DWBA approximations the 
cross-section for stripping to unbound (resonant) 
states is proport ional  to the half off-shell cross-sec- 
tion of the elastic scattering between the transferred 
particle and the target nucleus. Further it has been 
established [9] that especially in (d,p) stripping to 
unbound states, suppression of the three-body effects 
manifests itself as an off-shell dependence on the 
resonant state by introducing alterations in shape 
and width. This is true for transfer reactions to 
single-particle like resonance states as well as for 
those where the final states are of core excited con- 
figurations [7, 9, 10]. 

In both cases on- or off-shell resonances are as- 
sociated with the presence of poles of the outgoing 
green function in the complex energy plane. 
However, it is no longer obtained [9, 11] that the 
position of the poles remains unaltered by going 
from on - to o f f -  the energy shell. This and the 
change of shape and width of the resonance can be 
related to the off-shell behavior. 
The question now arises as to whether a non local 
potential which is equivalent on the energy shell to a 
local one but has a different off-shell behavior from 
it, introduces an additional off-shell effect in the 
stripping reaction and if it does in which way it will 
show up in the stripping cross-sections, in other 
words if on-shell scattering is related to the elastic 
scattering of the neutron on the target nucleus 
A(n,n)A and off-shell scattering to an A(d,p)B strip- 
ping reaction on the same target then the introduc- 
tion of the non local force might give information 
about any variations into the corresponding con- 
tinuum spectrum of B=n+A. This then could be 
used to interpret differences in the cross-sections and 
assist in the determination of resonance angular mo- 
menta. It should be noted here that one has to start 
with a Schroedinger equation off-the energy shell in 
order to put directly the scattered neutron off-shell 
and therefore the same study cannot be done by 
considering the off-shell behavior of the T-matrix for 
the two potentials. 
The present work is initiated to study this question. 
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We have taken the reactions 15N(n,n)~SN and 
lSN(d,p)16N for which the experimental results are 
known [13, 14] and we have selected two particular 
resonances at Ex=3.359MeV and Ex=3.519MeV 
because their spin and parity assignments have not 
been defined unambiguously. We find that in both 
cases the present work indicates a spin and parity 
assignment. Furthermore it shows that the non lo- 
cality of the force does not alter the resonance be- 
havior provided the two potentials are phase-equiva- 
lent on the energy shell and do not show large 
differences in their off-shell behavior, that is when 
their wave functions do not differ much at small 
distances (small Percy effect). In contrast if large off- 
shell differences, which are indicative of strong three 
body effects in the reaction, do manifest themselves 
in the resonance, allow for the determination of 
angular momentum. This discards the notion that 
the non locality introduces variations only in the off- 
shell background and shows the importance of the 
non locality of the nuclear force in order to predict 
accurate the cross-section in stripping reactions. 
In Sect. 2 we present the general formalism. Then in 
Sect. 3 we apply it to the special case when back- 
ground effects can be neglected as in the reaction 
NtS(d,p)N 16 leading to the unbound states at 3.359 
and 3.519 MeV excitation energies. Some more gen- 
eral calculations are also reported in this section. 
Our conclusions are stated in Sect. 4. 

2. Review of the Formalism 

To make it certain that any differences are entirely 
related to additional off-shell effects produced by the 
non locality of the potential we have adopted the 
following procedure; we have considered a local 
force to fit a resonance state on the (n, n) system and 
then we have derived a non local force which was 
phase-equivalent on-the energy shell. This is ob- 
viously opposite to what one does usually, by first 
fitting the non local force and it is more involved in 
terms of numerical calculations. However, we had to 
proceed in this way i)  in order to exclude any am- 
biguities as to whether non local effects were already 
present in the (n,n) system and i i)  in order to sepa- 
rate the effects related to the non locality from those 
related to the energy dependence. Then we have 
used these two forces to calculate the differential 
cross-sections off-the energy shell for the corre- 
sponding (d,p) reaction. Here the equivalence was 
defined in terms of the Percy and Buck [12] trans- 
formation because of its simplicity. 
Since for stripping to unbound states the differential 
cross-section is related to the half-off-shell scattering 

amplitude we consider this expression as the starting 
point of our investigation. In PWBA this is given by 

d 6 -  2 (kp) 
d~2dE (2/rh) 2 kfa G!( �89  

where G(�89 is the deutron form factor and 
Imfc(~,,~,,E,) is the imaginary part of the half-off- 
shell scattering amplitude of the neutron impinging 
on the target A. Here q, and E, are the momentum 
and the energy carried by the neutron for which in 
the present case holds; 

h 2 h 2 
k. ,  E . = - - -  2 E ' = - -  

2m. 2m. 

The off-shell scattering amplitudes fc (~l . , f l . ,E . )  are 
found by solving the Schroedinger equation off-shell 
inside the nucleus ( r<R)  and by relating this so- 
lution to a scattered wave outside (r>>R). 
We should mention here that the use of the PWBA 
is a crude approximation of the actual physical situ- 
ation under consideration, since it does not take into 
account distortion effects which are usually a source 
of strong off-shell effects. However we decided to 
avoid here the use of the DWBA, to overcome 
numerical problems and because we are mainly in- 
terested in a comparative analysis namely in the 
difference of the off-shell behavior between two 
phase equivalent potentials. We should further em- 
phasize that, although we tried to somehow com- 
pensate for the Butler-type cut-off~s of the T-matrices 
by using Woods-Saxon type potentials instead of 
sharply varying potentials, our treatment serves only 
to obtain an estimate of the influence of the non 
locality and is by no means considered satisfac- 
tory. 
The integro-differential Schroedinger equation off- 
the energy shell is given [-9] by 

v 2 +  r 

= j v(~, r )  0 (~') a 3 r' + (E - E') ~ (~'). (2) 

Where the difference ( E ' - E )  is called [8] the off- 
shell distance S, which is a function of the stripping 
angle 0 and ~b(r3 represents an incoming wave. Ob- 
viously for (n,n) scattering S = 0  and (2) reduces to 
its standard form. The Kernel V(~, f') is taken as: 

I, . . . . .  ~U(~)6(~-7) local case (3) 
~r'r~=(U(~l~+~'l)H(l~-~'l)~ - - " ' non local case. 

The form chosen for U(p) is similar to those em- 
ployed in local optical model calculations without a 
surface absorption namely; 
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U(p) = (V + i W ) f  (p) (4) 

where f (p)  is the Woods-Saxon function and H(lP 
-~'1) is the Gaussian function 

H(l?-~"l)=lz- 3/2 fl- 3 exp ( -  ( - ~ - ~ ' )  ) (5) 

of the original Perey and Buck [12] article. Partial 
wave expansion of (2) leads to an off-shell radial dif. 
equation of the form; 

cr 

Tt u~(r) = j" gt(r, r, , , 2 )ujz(r ) dr + (k, - qZ)jjl(r ). (6) 
0 

d 2 I(I+ 1) 
Where T z -  dr 2 r2 1- k 2 and 

U(r') cS(r - r ' )  local case 
gl(r, r') = a (7) 

2zrr '  ~ U(~,f')Pl(x)dx non local case. 
- 1  

For the potential of (3) the equivalence between 
local and non local forces leads [15] to the relation 

UL(r ) exp [ m'82 (E - UL(r))) = UN(r) (8) 
\ 2h  2 

where UL(r ) and UN(r ) have the functional depen- 
dence of (4). 
The idea is to choose a set of local parameters 
which gives a good fit to the total (n,n) cross-section 
of the resonance under consideration for the scatter- 
ing of neutrons from ~SN. Then to use (8) to derive 
UN(r ). The range of the non-locality /~ is initially 
chosen arbitrarily and other parameters are adjusted 
until the total cross-section is again the same. Then 
these two phase-equivalent forces are used to calcu- 
late the differential cross-section of the above reso- 
nances for (d,p) stripping on ~SN. 

3. Analysis of (n, n) and (d, p) Cross-Sections 

We have chosen a light nucleus as target specifically 
the nucleus N 1~ because i) both the N15(d,p)N 16 
reaction is known from a single-proton spectrum of 
Hewka et al. [13] and Fuchs et al. [14] and the 
corresponding N15(n,n) total cross-section is mea- 
sured by Zeitnitz et al. [15] and ii) only single and 
isolated resonances appear  in the energy region 0.8- 
2.0 MeV which are interesting in term of analysing 
any variations that might arise due to the introduc- 
tion of the non locality. 
We have first tried to fit UL(r ) and then define ac- 
cording to (8) and fit UN(r ) in order to reproduce the 
total elastic cross-section of the J ~ =  1 + state at E, 

=0.925 MeV. This state is unbound to neutron de- 
cay and is also found in the N15(d,p)N 16 reaction at 
an excitation energy E x = 3.359 MeV. 
As in the lSN(n,n) analysis of Zeitnitz et al. [15] 
our R-matrix analysis also permits both the l=  1 and 
the / = 2  transitions corresponding to J ~ = l  + or J~ 
=(1 ,2 ,3) -  respectively. However, the 14N(t,p)16N 
reaction of Hewka et al. [13] indicates an l = 0  tran- 
sition and positive parity or J ~ =  1 + in agreement 
with the T20 tensor analysing power measurement of 
Baxter et al. [16] for the 180(d,a) reaction which 
predicts unnatural parity thus permitting only odd l- 
values and again J ~ =  1+. On the other hand for the 
15N(n, n) and the 1SN(d,p) reactions J'~ = 1 + assigne- 
ment would require an l =  1 value thus excluding all 
even /-values for this state. We found it therefore 
instructive to investigate whether it is possible to fit 
this resonance with an l=  0 or an l=  2 wave. 
We should strongly emphasize here that our in- 
vestigation deals exclusively with resonances in a 
single particle potential and does not cover reso- 
nances formed through the coupling to a bound 
state embedded in the continuum. Some resonances 
of the above system may indeed be better described 
by the above mechanism but a more involved for- 
malism for example a coupled channels model [7] 
seems more appropriate  for their description. Under 
this assumption we have not been able to reproduce 
a resonant behavior at this energy with an / = 0  wave 
despite a systematic search and the employment of 
several potential forms and a parameter-search rou- 
tine. An / = 2  fit with a sum of two Woods-Saxon 
potentials was somehow possible with both the local 
and the non local force but it was not entirely satis- 
factory. The discrepancy is even more contrasting in 
the (d,p) system where both forces are able to repro- 
duce only background effects. This bears somehow 
on the experimental results where the resonance is 
"shadowed" by a strong background. However, the 
lack of any indication or even a resemblance of a 
resonance behavior, at least in the / = 0  case, sup- 
ports the exclusion of all even /-values for this state. 
This in conjunction with the l=  1 fit of the R-matrix 
analysis is indicative of positive parity and therefore 
J ~ =  1 + for this state. We shall defer however a de- 
finite conclusion, pending the results of an investi- 
gation similar to that of [7]. 
As next, we have chosen to apply our formalism to 
the 3.519 MeV level because despite the effort that 
has been devoted to determine its spin and parity 
there is a lack [16-19] of agreement from different 
experiments and different theoretical predictions. On 
the one hand our earlier [9] analysis of the (d,p) dif. 
cross-section is consistent with the results of the 
14N(t,p)16N of Hewka et al. [13] and lSN(d,p)a6N 
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and 15N(n,n)16N of Fuchs et al. [14] and Zeitnitz 
et al. [15] and Fortune et al. [17] in predicting an l 
= 2  resonance or a J~=(1,2 ,  3)- assignment for this 
state. On the other, the reactions tsO(d,a)X6N of 
Baxter et al. [16], l~ p)16N of Fortune and 
Medsker [18] and Fortune and Sitverman [19], 
1VO(d3 ' He)16N of Mairle et al. [20] and 
14C(3He, d)16N of Freiesleben and Weibezahn [21] 
indicate positive parity and a J = 2 for this state. 
In the present work our assumption of the reaction 
mechanism will independently show whether there is 
a correspondence between the (n,n) and the (d,p) 
cross-section and whether the same force could pro- 
vide for a satisfactory fit for both systems. Despite a 
systematic search no satisfactory fit could be ob- 
tained with an l = l  or an l = 3  wave for any of the 
two systems. In contrast, with a n / = 2  wave a perfect 
fit could been obtained with both the local and the 
non-local force for the (n,n) system. For  the local 
force we have used a sum of two Woods-Saxon 
terms without surface absorption and with the fol- 
lowing parameters:  V 1 = 36.83 MeV, R 1 = 3.4 fm, and 
c q = 0 . 2 f m  and 1/2=68.93, R z = 0 . 6 1 f m  and ~2 
=0.45 fm. The non-local force was constructed ac- 
cording to (8) with fl=0.5 fm. 
With the potentials defined in this way the (d,p) 
differential cross-sections were calculated using A(14) 
of [9]. The / = 2  partial wave was again used. The 
results are shown in Fig. 1. The predictions of both 
potentials are identical and apart  from the back- 
ground, they fit the (d,p) experimental data reason- 
ably well. The R-matrix radius rm=4.69 fm and the 
boundary condition b = l were chosen in both cases. 

5 0 0 -  N~S(d,p) N I~ 
Ex = 3519MeV 

- -  t / \ ' ,  # = 15~ 

- / ' , , X  

0 I I 
1.06 108 1A0 1.12 llL 

En (MeV) 

Fig. 1. The diff. cross-section as a function of the neutron energy 
En. The dotted line is freely drawn through the experimental 
points [13]. The full-line is the (d,p) calculation with the non 
local force normalized at En = 1.08 to 200 tracks/per m m  
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A single R-matrix level was shown to be sufficient 
since more levels did not provide any essential varia- 
tions, thus confirming a single and isolated reso- 
nance. We should mention here that the resonance 
appears exactly at E , =  1.095 MeV without the level 
shift reported in earlier works [9] and and this can 
be attributed to the elimination of sharp cut-offs 
through the Wood-Saxon form. The resonance func- 
tions u il(r ) of (6) were taken as expansions of the 
eigenstates of the potentials and they have been 
computed numerically. They were almost identical 
outside the nucleus but is was surprising to note 
that they were only slightly different inside (very 
small Perey effect). It appeared that the non locality 
did not effect the wave function strongly and there- 
fore this fact would also manifest itself in the off- 
shell behavior. The almost exact fit to the on-shell 
and the reasonable fit to the off-shell data with an l 
= 2 partial wave together with the failure of an l=  1 
or / = 3  fit leads to a presumption that J ~ - l -  for 
this resonance. The only other possibility would ap- 
pear to be a mixture of 1 = 1 + 3  waves which of 
course would require J ~ =  1 + but our results seem to 
contradict this possibility. 
Since off-shell effects are related to contributions 
from the interior any variation of the off-shell be- 
havior is a measure of the non locality. It is there- 
fore surprising that no such variations are noticeable 
in the non-local case for small values of S (and 
hence 0). It appears that for a single and isolated 
resonance the introduction of the non locality does 
not produce unwanted effects in the resonance pa- 
rameters. 
It remained to be investigated whether this had to 
do with the off-shell behavior of the potentials, i.e. 
the type of the non locality or the method of equiva- 
lence. To answer this point we've calculated the 
Noyes-Kowalski  [11] functions f(p, k) defined by 

f (p, k)= {p[ T(Ek)Ik )/(kl T(Ek)Ik ) (9) 

and the difference 

Af(p,k)=@[TL(Ek)-T~(Ek)IR)/@IT~(Ek)lk) (10) 

which is easily shown to be 

Af(p, k) =(k 2 _p2) ~ krjffpr)(uLt(r) -u~(r) dr/sin6~. (11) 

From (II) one sees that the difference in the off-shell 
behavior is directly related to the difference of the 
two wave functions (i.e. the damping function). 
Therefore the method of equivalence does not play 
any important rote. Furthermore in the present ex- 
ample non local effects are very small (again due to 
the damping function) and this also results in very 
small off-shell differences. 
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In the example at hand it can be shown that despite 
the fact that the Af(p,k) increases almost linearly 
with the off-shell distance S it still remains below 
10% for distances up to S = 6 . 4 M e V  which corre- 
sponds to a stripping angle of 0=30  degrees. Our 
fits to angular distributions at such angles are also 
not satisfactory and though this is in line with our 
presumption that non-local effects in the (d,p) strip- 
ping reaction are responsible for this discrepancy it 
is disappointing to note that while we were able to 
find non-local forces which gave qualitatively good 
fits we were not able to find a non-local force which 
would exhibit strong non-local effects and which 
together with its local equivalent would fit the corre- 
sponding (n, n) and (d, p) data. 
The fact that we have investigated here non local 
potentials of a particular class places a limitation on 
this conclusion. In general however our calculations 
leave no doubt that our assumption of the complete 
correspondence between (n,n) and (d,p) scattering 
from the one hand and local and non local force 
from the other is far too stringent. How one could 
relax this assumption and still be able to relate the 
non-locality to differences at large angles is an im- 
portant question. 
It might be argued that the suppression of the non 
locality is a result of the energy dependence of the 
non local force. In this respect it is interesting to 
consider whether a redefinition of the "on-shell" 
"off-shell" equivalence in the opposite direction 
would give better results and we are now investigat- 
ing this point. 

4. C o n c l u s i o n s  

We have studied the relation of the (d,p) stripping 
reaction to unbound states and the (n, n) elastic scat- 
tering on the same target in terms of the relation 
between a non local force and its local equivalent. 
Though our results suggest the influence of the non 
local effects in the (d,p) stripping we have been 
unable to relate exactly the non locality to the dis- 
crepancy between theoretical and experimental data 
since only equivalent non local forces with no too - 

strong non-localities were resulting from the (n,n) 
calculations. On the other hand the fact that both 
forces gave good fits in the corresponding (n,n) and 
(d,p) cross-section is indicative of the correctness of 
the underlying mechanism and it has been used to 
indicate resonance levels in the 15N(d,p)lSN (un- 
bound) system. 
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