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1. Introduction

Partial Differential Equations (PDEs) find numerous applications in many scientific

and engineering fields, therefore solution methods are of particular interest. Finite

difference,1 and finite element methods,2 among others, have been considered in

the past. Early Neural Network (NN) based methods3–7 and more recently,8–13

have attracted the interest of the scientific community, on the one hand, due to

their effective approximation capability, and on the other hand, due to the analytic

closed-form solution they offer.

In the present article, PDEs of second order in space will be considered. This

category includes several important PDEs, such as

Poisson equation: ∇2Φ(x) = f(x) (1a)

Schrödinger equation: −
ℏ
2

2m
∇2Ψ(x) + V (x)Ψ(x) = EΨ(x) (1b)

Heat conduction equation:
∂

∂t
T (x, t) = κ∇2T (x, t) (1c)

Wave equation:
∂2

∂t2
u(x, t) = c2∇2u(x, t) (1d)

to mention just a few among others.

The solution domain is taken to be a rectangular hyper-box described by:

x ∈ Bn ⊂ Rn with Bn = [a1, b1]⊗ [a2, b2]⊗ · · · ⊗ [an, bn] (2)

Given the PDE and the associated initial conditions (ICs) and/or boundary con-

ditions (BCs), a trial solution is constructed using a “Neural Form”. A neural

form (NF) is any expression that depends on a neural network. Neural forms

may be used to impose certain functional properties. For example if by N(x, θ)

we denote a NN with input x ∈ Rn, and weights collectively denoted by θ,

then F (x, θ) = ‖x − a‖N(x, θ) is a NF, which vanishes at x = a. Similarly

F (x, θ) = ‖x‖2N(x, θ) and its gradient, both vanish at x = 0.

The trial solution is cast as:

Ψ(x, t, θ) = A(x, t) + Z(x, t)F (x, t, θ) (3)

where F (x, t, θ) is simply a NN if no interface conditions exist, otherwise it is a NF.

Functions A(x, t) and Z(x, t) contain no adjustable parameters and A(x, t) satisfies

the problem’s ICs and BCs, while Z(x, t) is a function vanishing on the boundary,

and only there, and does not contribute to the ICs and BCs. The trial solution is

then substituted in the PDE and it is trained to satisfy it on a number of chosen

points. This is accomplished in the lines of Refs. 3, 4, 6 and 7.

In Section 2, a systematic procedure is detailed for constructing functions A(x, t)

and Z(x, t) for PDEs with orthogonal boundaries with either Dirichlet or Neumann

boundary conditions on each side. In Section 3, a suitable NF is introduced to
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accommodate interface conditions required in a heat conduction problem, that is

used to illustrate the approach, and in the last Section 4, a summary is given along

with thoughts for future research and applications.

2. Boundary Matches

There are several types of boundary conditions:

• Dirichlet conditions, specify on the boundary, the value of the solution.

• Neumann conditions, specify on the boundary the value of the solution’s normal

derivative.

• Mixed conditions are those that on a part of the boundary are type Dirichlet,

and on the remaining part are type Neumann.

• Robin conditions, specify on the boundary a linear combination of the solution’s

value and of its normal derivative.

• Cauchy conditions, specify on the boundary both the solution’s value and its

normal derivative.

Let us consider a function f(t) with t ≥ t0. Initial conditions for first order in

time equations, specify the value for f(t) at t = t0, and for second order equations,

values for both f(t) and its derivative at t = t0. Boundary conditions for a function

f(x), with x ∈ [a, b], specify values for f(x) or for its derivative at two points

x = a and x = b. We seek to develop simple polynomial models that meet these

conditions. In addition, when a or b or both are not finite, polynomials cannot

model the boundary behavior since they diverge as x → ±∞, so for these cases

special models have been introduced.

2.1. Single point matches and operators

The quantity

P n
t0
(t, f) ≡

n
∑

k=0

qk(t0, f)
[1− e−(t−t0)]k

k!
, ∀ t ≥ t0 (4a)

by choosing qk(t0, f) appropriately, may satisfy the following requirements

dk

dtk
P n
t0
(t, f)|t=t0 = f (k)(t0), ∀ k = 0, 1, . . . , n (4b)

i.e. the kth derivative of P n
t0
(t, f) matches the kth derivative of f(t) at t = t0 for

all k = 0, 1, . . . , n. The first few coefficients are listed below

q0(t0, f) = f(t0), q1(t0, f) = f (1)(t0), q2(t0, f) = f (2)(t0) + f (1)(t0) (5)

We define the single point match-operator In
t|t0

by

I n
t|t0

f(t) ≡ P n
t0
(t, f) (6)
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For an initial value problem, with f(t0) prescribed, a trial solution, that is finite

for t → ∞, may expressed by the following neural form

Ψ(t) = A(t) + Z(t)N(t, θ) (7a)

with

A(t) = I 0
t|t0

f(t) = f(t0) (7b)

and

Z(t) = 1− e−(t−t0) (7c)

If both f(t) and its derivative are prescribed at t = t0 (Cauchy conditions), then a

trial solution, that is finite for t → ∞, may be given by

Ψ(t) = A(t) + Z(t)N(t, θ) (8a)

with

A(t) = I 1
t|t0

f(t) = f(t0) + (1 − e−(t−t0))f (1)(t0) (8b)

and

Z(t) = (1− e−(t−t0))2 (8c)

2.2. Two point matches and operators

Let P i,j
a,b (x, f) be a polynomial of minimal degree satisfying

∂ iP
i,j
a,b

∂x i
(x, f )|x=a = f (i)(a) ≡

∂ if

∂x i
(x)|x=a (9a)

∂ jP
i,j
a,b

∂x j
(x, f )|x=b = f (j)(b) ≡

∂ jf

∂x j
(x)|x=b (9b)

The polynomial P i,j
a,b (x, f), matches at the end-points (i.e. at the boundary) certain

properties of the function f(x), and hence it may be termed to be a “boundary

match”.

Let L i,j

x|a,b be an operator (the two-point match operator) defined as

L i,j

x|a,b f(x) ≡ P
i,j
a,b (x, f) (10)

Then, the function

(1−L
i,j

x|a,b)f(x)

has both vanishing the ith derivative at x = a and the jth derivative at x = b.

For differential equations of second order in space, i = 0, 1 and j = 0, 1. The

relevant two-point polynomial matches, are given explicitly by

P
0,0
a,b (x, f) = f(b)

x− a

b− a
− f(a)

x− b

b− a
(11a)

P
0,1
a,b (x, f) = (x− a)f (1)(b) + f(a) (11b)
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P
1,0
a,b (x, f) = (x− b)f (1)(a) + f(b) (11c)

P
1,1
a,b (x, f) =

1

2

f (1)(b)− f (1)(a)

b− a
x2 +

bf (1)(a)− af (1)(b)

b− a
x (11d)

For a boundary value problem with prescribed f(a) and f (1)(b), the following neural

form may well serve for a trial solution

Ψ(x) = A(x) + Z(x)N(x, θ) (12a)

with

A(x) = L 0,1
x|a,bf(x) = (x − a)f (1)(b) + f(a) (12b)

and

Z(x) = (x − a)(x− b)2 (12c)

When a is finite and b → ∞, polynomials are not appropriate. In this case the

match operators and the associated Z(x) functions become

L 0,0
x|a,∞f(x) = f(a)ea−x + f(∞)(1 − ea−x) (13a)

L 0,1
x|a,∞f(x) = f(a)ea−x (13b)

both with

Z(x) = (x− a)e−x (13c)

L 1,0
x|a,∞ = −f (1)(a)ea−x + f(∞) (13d)

L 1,1
x|a,∞ = −f (1)(a)ea−x (13e)

both with

Z(x) = (x− a)2e−x (13f)

Correspondingly, when b is finite and a → −∞ we have

L 0,0
x|−∞,b

f(x) = f(−∞)(1− ex−b) + f(b)ex−b (14a)

L 0,1
x|−∞,b

f(x) = f(−∞) + f (1)(b)ex−b (14b)

both with

Z(x) = (x− b)ex (14c)

L 0,1
x|−∞,b

= f (1)(b)ex−b + f(−∞) (14d)

L 1,1
x|−∞,b

= f (1)(b)ex−b (14e)

both with

Z(x) = (x− b)2ex (14f)
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When a → −∞ and b → ∞, then

L 0,0
x|−∞,∞f(x) = f(∞)σ(x) + f(−∞)(1− σ(x)) (15a)

L 1,0
x|−∞,∞f(x) = f(∞)σ(x) (15b)

L 0,1
x|−∞,∞f(x) = f(−∞)(1− σ(x)) (15c)

L 1,1
x|−∞,∞f(x) = σ(x) (15d)

all with

Z(x) = σ(x)(1 − σ(x)) (15e)

where

σ(x) =
1

1 + e−x
(15f)

2.3. Combining two-point matches, in two dimensions

Consider a function of two variables: f(x, y), x ∈ [a, b], y ∈ [c, d]. The x-match

operator acts (for example when i = j = 0) on f(x, y) as

L 0,0
x|a,b f(x, y) = f(b, y)

x− a

b− a
− f(a, y)

x− b

b− a

The y-match operator acts (for example when i = 1, j = 0) on f(x, y) as

L 1,0
y|c,d f(x, y) = (y − d)

∂f

∂y
(x, c) + f(x, d)

The combined operation: (Commutative)

L 0,0
x|a,b L

1,0
y|c,d f(x, y) = L 1,0

y|c,d L
0,0
x|a,b f(x, y)

=

[

(y − d)
∂f

∂y
(b, c) + f(b, d)

]

x− a

b− a
−

[

(y − d)
∂f

∂y
(a, c) + f(a, d)

]

x− b

b− a

2.4. Building the boundary match in two dimensions

The function

A(x, y) =

[

1−
(

1− L i,j

x|a,b

)(

1− L k,m

y|c,d

)

]

f(x, y)

=
(

L i,j

x|a,b + L k,m

y|c,d − L i,j

x|a,bL
k,m

y|c,d

)

f(x, y)

matches (as it can be verified), the following BCs

∂ iA

∂x i
(a, y) =

∂ if

∂x i
(a, y),

∂ jA

∂x j
(b, y) =

∂ jf

∂x j
(b, y)

∂ kA

∂y k
(x, c) =

∂ kf

∂y k
(x, c),

∂mA

∂ym
(x, d) =

∂mf

∂ym
(x, d)
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Generalizing in Many Dimensions

Let, xT = (x1, x2, . . . , xN ), xk ∈ [ak, bk], (rectangular boundary). Let, for xk the

BCs be represented by the match-operator L ik, jk
xk|ak, bk

. Then the associated multi-

dimensional boundary match is given by

A(x) =



1−

N
∏

k=1

(

1− L ik, jk
xk|ak, bk

)



 f(x)

and the corresponding appropriate Z-function is

Z(x) =

N
∏

k=1

(xk − ak)
1+ik(xk − bk)

1+jk

2.5. Robin boundary conditions

The formalism may be extended to support also Robin BCs of the form

B̂L
i f(x) ≡

[

λL
i f(x) + µL

i

∂ f(x)

∂xi

]

|xi=ai

specified (16a)

B̂R
i f(x) ≡

[

λR
i f(x) + µR

i

∂ f(x)

∂xi

]

|xi=bi

specified (16b)

The operator B̂L
i is the BC operator at the face xi = ai (on the “Left”) and B̂R

i is

the BC operator at the face xi = bi (on the “Right”).

Let the operator Mi be defined as

Mif(x) ≡ ΦR
i (xi)B̂

L
i f(x)− ΦL

i (xi)B̂
R
i f(x) (17a)

with

ΦR
i (xi) =

λR
i (xi − bi)− µR

i

Di

, ΦL
i (xi) =

λL
i (xi − ai)− µL

i

Di

(17b)

Di = (ai − bi)λ
L
i λ

R
i + µL

i λ
R
i − λL

i µ
R
i (17c)

This expression satisfies the above mentioned Robin BCs. Note that the following

relations hold

B̂R
i Φ

R
i (xi) = 0, B̂L

i Φ
L
i (xi) = 0, B̂L

i Φ
R
i = 1, B̂R

i Φ
L
i = −1

Then the Robin-boundary match and the associated Z(x) are given by

A(x) =



1−

N
∏

i=1

(1−Mi)



 f(x), Z(x) =

N
∏

i=1

(xi − ai)
2(xi − bi)

2
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2.6. Combining single and two-point operators

Suppose that the function f(x, t) with x ∈ [a, b] and t > t0, has prescribed two-point

boundary conditions on x and single point initial conditions on t. If the relevant

one and two-point operators are I 0
t|t0

and L i, j

x|a, b, the combined match operator is

then given by

C0 = 1− (1− I 0
t|t0

)(1− L i, j

x|a, b) = I 0
t|t0

+ L i, j

x|a, b − I 0
t|t0

L i, j

x|a, b (18)

If the single point operator is I 1
t|t0

, that corresponds to Cauchy conditions, the

combined operator is given by

C1 = I 1
t|t0

+ L i, j

x|a, b − I 1
t|t0

L i, j

x|a, b (19)

The neural forms for the trial solutions are given by

Ψ(x, t) = A(x, t) + Z(x, t)N(x, t, θ), with (∀ k = 0, 1) (20a)

A(x, t) = Ckf(x, t) (20b)

Z(x, t) = (x− a)1+i(x− b)1+j(1− e−(t−t0))1+k (20c)

3. Interface Conditions: Heat-conduction PDE

For an illustrative example the focus is turned on the heat conduction equation,

namely

ρc(p)
∂

∂t
T (x, t) = k

∂2

∂x2
T (x, t), with x ∈ [a, c], t ≥ t0 (21)

subject to

IC: T (x, t0) prescribed (22a)

BCs (∀ t > t0) : T (a, t) or
∂

∂x
T (a, t) prescribed (22b)

T (c, t) or
∂

∂x
T (c, t) prescribed (22c)

The trial solution for Eq. (21), subject to (22), may be modeled as

Ψ(x, t, θ) = A(x, t) + Z(x, t)N(x, t, θ) (23)

The trial solution in Eq. (23), assumes that the thermal conductivity k, is constant

for x ∈ [a, c], in which case both Ψ(x, t, θ) and ∂
∂x

Ψ(x, t, θ) are continuous functions

of x. However when conduction takes place through two different materials that are

in contact, this is no longer true.

The situation of interest is depicted in Fig. 1, where two rods are laid side by

side along the x-axis, and are in contact at x = b. Each rod is characterized by

its density ρi, specific heat c
(p)
i , and thermal conductivity ki, where the subscript

i ∈ {1, 2} labels correspondingly, quantities related to the rod on the left and to
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Fig. 1. Two rods placed side by side along the x-axis, with density, specific heat and thermal

conductivity values, ρi, c
(p)
i

, and ki.

the rod on the right. At the interface (point x = b) the following conditions must

be met

lim
ǫ→0+

T (b− ǫ, t) = lim
ǫ→0+

T (b+ ǫ, t) (24a)

lim
ǫ→0+

k1
∂

∂x
T (b− ǫ, t) = lim

ǫ→0+
k2

∂

∂x
T (b+ ǫ, t) (24b)

Clearly Eq. (24b) introduces a discontinuity at x = b for the temperature gradient.

Therefore the model in (23) needs to be modified to handle condition (24b). This

discontinuity will be introduced by replacing the NN in (23) with a NF as

Ψ(x, t, θ) = A(x, t) + Z(x, t)[N(x, t, θ) + λ(t, θ)|x − b|] (25)

where λ(t, θ) is a function to be determined so that condition (24b) is satisfied.

Consider that the temperatures at the two end points, T (a, t) and T (c, t) for t > t0
are prescribed. Then applying the corresponding match operator

A(x, t) =
[

I 0
t|t0

+ L 0, 0
x|a, c − I 0

t|t0
L 0, 0
x|a, c

]

T (x, t)

= T (x, t0) +

[

T (c, t)
x− a

c− a
− T (a, t)

x− c

c− a

]

−

[

T (c, t0)
x− a

c− a
− T (a, t0)

x − c

c− a

]

(26a)

Z(x, t) = (x− a)(x − c)(1− e−(t−t0)) (26b)

Since T (x, t0) is the solution at time t = t0, it satisfies both the interface conditions

(24). Requiring that Ψ(x, t > t0, θ) satisfies them as well, we arrive at the following

expression for λ(t, θ), for t > t0.

λ(t, θ) =
k1 − k2

k1 + k2

[

∂N(b, t, θ)

∂x
+

2b− a− c

(b − a)(b− c)
N(b, t, θ)

+
[T (c, t)− T (c, t0)]− [T (a, t)− T (a, t0)]

(c− a)(b − a)(b− c)(1 − e−(t−t0))

]

(27)
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The error function to be optimized is then given by:

E(θ) =
∑

ti>0

∑

xj∈(a,b)

[

∂Ψ(xj , ti, θ)

∂t
−

k1

ρ1c
(p)
1

∂2Ψ(xj , ti, θ)

∂x2

]2

+
∑

ti>0

∑

xj∈(b,c)

[

∂Ψ(xj , ti, θ)

∂t
−

k2

ρ2c
(p)
2

∂2Ψ(xj , ti, θ)

∂x2

]2

(28)

3.1. Numerical example and results

A specific example was solved corresponding to a rod of aluminum in contact to

a rod of steel. The aluminum rod extends from a = 0 cm to b = 5 cm and the

steel rod from b = 5 cm to c = 12 cm. The numerical values of the material pa-

rameters are depicted in Table 1 and the initial, boundary and interface conditions

in Table 2.

Table 1. Rod properties.

Material k, in W/(cm ·K) ρ, in g/cm3 c(p), in J/(g ·K)

Aluminum k1 = 2.0 ρ1 = 2.70 c
(p)
1 = 0.92

Steel k2 = 0.5 ρ2 = 7.85 c
(p)
2 = 0.51

Table 2. Initial, boundary and interface conditions (ǫ → 0+).

T (x, 0) = 10◦C

T (0, t > 0) = 5◦C T (12, t > 0) = 15◦C

T (5− ǫ, t) = T (5 + ǫ, t) k1
∂T (5− ǫ, t)

∂x
= k2

∂T (5 + ǫ, t)

∂x

The neural network employed was a perceptron with one hidden layer and sig-

moid activation functions, namely

N(x, t, θ) =
nodes
∑

i=1

θ4i−3σ(θ4i−2x+ θ4i−1t+ θ4i) (29)

where the sigmoid activation σ(x), is given in formula (15f).

The x-grid used 120 points, while the t-grid used a step of τ = 0.05 s, and the

equation was solved up to t = 30 s (i.e. 600 steps). A plot of T (x, t) for t = 1 s, 4 s,

and 30 s is displayed in Fig. 2. Note that the solution was obtained with only five

nodes in the hidden layer (nodes = 5). At t → ∞, the solution is easily recovered

by setting the time derivative to zero. Hence, T (0 ≤ x < 5,∞) = 10
33x + 5, and

T (5 < x ≤ 12,∞) = 40
33x+ 15

33 .
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Fig. 2. Plots of the temperature spatial distribution at three different times (t = 1 s, 4 s and
30 s).

4. Conclusions

Given a partial differential equation of second order in space and up to second or-

der in time, defined inside rectangular hyperboxes, we have developed a systematic

approach for constructing a trial solution as: Ψ(x, t, θ) = A(x, t) +Z(x, t)F (x, t, θ).

A(x, t) is a function without adjustable parameters satisfying the initial and bound-

ary conditions. Z(x, t) is vanishing on the boundary and such that it does not

contribute to the initial and boundary conditions. F (x, t, θ) is a neural form when

interface conditions exist, or simply a neural network otherwise.

We have demonstrated the applicability of the method by solving a problem

with interface conditions, a case which, to the best of our knowledge, has not been

tackled before, in the framework of the neural network methodologies for differential

equations. It will be interesting to apply this methodology to problems with various

interface geometries and extend it for the case of moving boundary problems, that

are considered to be very hard.
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