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A grid method for obtaining eigensolutions of bound systems is
presented. In this, the block-Lanczos method is applied to a Cheby-
shev approximation of exp(—H/A), where A is the range of eigenval-
ues we are interested in. With this choice a preferential convergence
of the eigenvectors corresponding to low-lying eigenvalues of H is
achieved. The method is used to solve a variety of one-, two-, and
three-dimensional problems. To apply the kinetic energy operator
we use the fast sine transform instead of the fast Fourier transform,
thus fullfilling, a priori, the box boundary conditions. We further
extend the Chebyshev approximation to treat general functions of
matrices, thus allowing its application to cases for which no analyti-
cal expressions of the expansion coefficients are available. © 1996
Academic Press, Inc.

I. INTRODUCTION

Grid methods have been extensively used in the past to
solve the time-dependent Schrodinger equation (TDSE),

NW(r, 1) —iHWY(x, 1), (1)
ot

for various quantum systems in atomic and molecular phys-
ics [1, 2]. The solution of the TDSE contains all the dynam-
ics of the system and therefore a wide range of phenomena
can be studied, such as the diffractive scattering from crys-
talline surfaces, atom scattering from imperfect and disor-
dered surfaces, rotationally and vibrationally inelastic mol-
ecule-surface scattering, excitation of surface phonons and
of electron—hole pairs, etc. Moreover, the grid methods
have also proved useful in treating the problems of localiza-
tion of waves, particles moving in almost periodic poten-
tials, phonons, and enhanced back-scattering of light by
random media, etc. These studies involve the propagation
of wave packets forward in time.

Apart from the continuum, the grid methods have also
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been employed in bound state calculations, where the spec-
trum of the Hamiltonian can be obtained from the solution
of the TDSE. The problem usually encountered is the
diagonalization of the Hamiltonian H in (1). Since this in
practice cannot be done, it is impossible to compute the
action of the propagator e on an arbitrary wave function
[2] and, thus, the time-evolution is accomplished using
various approximations to the exponential. We mention
here the Crank—Nicolson scheme [3-5] and the Kosloff
and Tal-Ezer method [6]. For a detailed discussion we refer
the reader to the review article of de Raedt [2]. The existing
methods, although simple to use, can be quite CPU-time
intensive, especially in calculating a large number of bound
states in more than one dimension.

To circumvent the need for long propagation times, Neu-
hauser proposed the so-called filter-diagonalization
method [7] to obtain bound-state eigenfunctions in any
arbitrary range of energies. This is achieved by propagating
forward in time an arbitrary initial wave packet under the
influence of the Hamiltonian H to obtain the wave function
U(x, 1) = exp(—iHt)(x). A small set of approximate eigen-
states within a desired energy range is then prepared, which
is used as a small basis for time independent extraction
(by diagonalization) of the sought eigenstates. In a recent
article, a more elaborate description and extension of the
method has been given by Wall and Neuhauser [8]. Yet
another interesting method concerning the eigenvalue
problem for large matrices has been proposed by Wyatt
[9]. In this, the Green function filter is employed in the
Lanczos algorithm to obtain eigenvalues in a specific range.
More details and references to similar methods can be
found in the aforementioned references.

In this work an alternative method for obtaining eigen-
values and eigenfunctions is presented. The method em-
ploys the block—Lanczos method with selective orthogo-
nalization [10] to a Chebyshev approximation of
exp(—H/A), where A is the range of eigenvalues we are
interested in. With this choice, a preferential convergence
for the eigenvectors corresponding to the low-lying eigen-
values of H can be achieved. Unlike the method of Neu-
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hauser we do not require very accurate propagation in
time since we only use it to facilitate convergence of the
block—Lanczos method for low-lying eigenvalues where as
in the filter-diagonalization method the accuracy of the
propagation is essential for obtaining the eigenvalues.

In the following section the grid, Chebyshev, and
Lanczos methods are briefly reviewed together with the
proposed modifications. In Section III, we apply the
method to one-, two-, and three-dimensional examples and
compare the results to those of competing methods. Fi-
nally, in Section IV a summary of our conclusions is given.

II. THE GRID METHOD

We are concerned with the determination of the eigen-
functions and eigenvalues of the w»-dimensional Hamil-
tonian

h?

H=T+V=
V= om

V(xl, ey X ,,), (2)

where x; are the coordinates describing the system and V
is the potential energy. The grid method in v dimensions
discretizes the wave function ¥ in the v-dimensional box,
bl] X [az,bz] X oo X

[a,. b.], 3)

[al s

by choosing n; equidistant grid-points in each dimension

x;j) = a; +n£(b, - a,;), k= O, ey 1 — 1. (4)

The wavefunction W is thus described by its N := nn, - - -
n, values on the grid. The application of the Hamiltonian
operator on the wave function in coordinate space is
written

(r|HIW) = (r|TIW) + (r[VIW) ®)

with
(r|VI¥) = V(r)¥(r) (6)

and
olriwy =2 kS K~ <I><k> ()
Here |ry = |x1x5 - -+ x,), |k) = |kik, - - k,), and dk = dk,
dk, - -+ dk, while ®(k) is the Fourier transform of W(r).

Thus, in order to apply the kinetic energy operator on
W(r), one first Fourier-transforms it to ®(k), applies the
kinetic energy operator, and then uses the inverse Fourier
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transform to return to the r-space. The potential energy
Vis diagonal in r-space and the kinetic energy 7 'is diagonal
in momentum space (k-space). Therefore, the fast Fourier
transform (FFT) is usually employed for the application
of the kinetic energy operator to the wave function. This
requires each n; to be a power of 2 [11].

For bound states, the boundary condition is that ¥ van-
ishes on the boundaries of the box. In previous implemen-
tations of the grid method [6] the FFT was used, which is
not well suited to this boundary condition, and then one
has to resort to tricks such as the introduction of reflecting
walls (very large potential values at the boundary). In this
work we employ the fast sine transform (FST) [11], which
a priori satisfies the box boundary conditions. To introduce
the FST we first recall the definition of the sine transform,

N-

E ' sin(mjk/N),

k=0,..,N—1, (8

where W, are the values of the wavefunction at the equidis-
tant grid-points with ¥, = 0 by default. Then the FST is
defined by applying the FFT to an auxiliary array y;,

vo=20
y; = sin(jm/N)(¥; + ¥y_;) ©)
+3(V; — ¥y), 1,..,N—1,
yielding the result
N-1
Y, = Z,) e2mikINy . (10)

The sine transform of the original array is then obtained via

q)Zk =Im Yk
Doy = Py + Re Yy (11)
@1 = %Re YO

A method frequently used to determine the low-lying ei-
genvalues of a system is the relaxation approach [6] which
can be computationally demanding. In this work, we pro-
pose an efficient alternative method, namely, we apply the
block—Lanczos method to a Chebyshev approximation of
exp(—H/A). In this way a tridiagonal representation of the
Hamiltonian is obtained and, hence, the calculation of the
eigenvalues is greatly simplified. In order to describe our
method we first outline the Chebyshev and Lanczos
methods.

A. The Chebyshev Expansion

The Chebyshev expansion method for functions of ma-
trices [2, 12] has been used in the past to propagate the
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wave function in time [1] or in conjunction to relaxation
methods [6]. In this, a function f(y), with y € [a, b], is
expanded in terms of the Chebyshev polynomials of the
first kind T;(x),

b+a
fly) = Z aT; <—(_ y )> (12)
with the expansion coefficients being given by
AT f(2say + b2
2 - 51'0 2
= : dx. (13)
m -1 1—x2

In the above expression (12) one can substitute for y a
symmetric N X N matrix A, provided its eigenvalues fall
in the range [a, b]. The corresponding Chebyshev expan-
sion is

f(A)= 20 ¢;Ti(B) (14)
with
2 _b+a
B_b—aA b—al’ (15)

where I is the unit matrix. Such an expansion has been
employed by Kosloff and Tal-Ezer [6] for the exponential
e ", with the expansion coefficients expressed in terms
of modified Bessel functions. Since analytical expressions
cannot be obtained for a general function we shall present
in Section C a numerical alternative.

B. The Lanczos Method

The Lanczos method [10, 13, 14] has been widely used
for computing a few of the extreme eigenvalues and the
corresponding eigenvectors of large symmetric matrices
[15]. The method has also been employed in the framework
of the discrete variable representation (DVR) [16], which
can be considered as a generalization of the grid method.
More recently, the so-called analytical Lanczos method
has been applied, using the symbolic manipulation package
Mathematica, to the sextic anharmonic oscillator and to
two, three, and four coupled anharmonic oscillators [17].
In this work, the block—Lanczos method is used since the
matrix enters only through its application to a vector and,
therefore, it allows us to exploit the FST-representation
for the kinetic energy term, while standard eigenvalue
methods require the elements of the matrix to be explic-
itly known.

Let A be a symmetric N X N matrix. If we consider an
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eigenvalue A; of A at the upper end of the spectrum (i ~
N) the eigenvalue estimate A, obtained after n steps of
the Lanczos method satisfies [18]

K('l) 2
A=A = (A —A (—’tane i) X ) 16
= 1) Troon(v) [0(yi, x0)] (16)
where
N- 1)L(n) _ )\1
K" =T (17)
I0e =
and
— A
=1+ 2—. 1
A=A (18)

The 6(y;, Xo) is the angle between the starting vector x, of
the Lanczos method and the eigenvector y; while 7,,(x) is
the nth-order Chebyshev polynomial. An analogous rela-
tion holds for the lower end of the spectrum (i ~ 1). In
either case the rate of convergence for the eigenvalue A;
is bounded by

T=(vi+ Vyi - 1), (19)

as can be seen by substituting the following expression in
Eq. (16)

Ti(x)=(x+Vx2— 1)+ (x—Vx>— 1) (20)
In the block-version of the Lanczos method, where a sys-
tem of r linear independent vectors is used, similar conver-
gence criteria can be obtained by replacing y; with

Ai = Ay

R E
)\l r_/\l

1)

Direct application of the block—Lanczos method to the
grid representation H, of the Hamiltonian will, however,
be inefficient for obtaining the low-lying eigenvalues. This
is due to the fact that the gaps at the upper end of the
spectrum are typically much larger than the gaps between
the low-lying eigenvalues that we are interested in. This
results in a slow convergence for the lower eigenvalues and
large storage requirements, since all the Lanczos vectors
generated have to be retained. This problem is clearly
demonstrated by the ground state calculation performed
for the ozone (O3) molecule by Le Quéré and Leforestier
[16], where more than 100 iterations were needed to obtain
a reliable value for the ground state energy.
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C. The Chebyshev-Lanczos Method

In order to enhance the convergence for the low-
lying eigenvalues, we apply the Lanczos method to a
Chebyshev approximation of exp(—H,/A), where A is
the range of eigenvalues we are interested in. The eigen-
values of exp(—H,/A) are given by w; = exp(—A/A).
The w; corresponding to A; within a range of the order
of A from A; will have the largest gaps w;+; — m; and
therefore will be the first to converge (see Eq. (16)),
while the eigenvalues at the upper end of the spectrum
of H are mapped to the vicinity of zero and do not
interfere with the calculation.

For the preferential convergence of the u;, correspond-
ing to the low-lying eigenvalues of H, the accuracy of the
Chebyshev approximation is however not crucial, since
the exact behaviour of the approximation for eigenvalues
outside the range of interest is not important, as long as
those w; are sufficiently close to zero. It is therefore suffi-
cient to approximate the exponential with a tolerance & of
the order of exp[—(A/A + O(1))].

For practical applications we use the block—Lanczos
method with selective orthogonalization (LASO) [10] to
prevent the appearance of multiple copies of eigenvectors.
To obtain the original eigenvalues from those determined
for the Chebyshev approximation we simply calculate the
expectation values of H, with respect to the eigenvec-
tors via

E; = (yilH,ly:), (22)

i.e., using the fact that a Taylor expandable function
of a matrix has the same eigenvectors as the matrix
itself.

In the work done sofar, the Chebyshev approximation
was only applied to the exponential, for which closed ex-
pressions for the coefficients of the Chebyshev expansion
exist. To have a method that works for any sufficiently
smooth function g(x) we modified the above procedure by
determining the coefficients d; of the Chebyshev interpolat-
ing expansion of order M,

g(xi) = Z) d;Ty(xi), (23)

which is exact at all the M + 1 zeros x; of Ty (x) and
truncated the expansion at a suitable value m < M. Assum-
ing that the interpolation of order M is virtually exact, and
using the property that the Chebyshev polynomials are
bounded by unity, the truncation order m can be deter-
mined for a specified tolerance § by requiring
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M

> ldi| < 6.

i=m+1

(24)

The coefficients d; are obtained via the discrete orthogonal-
ity relations for the Chebyshev polynomials [11]

) 1 M+1
a0 =g 2 80 25)
and
5 Ml mi(k — 4
(M) — 2 =
d! M+1k1g(xk)cos<M+1>, O0=i=M,
(26)
where
_1
Xj = cos <%> (27)

Thus the integration in Eq. (13) has been replaced by a
summation involving cosines only.

III. NUMERICAL EXAMPLES

In the following, we shall apply our method to one-,
two-, and three-dimensional cases and compare our results
with those of competing methods.

A. The One-Dimensional Case
1. The Malfliet—Tjon Potential

The Malfliet-Tjon I + III nucleon-nucleon potential
[19] is widely used in bound state and scattering calcula-
tions in the field of few-nucleon physics. The potential for
the 3S;-channel is given by

V(x) = (1438.72 exp(—3.11x)/x

(28)
— 626.885 exp(—1.55x)/x),
where the units are in the MeV-fm system.

Starting with a random vector, using a 1024-grid in the
interval [0, 32], a range parameter of A = 20, and a Cheby-
shev tolerance § = 0.1 we obtained a bound state energy
of —2.2309 MeV in very good agreement with the result
of —2.2306 MeV by Payne [20] which was obtained by
using the collocation method with Hermite splines.

2. The Morse Oscillator

The Morse oscillator is a tricky one-dimensional prob-
lem, whose closely spaced eigenvalues require a long prop-
agation interval 7in the relaxation method of Kosloff [6].
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TABLE I

The 25 Lowest Eigenvalues of the Morse Oscillator for the 7,-Molecule

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

analytical [21]

.286171979 1073
.852996624 1073
.141246218 1072
.196456866 1072
.250931606 102
.304670436 10~2
.357673359 1072
.409940373 1072
461471479 1072
.512266677 1072
.562325966 1072
.611649346 1072
.660236819 102
.708088382 1072
755204038 1072
801583785 102
.847227624 1072
.892135554 1072
.936307576 10~2
.979743690 1072
.102244390 101
.106440819 107!
.110563658 1071
114612906 101

.118588563 10~1

present

.286171969 1073
.852996593 103
.141246213 102
.196456859 1072
1250931597 10~2
.304670426 10~2
.357673346 1072
.409940359 1072
461471463 1072
512266658 102
.562325946 10~2
611649325 1072
.660236795 10~2
.708088357 1072
.755204011 102
.801583757 102
847227594 102
.892135523 102
.936307543 10~2
.979743655 1072
.102244386 10!
.106440815 1071
110563654 101
114612902 1071

.118588559 107!

difference
-.10 10710
-.30 10710
-.50 10710
.70 10710
-.89 10710
-11107°
-13107°
-.15107°
-.16 107°
-.18107°
-.20 107°
-22107°
-.23107°
-25107°
-27107°
-.28107°
-.30107°
-32107°
-.33107°
-.35107°
-.36 107°
-.38 107°
-39107°
-41107°

-.42 10°°
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FIG. 1. The wavefunctions obtained for the Morse oscillator for » = 0, 8, 16, and 24.
We consider the Morse potential for the I,-molecule which W, = N,y"? exp(—3y)LE(y), (31)

is given by

V(x) = D[exp(—2ax) — 2 exp(—ax)] + D (29)
with D = 0.0224 a.u., « = 0.9374 a.u., and a reduced mass
of u = 119406 a.u. The D has been added to shift the
minimum of the potential to zero. The analytical expres-
sion for the eigenvalues is [21]

2
E, = (,,+ L [u+ %] ) 5741837286
(30)

v=0,

with ¢ = 156.047612535. The eigenfunctions V¥, can be
expressed in terms of Kummer functions [21], or, alterna-
tively, generalized Laguerre polynomials [22],

where y = { exp(—ax), p = { — 2v — 1 and with the
normalization factor

e ()

The latter can be obtained through manipulation of the
generating function of the generalized Laguerre polynomi-
als [22].

We used the block-version of the Lanczos method with
a blocksize of r = 8§, starting with random vectors. The
results of our calculations are given in Table I. We used
128 grid points in the interval [—1, 3]. The range parameter
was chosen as A = 0.02 and the Chebyshev tolerance as
6 = 0.1. The calculation of the 25 lowest eigenvalues took

(32)
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FIG. 2. The difference between the numerical and the analytical wavefunctions obtained for the Morse oscillator for » = 0, 8, 16, and 24.

8.63 CPU-seconds on an IBM-RISC 6000/340 workstation.
It is seen that the accuracy achieved is between 6 to 8
digits. A higher accuracy can be achieved by increasing
the number of grid points.

To convey an impression of the eigenfunctions and to
demonstrate the economy of the method, we have plotted
in Fig. 1 the resulting eigenfunctions for v = 0, 8, 16, and
24. Although there are only about four grid points per
period for the v = 24 eigenfunction, we still obtain the
eigenvalue with a 7-figure accuracy.

To compare the numerical eigenfunctions with the ana-
lytical ones, we normalized them according to

127

By > Wnum(x)? = 1, (33)
i=0

corresponding to
fh \Ifsxact(x)Z dx =1

for N — oo.

In Fig. 2 we show the differences between the numerical
and analytical eigenfunctions. It is seen that the difference
is less than 107> for all cases. Another measure of the
difference is

e, = (hx 20 (W3 (x;) — ‘I’ixam(xi))2> ' (34)

The values thus obtained are smaller than 2 X 107° in
all cases.

3. The Anharmonic Sextic Oscillator

The anharmonic sextic oscillator has been treated by
Kaluza [17] in his paper on the analytical Lanczos method
[17], where he gives eigenvalues that are very accurate for
the 30 lowest states of even parity. Therefore, this provides
a nontrivial case to test the performance and find what
kind of accuracy our method can achieve.

The potential is given by
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TABLE II

to States of Even Parity

The 48 Lowest Eigenvalues of the Sextic Anharmonic Oscillator Corresponding

Kaluza [17]

present

difference

10
11
12
13
14
15
16
17
18
19
20
21
22

23

1.00000000000000000
6.84840938290355083
15.1189299862423532
25.0499485467589551
36.3427162124129666
48.8188557894952027
62.3560289446043683
76.8635227337003784
92.2705755458715799
108.519977962910005
125.564227036711259
143.363055517025145
161.881761569277757
181.090033347270861
200.961094421342040
221.471065493679532
242.598476707488402
264.323887720018490
286.629586722251986
309.499348483678148
332.918237321682568
356.872444806447561

381.349154702387807

1.00000000000000067
6.84840938290355794
15.1189299862423372
25.0499485467589658
36.3427162124129453
48.8188557894951884
62.3560289446043612

76.8635227337003641

92.2705755458715799

108.519977962910033
125.564227036711188
143.363055517025202
161.881761569277586
181.090033347270776
200.961094421341841
221.471065493679419
242.598476707488402
264.323887720018547
286.629586722251759
309.499348483678261
332.918237321682454
356.872444806447731

381.349154702387750

.67 10710
.71 10714
-.16 10-13
1110718
-.21 10713
-.14 10713
-71 10714
-.14 10713
0

28 10718
-.71 10713
5710718
-17 10712
-.85 10-13
-.20 10712
-.11 10712
0

571071
-.23 10712
1110712
1110712
.17 10712

-.57 1013

V(x) = Ve(x) := 3x? + 2x* + $x5.

We used 512 grid points in the interval [—8, 8]. The
range parameter was chosen as A = 1500 and the
Chebyshev tolerance as § = 0.1. Using a blocksize of
r = 6 the algorithm required 178 CPU-seconds on an

(35)

IBM-RISC 6000/340 workstation to obtain the 96 lowest
eigenvalues. In Table II we show our results for
the 48 lowest even-parity eigenstates for which Kaluza
did his calculations. It is seen that up to the 35th even-
parity eigenstate both methods agree to at least 14

figures.
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TABLE II—Continued
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24
25
26

27

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

406.336429536015828
431.823114531145109
457.798755634855695
484.253529083002775
511.178180496926018
538.563971914420222
566.402635473386795
594.686332710882539
623.407618631373566
652.559409848831137
682.134956227356952
712.127815541317545
742.531830753778
773.34110957532
804.550006017
836.15310369
868.1452006
900.521295
933.276567

966.4064

999.906

1033.772

1068.00

1102.

1137.

406.336429536015714
431.823114531145279
457.798755634856093
484.253529083002604
511.178180496925734
538.563971914419881
566.402635473386567
594.686332710882198
623.407618631372770
652.559409848831251
682.134956227357179
712.127815541318455
742.531830753795475
773.341109575325618
804.550006017276019
836.153103695176242
868.145200676664672
900.521295691524529
933.276575553427847
966.406403658381464
999.906309444106569
1033.77197871013732
1067.99924470990277
1102.58407993753804

1137.52258854123579

-.11 10712

17

.40

10—12

10-12

-.17 1012

-.28 10~12

-.34 10712

-.23 10712

-.34 1012

-.80 10712

a1

.23

91

.18

.56

.28

.92

N

.69

.56

37

31

10—12
10—12
10—-12
10—10
10—11
10-°
1078
1077
1078
1075
103

1073

-.21107*

-.76 1073

.58

.52

B. The Two-Dimensional Case

1. The Hénon—Heiles Potential

The eigenvalues and eigenfunctions of the two-dimen-
sional Hénon—Heiles potential have been treated by many
authors in the study of anharmonically coupled oscillators

Viny) =3 (2 +y7) +

1
—X

VG

(see Ref. [23] and references therein). This potential is
given by

(1) o0
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TABLE III

The 32 Lowest Eigenvalues of the Hénon—Heiles System

(L;n)
(0,0)

(£1,1)

(0,2)

(£2,2)

(£1,3)

(£3,3)

(0,4)

(£4,4)

(+1,5)

(£3,5)

(£5,5)

(0,6)

(+2,6)

(+4,6)

(£6,6)

(+1,7)

(£3,7)

Diagonalization [23]
0.9986

1.9901

2.9562

2.9853

3.9260

3.9824

3.9858

4.8702

4.8987

4.8963

5.8170

5.8670

5.8815

5.9913

6.7379

6.7649

6.8534

6.9989

6.9994

7.6595

7.6977

7.7369

present

0.998595
1.990077
1.990077
2.956243
2.985326
2.985326
3.925964
3.925964
3.982417
3.985761
4.870144
4.898644
4.898644
4.986251
4.986251
5.817019
5.817027
5.867019
5.881446
5.991328
5.991328
6.737968
6.764871
6.764955
6.853436
6.853453
6.998933
6.999393
7.659551
7.660248
7.698226

7.736915

Relaxation [6]
0.9986
1.9901
1.9901
2.9562
2.9853
2.9853
3.9260
3.9260
3.9820
3.9836
4.8701
4.8987
4.8988
4.9860
4.9863
5.8192

5.8193

5.9912
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TABLE IV

The 13 Lowest Eigenvalues for a System of Two Coupled Sextic Anharmonic Oscillators
(Kaluza only calculated the eigenstates with positive parity and exchange quantum numbers.)

p Kaluza {17]

1 1.992235763386565950

4 6.895426376701

6 7.9593012472

10
11
12

13 14.4805192

present difference

1.992235763386567 0.10 10714
4.305138454968618
4.699323135716736
6.895426376506497 -0.19 107°
7.837870294086596
7.959301238963631 -0.82 1078
10.01652919760806
10.58618828339855
11.77888032499270
11.80055533134312
13.41554002288335
14.20977578076531

14.48196389062804 0.14 1072

We calculate the 32 lowest eigenvalues and eigenfunctions
using a block size of r = 4, starting with random vectors.
We worked with a 64 X 64 grid in [-6, 6] X [—6, 6], a
range parameter of A = 10 and a Chebyshev tolerance of
6 = 0.1. In Table IIT we show our results, along with those
of the relaxation approach [6] and the diagonalization ap-
proach of Noid and Marcus [23]. Our results are in excel-
lent agreement with those obtained through these meth-
ods. The calculation of all eigenfunctions and eigenvalues
took 400 CPU-seconds on an IBM-RISC 6000/340 work-
station.

2. Two Coupled Anharmonic Oscillators

The potential for two coupled anharmonic sextic oscilla-
tors reads [17]

Vx,y) = Ve(x) + Ve(y) + x, (37)

where Vj is defined in Eq. (35) above. We have calculated

the lowest 13 eigenstates and eigenvalues using a 64 X 64
grid in [—4, 4] X [—4, 4], a block size of r = 4, a range

parameter A = 20, and a Chebyshev tolerance of § = 0.1.
This calculation took 187 CPU-seconds on an IBM-RISC
6000/340 workstation. Our results for the eigenvalues are
shown in Table IV. The low-lying binding energies are in
good agreement with the results of Kaluza.

C. The Three-Dimensional Case
1. The Isotropic Three-Dimensional Harmonic Oscillator

As a first example, we consider the isotropic three-di-
mensional harmonic oscillator with the potential

V(x,y,2) =5(x* + y* + 27), (38)
whose eigenvalues are given by
Eyonon, =%2+n.+n,+n.. (39)

The levels E,, = § + n display a high degree of degeneracy
that is given by
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TABLE V

Eigenvalues of the Isotropic Three-Dimensional Harmonic Oscillator

n= Ny + Ny + Ny g
0 1
1 3
2 6
3 10

exact present

1.5 1.50000000000005862

2.5 2.50000000000007105
2.50000000000008704
2.50000000000009415

3.5 3.50000000000019673
3.50000000000022515
3.50000000000361355
3.50000000000362821
3.50000000000491029
3.50000000000560085

4.5 4.50000000000151346
4.50000000000370726
4.50000000000375255
4.50000000001024070
4.50000000001243627
4.50000000002715783
4.50000000004485035
4.50000000005976730
4.50000000006838885

4.50000000007554313

", = (n+ 1)(n+2). (40)
2
Using a 32 X 32 X 32 grid in [—6, 6] X [—6, 6] X [—6,
6] we obtained results for the 20 lowest eigenvalues and
eigenvectors in 6380 CPU-seconds on an IBM-RISC 6000/
340 workstation. We used a blocksize of r = 8, a range
parameter of A = 5, and a Chebyshev tolerance of 6 =
0.1. The results are shown in Table V.

The accuracy achieved is at least 11 figures for all calcu-
lated eigenvalues. The ability of the method to deal with
highly degenerate eigenvalues is clearly demonstrated.

2. Three Coupled Anharmonic Oscillators

As a second three-dimensional example, we consider the
potential for three coupled anharmonicsextic oscillators [17]

V(x,y,z) = Vs(x) + Ve(y) + Vs(z) + xy +xz + yz. (41)

We have calculated the lowest 10 eigenstates and eigenval-
ues using a 32 X 32 X 32 grid in [—4, 4] X [—4, 4] X [—4,
4], a block size of r = 2, a range parameter of A = 20, and
a Chebyshev tolerance of § = 0.1. This calculation took
2700 CPU-seconds on an IBM-RISC 6000/340 worksta-
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TABLE VI

The 10 Lowest Eigenvalues for a System of Three Coupled Sextic Anharmonic Oscillators
(Kaluza only calculated states with positive parity and exchange quantum numbers.)

i Kaluza [17]

1 2.978302656836950

7 8.09166910

10 9.114866

present difference

2.978302657465 0.63 107°
5.295992340812
5.295992340812
5.865822199388
7.753739620670
7.753739620670
8.091658558754 -0.11 107*
8.871108060053

8.871108060062

9.114771912692 -0.94 10¢

tion. The results for the eigenvalues are shown in Table
VI. It is seen that our ground state energy agrees with the
result of Kaluza to nine figures.

IV. CONCLUSIONS

We presented a method that combines the advantages of
the Chebyshev approximation for the exp(—H/A) operator
and the efficiency of the block—Lanczos method. Further-
more, the fast sine transform is employed which satisfies the
bound state boundary conditions by construction. The re-
sulting scheme is quite efficient in calculating low-lying ei-
genstates. Moreover, comparison of our results with ana-
lytic solutions of model problems and with results obtained
via other competing methods, reveals that it is accurate as
well.

ACKNOWLEDGMENTS

Two of us (D.G.P. and LE.L.) gratefully acknowledge the financial
support from Foundation for Research Development F.R.D. and Univer-
sity of South Africa (UNISA). We are also grateful to UNISA colleagues
for their warm hospitality.

REFERENCES

1. R. Gerber, R. Kosloff, and M. Berman, Comput. Phys. Rep. 5(2),
59 (1986).
2. H. de Raedt, Comput. Phys. Rep. 7,1 (1987).

3. G. D. Smith, Numerical Solution of Partial Differential Equations
(Clarendon Press, Oxford, 1985).

4. A. Goldberg, H. M. Schey, and J. J. Schwartz, Am. J. Phys. 35,
177 (1967).

5. S. E. Koonin, Computational Physics (Bemjamin—Cummings, Menlo
Park, CA, 1986).

. R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett. 127(3), 223 (1986).

. D. Neuhauser, J. Chem. Phys. 93, 2611 (1990); 100, 5076 (1994).

M. R. Wall and D. Neuhauser, J. Chem. Phys. 102, 8011 (1995).

. R. E. Wyatt, Phys. Rev. E 51, 3643 (1995).

10. B. N. Parlett and D. S. Scott, Math. Comput. 33(145), 217 (1979).

11. H. W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in FORTRAN, 2nd ed. (Cambridge Univ. Press,
Cambridge, 1992).

12. R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994).

13. G. H. Golub, R. Underwood, and J. J. Wilkinson, Technical Report
STAN-CS-72-270, Computer Science Department, Stanford Univer-
sity, 1972.

14. A. Ruhe, in [terative Eigenvalue Algorithms for Large Symmetric
Matrices in Eigenwertprobleme (Birkhduser, Basel, 1974) p. 97.

15. A. K. Cline, G. H. Golub, and G. W. Platzman, in Calculation of
Normal Modes of Oceans Using a Lanczos Method in Sparse Matrix
Computations (Academic Press, New York, 1976).

16. F. Le Quéré and L. Leforestier, J. Chem. Phys. 94(2), 1118 (1991).
17. M. Kaluza, Comput. Phys. Commun. 19, 425 (1994).

18. Y. Saad, SIAM J. Numer. Anal. 17(5), 687 (1980).

19. R. A. Malfliet and T. A. Tjon, Nucl. Phys. A 127, 161 (1969).

20. G. Payne, in Models and Methods in Few-Body Physics, Lecture
Notes in Physics, Vol. 273 (Springer Verlag, Berlin, 1986), p. 64.

21. S. Fligge, Practical Quantum Mechanics (Springer-Verlag, New
York/Berlin, 1974).

22. J. Spanier and K. Oldham, An Atlas of Functions (Hemisphere, New
York, 1987).
23. D. W. Noid and D. Marcus, J. Chem. Phys. 67(2), 559 (1977).

© o N o



