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Abstract

A modification of the standard Simulated Annealing (SA) algorithm is presented for finding the global minimum of a continuous multidimen-
sional, multimodal function. We report results of computational experiments with a set of test functions and we compare to methods of similar
structure. The accompanying software accepts objective functions coded both in Fortran 77 and C++.

Program summary

Title of program: GenAnneal
Catalogue identifier: ADXI_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADXI_v1_0
Program available from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer for which the program is designed and others on which it has been tested: The tool is designed to be portable in all systems running
the GNU C++ compiler
Installation: University of Ioannina, Greece on Linux based machines
Programming language used: GNU-C++, GNU-C, GNU Fortran 77
Memory required to execute with typical data: 200 KB
No. of bits in a word: 32
No. of processors used: 1
Has the code been vectorized or parallelized?: No
No. of bytes in distributed program, including test data, etc.: 84 885
No. of lines in distributed program, including test data, etc.: 14 896
Distribution format: tar.gz
Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables.
There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required.
Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a
non-linear system of equations via optimization, employing a “least squares” type of objective, one may encounter many local minima that do not
correspond to solutions (i.e. they are far from zero).
Typical running time: Depending on the objective function.
Method of solution: We modified the process of step selection that the traditional Simulated Annealing employs and instead we used a global
technique based on grammatical evolution.
© 2006 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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1. Introduction

In this article we deal with a modification of the Simulated
Annealing (SA) algorithm [1–4] that results in a performance
enhancement. We first give a brief description of the standard
SA method for locating a global minimum of a continuous, dif-
ferentiable function f with many variables inside a bounded
domain S ⊂ Rn. SA is based on an analogy with the physical
phenomenon of annealing. In a liquid the molecules move al-
most freely when the temperature is high. If the temperature
is lowered gradually and slowly enough, then the system crys-
tallizes into a state of minimum energy. If the temperature is
lowered quickly (this is called quenching), the system settles
into a state of higher energy. A typical description of SA algo-
rithm is as follows:

1. Initially Set k = 0, T0 > 0. Sample x0 ∈ S.
2. Sample a point y ∈ S.
3. Set xk+1 = xk .
4. Reset xk+1 = y, with probability

min{1, exp(−f (y)−f (xk)
Tk

)}.
5. Set k = k + 1.
6. Lower the temperature Tk using an annealing schedule.
7. Goto step 2.

When the temperature Tk is high, the method performs a global
exploration. However, when the temperature Tk tends to 0, the
behavior of the algorithm closely resembles that of a local
search. The new method proposes a modification in step 2 and
samples a new point utilizing the GRS technique [5]. The GRS
method produces steps by employing genetic programming and
more specifically grammatical evolution [6–8], and it is briefly
reviewed in Section 2.1.

The rest of this article is organized as follows: in Section 2
the proposed algorithm is presented in detail. In Section 3
some experimental results from the application of the proposed
method are listed and a comparison is made against traditional
simulated annealing methods and in Section 4 the installation
and the execution procedures of the GenAnneal are presented.

2. Description of the algorithm

2.1. The GRS procedure

The main steps of the GRS procedure are the following:

INPUT data:
• A point x = (x1, x2, . . . , xn), x ∈ S ⊂ Rn.
• ε, a small positive number. Typical values for this para-

meter are 10−4 to 10−5.
• Set k as the maximum number of allowed generations.
• Set selection rate and mutation rate.
INITIALIZATION step:
• The initialization of each element of the genetic popu-

lation is performed by selecting a random integer in the
range [0,255].

LOOP step:
• For i = 1, . . . , k Do

– Set xold = x.
– Create a new generation of chromosomes in the popu-

lation with the use of the genetic operations (crossover,
mutation, reproduction).

– Set y = f (x).
– For every chromosome Do

∗ Split the chromosome uniformly into n parts (pi, i =
1, . . . , n), one for each dimension. On every piece pi

the grammatical evolution transformation is applied
to generate a univariate function fi .

∗ Denote by d the vector (d1 = f1(x1), d2 = f2(x2),

. . . , dn = fn(xn)).
∗ Set x+ = x + d .
∗ If x+ /∈ S or f (x+) > y then

· Set x− = x − d .
· If x− /∈ S or f (x−) > y, then

Set the fitness value to a very large number.
· Else

Set the fitness value to f (x−).
· Endif

∗ Else
· Set the fitness value to f (x+).

∗ Endif
– Endfor
– Set x = x + dbest, where dbest the movement that corre-

sponds to the chromosome with the best fitness value.
– If |x − xold| � ε, terminate and return x as the located

minimizer.
• Endfor
• Return x as the located minimizer.

2.2. The proposed algorithm

The steps of the proposed algorithm are presented below:

Initialization_Step
• Set values for the parameters TLAST, T and ε. The pa-

rameters TLAST and ε control the termination of the al-
gorithm. The algorithm terminates when either the best
value was not changed in the last TLAST iterations, or
the temperature T has dropped below ε.

• Set the value of the temperature reduction factor a ∈
(0,1).

• Sample uniformly a point x ∈ S.
• Set fc = f (x), xbest = x, fbest = fc.
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Main_Step
• Start the GRS procedure from point x and denote by x̃

the resulting point.
• If f (x̃) < fc then

– Set x = x̃, fc = f (x̃)

– If fc < fbest then
∗ Set xbest = x, fbest = fc

– EndIf
• Else

– If e(f (x̃)−fc)/T > ξ , where ξ a random number in the
range (0,1) then
∗ Set x = x̃, fc = f (x̃)

– EndIf
• EndIf

Update_Step
• Update the temperature T according to the scheme

T = aT .
• If there was no improvement during the last TLAST iter-

ations or if the temperature T has dropped below ε, go to
Main_Step else goto Optimization_Step.

Optimization_Step
• Start a local search at x and let the resulting point be de-

fined by x∗.
• Return x∗.

3. Experimental results

The suggested approach was compared against two pub-
licly available variants of Simulated Annealing: The method
of Corana [3] (labeled SA in Table 1) and the Adaptive Sim-
ulated Annealing of Ingber [4] (labeled ASA in Table 1). The
comparison is performed on a suite of test problems listed in
Appendix A. Each method was run 50 times on every prob-
lem using different random seeds each time. We have mea-
sured the percentage of times the global minimum was found
and the number of function evaluations it required. The pa-
rameters for the proposed method are listed in Table 2. Both
for SA and ASA we used the default parameters as suggested
in the provided software packages available from the sites
http://www.netlib.org and http://www.ingber.com, respectively.
The trial steps produced by the grammatical evolution were
evaluated using the FunctionParser programming library [9].
The local search procedure used in all methods was a BFGS im-
plementation due to Powell [10]. In Table 1 we list the results
for SA, ASA and the proposed method (GSA). Numbers in the
cells represent the average number of function evaluations re-
quired by each method. The figures in parentheses denote the
fraction of runs during which the global minimum was discov-
ered. Absence of this number denotes that the global minimum
was recovered in every single run. From the reported results
one can easily deduce the superiority of the new method as far
as the above benchmarks are concerned. Hence, we recommend
its use for solving difficult practical problems.
Table 1
Average number of function evaluations for SA, ASA and GSA

Function SA ASA GSA

CAMEL 4820 3125 1791
RASTRIGIN 4843 3534 488
GRIEWANK2 4832(0.27) 3271(0.43) 580
GKLS(2,50) 4820 3354 1641
GKLS(3,50) 7228 5269(0.17) 2004
GOLDSTEIN 4842 3385(0.93) 1281
TEST2N(4) 9631 6460 2923
TEST2N(5) 12034(0.87) 10763 3456
TEST2N(6) 14438(0.66) 18466 3633
TEST2N(7) 16840(0.37) 29972 3840
TEST30N(3) 7930(0.23) 3220 1425
TEST30N(4) 9858(0.23) 6002 1001
POTENTIAL(3) 21404 50202 3075
POTENTIAL(5) 36212 80527 2770
NEURAL 76667(0.93) 67167 6241(0.93)

Table 2
GenAnneal parameters

Parameter Value

SELECTION RATE 90%
MUTATION RATE 5%
CHROMOSOME COUNT 100
CHROMOSOME LENGTH 10 × problem dimensionality
ε 10−5

TLAST 4

4. Software documentation

4.1. Distribution

The package is distributed in a tar.gz file named GenAn-
neal.tar.gz and under UNIX systems the user must issue
the following commands to extract the associated files:

1. gunzip GenAnneal.tar.gz
2. tar xfv GenAnneal.tar

These steps create a directory named GenAnneal with the
following contents:

1. bin: A directory which is initially empty. After com-
pilation of the package, it will contain the executable
make_genanneal.

2. examples: A directory that contains the test functions used
in this article, written in ANSI C++.

3. include: A directory which contains the header files for all
the classes of the package.

4. src: A directory containing the source files of the package.
5. Makefile: The input file to the make utility in order to build

the tool. Usually, the user does not need to change this file.
6. Makefile.inc: The file that contains some configuration pa-

rameters, such as the name of the C++ compiler, etc. The
user must edit and change this file before installation.

4.2. Installation

The following steps are required in order to build the tool:

http://www.netlib.org
http://www.ingber.com
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1. Uncompress the tool as described in the previous section.
2. cd GenAnneal.
3. Edit the file Makefile.inc and change (if needed) the

five configuration parameters.
4. Type make.

The five parameters in Makefile.inc are the following:

1. CXX: It is the most important parameter. It specifies the
name of the C++ compiler. In most systems running the
GNU C++ compiler this parameter must be set to g++.

2. CC: If the user written programs are in C, set this parame-
ter to the name of the C compiler. Usually, for the GNU
compiler suite, this parameter is set to gcc.

3. F77: If the user written programs are in Fortran 77, set this
parameter to the name of the Fortran 77 compiler. For the
GNU compiler suite a usual value for this parameter is g77.

4. F77FLAGS: The compiler GNU FORTRAN 77 (g77) ap-
pends an underscore to the name of all subroutines and
functions after the compilation of a Fortran source file. In
order to prevent this from happening we can pass some
flags to the compiler. Normally, this parameter must be set
to -fno-underscoring.

5. ROOTDIR: Is the location of the GenAnneal directory. It
is critical for the system that this parameter is set correctly.
In most systems, it is the only parameter which must be
changed.

4.3. User written subprograms

The user can write his objective function either in C, C++
or in Fortran 77 in a single file. Each file has a series of func-
tions in an arbitrary order. However, the C++ files must have
the lines

extern "C" {

before the functions and the line

}

after them. The meaning of the functions are the follow-
ing:

1. getdimension(): It is an integer function which returns the
dimension of the objective function.

2. getleftmargin(left): It is a subroutine (or a void function
in C) which fills the double precision array left with the left
margins of the objective function.

3. getrightmargin(right): Is is a subroutine (or a void func-
tion in C) which fills the double precision array right with
the right margins of the objective function.

4. funmin(x): It is a double precision function which returns
the value of the objective function evaluated at point x.

5. granal(x,g): It is a subroutine (or a void function in C)
which returns in a double precision array g the gradient of
the objective function at point x.
4.4. The utility make_genanneal

After the compilation of the package, the executable make_
genanneal will be placed in the subdirectory bin in the dis-
tribution directory. This program creates the final executable
and it takes the following command line parameters:

1. -h: Prints a help screen and terminates.
2. -p filename: The filename parameter specifies the name of

the file containing the objective function. The utility checks
the suffix of the file and it uses the appropriate compiler. If
this suffix is .cc or .c++ or .CC or .cpp, then it invokes the
C++ compiler. If the suffix is .f or .F or .for then it invokes
the Fortran 77 compiler. Finally, if the suffix is .c it invokes
the C compiler.

3. -o filename: The filename parameter specifies the name
of the final executable. The default value for this parameter
is GenAnneal.

4.5. The utility GenAnneal

The final executable GenAnneal has the following com-
mand line parameters:

1. -h: The program prints a help and it terminates.
2. -c count: The integer parameter count specifies the

number of chromosomes for the Genetic Random Search
procedure. The default value for this parameter is 20.

3. -s srate: The double parameter srate specifies the se-
lection rate used in the Genetic Random Search procedure.
The default value for this parameter is 0.10 (10%).

4. -m mrate: The double parameter mrate specifies the
mutation rate used in the Genetic Random Search proce-
dure. The default value for this parameter is 0.05 (5%).

5. -r seed: The integer parameter seed specifies the seed
for the random number generator. It can assume any integer
value.

6. -o filename: The parameter filename specifies the
file where the output from the GenAnneal will be placed.
The default value for this parameter is the standard output.

4.6. A working example

Consider the Rastrigin function given by

f (x) = x2
1 + x2

2 − cos(18x1) − cos(18x2), x ∈ [−1,1]2

with 49 local minima. The implementation of this function in
C++ and in Fortran 77 is shown in Examples 1 and 2. Let
the file with the C++ code be named rastrigin.cc and
that with the Fortran code rastrigin.f. Let these files be
located in the examples subdirectory. Change to the exam-
ples subdirectory and create the GenAnneal executable with
the make_genanneal command:

../bin/make_genanneal -p rastrigin.cc

or for the Fortran 77 version
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../bin/make_genanneal -p rastrigin.f

The make_genanneal responds:

RUN./GenAnneal IN ORDER TO RUN THE PROBLEM

Run GenAnneal by issuing the command:

./GenAnneal -c 100 -r 1

The resulting output appears as:

FUNCTION EVALUATIONS = 468
GRADIENT EVALUATIONS = 1
MINIMUM = 0.000000 0.000000 -2.000000

Appendix A. Test functions

The functions used for testing accompanied with the corre-
sponding parameter range and the global minimum are listed
below. Further information may be found in Floudas et al. [11]
as well as in the URL: http://www.imm.dtu.dk/~km/GlobOpt/
testex/testproblems.html.

Camel

f (x) = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2 , x ∈ [−5,5]2

with 6 local minima and global minimum f ∗ = −1.031628453.

Rastrigin

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1,1]2 with 49
local minima and global minimum f ∗ = −2.0.

Griewank2

f (x) = 1 + 1
200

∑2
i=1 x2

i −∏2
i=1

cos(xi )√
(i)

, x ∈ [−100,100]2 with

529 local minima and global minimum f ∗ = 0.0.

Gkls

f (x) = Gkls(x,n,w), is a function with w local minima, de-
scribed in [12], x ∈ [−1,1]n, n ∈ [2,100]. In our experiments
we use n = 2,3 and w = 50.

GoldStein & Price

f (x) = [
1 + (x1 + x2 + 1)2

× (19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)
]

× [
30 + (2x1 − 3x2)

2

× (18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)
]
.

The function has 4 local minima in the range [−2,2]2 and
global minimum f ∗ = 3.0.
Test2N

f (x) = 1

2

n∑

i=1

x4
i − 16x2

i + 5xi

with x ∈ [−5,5]n. The function has 2n local minima in the
specified range. In our experiments we used the cases of n =
4,5,6,7.

Test30N

f (x) = 1

10
sin2(3πx1)

n−1∑

i=2

(
(xi − 1)2(1 + sin2(3πxi+1)

))

+ (xn − 1)2(1 + sin2(2πxn)
)

with x ∈ [−10,10]n. The function has 30n local minima in the
specified range. In our experiments we used the cases of n =
3,4.

Potential

The molecular conformation corresponding to the global
minimum of the energy of N atoms interacting via the Lennard-
Jones potential is determined for two cases: with N = 3 atoms
and with N = 5 atoms. We refer to the first case as Potential(3)
(a problem with 9 variables) and to the second as Potential(5)
(a problem with 15 variables). The global minimum for the first
cases is f ∗ = 3 and f ∗ = −9.103852416.

Neural

A neural network (sigmoidal perceptron) with 10 hidden
nodes (30 variables) was used for the approximation of the
function g(x) = x sin(x2), x ∈ [−2,2]. The global minimum
of the training error is f ∗ = 0.0.

Appendix B. Examples

Example 1 (Implementation of Rastrigin function in C++).

extern “C”{
int getdimension()
{
return 2;

}

void getleftmargin(double *left)
{
left[0]=-1.0;
left[1]=-1.0;

}

void getrightmargin(double *right)
{
right[0]=1.0;
right[1]=1.0;

}

http://www.imm.dtu.dk/~{}km/GlobOpt/testex/testproblems.html
http://www.imm.dtu.dk/~{}km/GlobOpt/testex/testproblems.html
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double funmin(double *x)
{

double x1=x[0],x2=x[1];
return x1*x1+x2*x2-cos(18.0*x1)-cos(18.0*x2);

}

void granal(double *x,double *g)
{

double x1=x[0],x2=x[1];
g[0]=2.0*x1+18.0*sin(18.0*x1);
g[1]=2.0*x2+18.0*sin(18.0*x2);

}
}

Example 2 (Implementation of Rastrigin function in For-
tran 77).

integer function getdimension()
getdimension = 2
end

subroutine getleftmargin(left)
double precision left(2)
left(1)=-1.0
left(2)=-1.0
end

subroutine getrightmargin(right)
double precision right(2)
right(1)= 1.0
right(2)= 1.0
end

double precision function funmin(x)
double precision x(2)
double precision x1,x2
x1=x(1)
x2=x(2)
funmin=x1**2+x2**2-cos(18.0*x1)-cos(18.0*x2)
end
subroutine granal(x,g)
double precision x(2)
double precision g(2)
double precision x1,x2
x1=x(1)
x2=x(2)
g(1)=2.0*x1+18.0*sin(18.0*x1)
g(2)=2.0*x2+18.0*sin(18.0*x2)
end
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