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Importance of two-body correlations in the 4He molecules(�)
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Summary. — We investigated whether the recently developed Integrodifferential
Equation Approach to Few- and Many-body systems, known as IDEA, can be used to
study the ground-state properties of He-molecules. Using two realistic 4He-4He inter-
actions of Aziz and collaborators, the binding energies and the root mean-square radii
for small molecules are calculated and the results obtained are compared with those
previously obtained by other methods. The principal result of this study is that the
practically hard-core and the short-range attraction of the molecular potentials give
rise to strong many-body correlations and an increased importance of higher partial
waves which cannot be, adequately, handled with S-wave projected formalisms.

PACS 02.60Nm – Integral and integrodifferential equations.
PACS 02.70Dh – Finite-element and Galerkin methods.
PACS 36.90 – Other special atoms, molecules, ions and clusters.
PACS 34.20 – Interatomic and intermolecular potentials and forces, potential energy
surfaces for collisions.

1. – Introduction

Various methods have been used in the past to study the ground-state properties of
4He molecules. We mention here the Variational Method (VM) [1-3], the Variational Monte
Carlo method (VMC) [4, 5], the Green Function Monte Carlo method (GFMC) [5-10], the
Faddeev method in momentum space [11, 12], and the Faddeev-Noyes method (FN) in
configuration space [13]. In all these calculations use was made of the dominant pairwise
structure of the intermolecular force in the many-body environment and in this way vari-
ous properties of the system such as the ground-state properties, mean-square radii, and
density distributions, were studied.
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The variational-type calculations have the advantage that they can handle any number
of atoms in the molecule. On the other hand, the Faddeev-type methods are exact and
they include the two-body forces in their formalism in an unambiguous way. They have,
however, the disadvantage that they can be used for calculations, with the present-day
computing power, only up to four-body systems.

In this work, the Integrodifferential Equation Approach (IDEA) for few-body sys-
tems [14-18] is employed. In this method the A-body bound-state wave function is ex-
panded in Faddeev-type components (i.e. sum of pairwise components). A further expan-
sion in potential harmonics and projection on the rij space results in an integrodifferential
equation in two variables describing the bound state of systems with the number of par-
ticles A � 3. The IDEA for the three-body case and for S-wave projected potentials is
equivalent to the exact Faddeev equation. However, forA > 3 systems the IDEA becomes
approximate since it takes into account only two-body correlations. In the nuclear case
the method has been successfully applied in bound-state calculations and good results, for
systems with A � 16, were obtained [16-19]. The method, is computationally appealing
since an equation of the same form is employed for different number of particles.

It will, therefore, be of interest if these equations can be also successfully used to
study molecular systems with any number of particles. The main difference between the
nuclear and molecular systems lies in the nature and characteristics of the two-body force,
the latter having a hard core and long-range characteristics which make the many-body
calculations cumbersome. In this investigation, two semi-empirically constructed realistic
4He-4He interactions of Aziz and collaborators, namely the HFDHE2 potential [20] and
the newHFD-B potential [21], were used to test the method by studying the ground state
properties of systems with 3 � A � 5.

We used the Finite Element (FE) method [22] in the two-dimensional space, to calcu-
late the binding energies and the root mean square radii (r.m.s.) for the molecules and
the results are compared with those previously obtained via the aforementioned varia-
tional methods as well as with those obtained via the Faddeev-Noyes (FN) equations in
configuration space [13] and the Faddeev equation [11, 12]. Furthermore, we employed
the Extreme Adiabatic Approximation (EAA) [15, 16] in order to study its applicability
to these systems. The application of the EAA to many-body systems with such peculiar
forces, is not only interesting by itself, as it simplifies tremendously the numerical calcu-
lations, but also exhibits properties for the underlying interactions, e.g., via the study of
the eigenpotentials.

This paper is organised as follows. In sect. 2 we briefly describe the IDEA method.
In the same section a different form of it more suitable in molecular calculations is given
together with the adiabatic approximation. In sect. 3 we briefly describe the two potentials
used and present our main results. Our conclusions are drawn in sect. 4.

2. – The method

The bound state of an A-body system can be calculated using the IDEA [15]. Al-
though the formalism has been previously described in detail, we will briefly recall the
main formulae for convenience and in order to transform them into new Cartesian-type
coordinates.
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In this method theA-body bound-state wave function is expanded in components char-
acterizing the pairs,

	(r) =
X

i<j�A

 ij(r):(1)

They satisfy the Faddeev-type equation

(T �E) ij(r) = �V (rij)
X

k<l�A

 kl(r):(2)

Here r represents all the coordinates, r = (r1; r2; � � � ; rA) and rij = ri�rj , if ri is the coor-
dinate of particle i. The reason for adopting such an expansion is the assumption, that the
pairwise nature of the intermolecular force is dominant in the many-body environment.
The  ij(r) are assumed to be of the form

 ij(r) = H[Lm](r)F (rij ; �);(3)

where � is the hyperradius, � =
�
2=A

P
r2ij
�1=2

, and H[Lm](r) is a suitable harmonic poly-
nomial of minimal degree [Lm] [23]. For A-boson systems in a ground state [Lm] = 0 and
H[Lm](r) = 1. This is the case of the S-wave projected potentials considered here. The
IDEA is then defined via

(T �
A(A� 1)

2
V0(�)�E)F (rij ; �) = �[V (rij)� V0(�)]

X
k<l�A

F (rkl; �):(4)

The V0(�) is the hypercentral potential [15, 16] and is given by the average of the two-
body potential over the unit hypersphere, i.e. for � = 1. In the case of molecular forces
the V0(�) is highly repulsive causing failure of the method, and thus we set it equal to
zero. This amounts to the S-wave projected Integrodifferential Equation (SIDE) [15, 16].
In order to solve this equation, two further steps are required. In the first step we write

F (rij ; �) = P (zij ; �)=�
(D�1)=2;(5)

where zij = 2r2ij=�
2�1, rij = jri�rj j, andD = 3(A�1); in a second step we project eq. (4)

on the rij space to obtain, for spin-independent two-body potentials, an integrodifferential
equation given by

�
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�
P (z; �) = �V (rij)�(z; �);(6)

where L = (D � 3)=2. The weight function W (z) is given by

W (z) = (1� z)�(1 + z)�;(7)

with � = (D � 5)=2 and � = 1=2. The function �(z; �) results from the projection on the
rij space, �(z; �) =

P
k<`�Ah~rij jF (~rk`; �)i, and is given by

�(z; �) = P (z; �) +

Z
+1

�1

f(z; z0)P (z0; �)dz0:(8)
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The f(z; z0) is the so-called projection function given by

f(z; z0) =W (z0)
X
K

f2K � 1

hK
P�;�
K (z)P�;�

K (z0);(9)

P�;�
K (z) being the Jacobi polynomial and

f2K = 1 +
2(A� 2)P�;�

K (� 1

2
) + [(A� 2)(A� 3)=2]P�;�

K (�1)

P�;�
K (1)

:(10)

The hK is a normalization constant for the Jacobi polynomials,

hK =

Z
+1

�1

[P�;�
K (z)]2W (z)dz:(11)

The calculation of the projection function cannot in general be performed analytically,
except for bosons in S-states [15, 23]. It has the general structure

f(z; z0) = 2(A� 2)f(z; z0;�1=2) +
(A� 2)(A� 3)

2
f(z; z0;�1);(12)

where f(z; z0;�1=2) is the projection function for connected pairs such as (12); (13) and
f(z; z0;�1) the one for disconnected pairs such as (12); (34), which occur only for A � 4
[15, 23]. Further details concerning the derivation of these equations can be found in
refs. [15, 23].

In the nuclear case the above equations gave excellent results without major numerical
or computational difficulties. However, for the molecular case where there is a strong
repulsion in the interaction, amounting to a hard sphere, the coordinates � and z turned
out to be unsuitable especially for A > 3. Therefore, we transformed the SIDE equation
using the variables

x = �

r
1 + z

2
(13)

and

y = �

r
1� z

2
;(14)

which for A = 3 are identical to the usual Jacobi coordinates. For A > 3, y is the hy-
perradius with respect to all Jacobi coordinates except x. In these coordinates the SIDE
reads
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where

�(x; y) = xyP (x;
p
x2 + y2);(16)

� =
3A� 7

2
;(17)

and

� = �� 1 :(18)

This equation has a much simpler left-hand side as compared to the one for � and z co-
ordinates, but the integral on the right-hand side is not along a coordinate. For A = 3 it
is similar to the Faddeev-Noyes equation [24]. In general it has the advantage that the
choice of the mesh points which are needed to solve the equation is directly related to the
physical dimensions of the system.

It is customary to solve the above equations by employing piecewise polynomials in
both coordinates (�; z) (or, alternatively, in (x; y)). This method is quite accurate since
only numerical approximations are used. The EAA [15], however, can also be employed. In
this approach the orbital and the radial motion are decoupled, i.e. one assumes P (z; �) �
u(r) eP (z; r), where the component eP (z; �) satisfies the equation

�
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while the radial function u(�) satisfies

�h2

m

@2

@�2
u�(�) + [E �

L(L+ 1)

�2
� U�(�)]u�(�):(20)

U(�) is the so-called eigenpotential for the system.
Once the components P (zij ; �) are found, one can construct the full wave function by

using the relevant A-body Jacobi coordinates (see ref. [17] for more details).

3. – Results

The construction of an accurate 4He-4He potential is a long-standing problem in molec-
ular physics. As a consequence, there are several potentials, which can be employed in
many-body calculations. In this work two different atom-atom interactions were used.
These are:
a) The HFDHE2 potential.
Of all potentials, the empirically constructed HFDHE2 potential of Aziz et al. [20], was
considered in the past to be the most realistic one giving the best agreement with the
two-body measurements. In the many-body environment, where the molecular forces are
assumed to be acting in a pairwise manner, this potential predicts the condensed-phase
properties reasonably well [9]. It has the form

V (r) = "

�
A exp[��x]�

�
C6

x6
+
C8

x8
+
C10

x10

�
F (x)

�
;(21)
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Fig. 1. – The two realisticHFDHE2 andHFD-B and the Lennard-Jones 6-12 potentials; a) short-
range hard-core , b) intermediate and c) attractive region. The region around the minima of the
potentials is shown in the inset of c).
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TABLE I. – The He-He interactions HFD-B and HFDHE2 of Azizit et al.

Parameter HFD-B [21] HFDHE2 [20]

"(K) 10.948 10.8
rm (Å) 2.963 2.9673
A� 106 0.184 431 01 0.544 850 4
� 10.43329537 13.353 384
� �2.279 651 05 � � �

C6 1.367 452 14 1.377 324 12
C8 0.421 238 07 0.425 378 5
C10 0.174 733 18 0.178 100
D 1.482 6 1.241 314

where x = r=rm. The function F (x) is given by

F (r) =

8><
>:
exp

�
�
�D
x
� 1
��2

; if x � D ,

1; if x > D .

b) The HFD-B potential.
Since the introduction of the HFDHE2 potential, new virial coefficients experimental
data for 4He became available, new ab initio calculations of the dispersion coefficients
have appeared, and new measurements of transport properties have been done (see ref.
[21] and references therein). This necessitated the modification of the previous potential
to reproduce the latest data. The new semi-empirical potential is known as the HFD-B
potential and is given by

V (r) = "

�
A exp[��x+ �x2]�

�
C6

x6
+
C8

x8
+
C10

x10

�
F (x)

�
:(22)

The function F (x) has the same structure as in the HFDHE2 potential. The parameters
for these two potentials are given in table I. The potentials are plotted in fig. 1. In the same
figure the Lennard-Jones 6-12 (LJ) potential [25] is also plotted for comparison purposes.
The LJ potential is one of the earliest potentials used in 4He molecule studies [1,2]. It is in
many respects inferior to the realistic potentials of Aziz et al., and variational calculations
with this potential in polyatomic molecules were unsatisfactory [1, 2, 9]. In this figure
the three regions, short, medium, and attractive, are shown for comparison purposes.
The hard-core behaviour of the three potentials is clearly seen in fig. 1a). The LJ has
hard-core characteristics and an attractive well which differ considerably from the other
two. On the other hand, the two realistic forces are exhibit only small differences both
at short distances and in the attractive well region. Nevertheless, these small differences
are essential in reproducing the two-body data. It will be of interest to know how these
differences are manifested in polyatomic systems.

We use the above Aziz et al. potentials to calculate the binding energies, the mean-
square radii, the eigenpotentials and the Faddeev components for molecules with 3 �
A � 5. Two methods of solution of eq. (6) (and its equivalent equation (16)) are used. In
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Fig. 2. – The Faddeev-components for a) A = 3 , b) A = 4 and c) A = 5 resulting for the HFD-B
potential.

the first the FE method has been employed [22], while in the second B-splines together
with the Extreme Adiabatic Approximation are used [15].

In order to determine �(x; y) by the FE method, we expand it on a rectangular grid of
N�M intervals in x and y, using quintic Hermite splines [26], which guarantee continuity
of �(x; y) and its first and second derivatives with respect to x and y. Denoting the splines
in the x-coordinate by Xi(x); i = 1; 2; ; � � � ; 3M +1, and the splines in the y-coordinate by
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Fig. 3. – The Faddeev-components for a)A = 3 , b)A = 4 and c)A = 5 with the x and y coordinates
exchanged and the y range extended up to 40 Å.

Yi(y); i = 1; 2; ; � � � ; 3N + 1, the expansion reads

�(x; y) =

3M+1X
i=1

3N+1X
j=1

pijXi(x)Yj(y) :(23)

To determine the expansion coefficients we use the Galerkin method. This amounts to
the following: we use the above expansion in the SIDE equation and multiply by a func-
tion Q(x; y) satisfying the same boundary conditions as �, integrate over x and y and
require that the resulting expression holds for all Q(x; y) that are linear combinations
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Fig. 4. – The eigenpotentials resulting from the HFDHE2 potential for a) A = 3 , b) A = 4 and
c) A = 5.

of Xi(x)Yj(y). This leads to a generalized non-symmetric eigenvalue problem, which is
solved using the non-symmetric Lanzcos method [27]. In order to facilitate the conver-
gence we furthermore apply a spectral transformation.

To obtain the solution in the EAA, we use the B-splines as defined by Cox [28]. Once
more, the use of the Galerkin method reduces eq. (19) to an eigenvalue problem for each
� and thus the matrices are of much smaller size and easy to handle. The eigenpotential
U(�) is then used in eq. (20) to obtain the binding energy of the molecule.

The Faddeev components for the A=3, 4, and 5 systems are shown in fig. 2. It is seen
that the shape of all three components is similar. This demonstrates that as the number of
atoms in the molecule increases, the pairwise nature of the inter-molecular force remains
dominant. The x-range of the wave function, i.e. the range of the effective interaction, is
reduced. This is clearly visible in the figure where for A=3, fig. 2a), the wave function is
extended out to 15 Å, while for A=5, fig. 2c), the wave functions is confined in the region
of less than 10 Å.

The Faddeev components are shown with x and y exchanged in fig. 3. As mentioned
earlier, the y-coordinate is the hyperradius for the (A�1)-system. The hard-core repulsion
at short distances is shifted outwards and the Faddeev components are stretched out up
to about 40 Å. This reflects the growing of the spatial extension of the molecule as the
number of particles is increased.

In fig. 4 we present the eigenpotentials obtained in the EAA. In this figure the same
behaviour is exhibited, i.e. an increase of the distance where the hard-core appears and
an increase of the range of the effective force. It is noted here that the eigenpotentials go
asymptotically to one of the (A� 1)+ 1 scattering states with the depth of the asymptotic
tail corresponding to the bound state of the (A� 1)-molecule. However, to obtain reliable
numerical results is difficult, as one needs to describe the (A � 1)-bound state, which for
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TABLE II. – The binding-energy results (in K). The first line for each molecule corresponds to the
HFDHE2 and the second to HFD-B.

A Exact EAA Faddeev VMC GFMC

3 0.083 0.188 0.11 [12], 0.092 [11] 0.1173 [5]
0.096 0.211 0.096 [13] (a)

4 0.399 0.523 0.394 [11] 0.512 [5] 0.5332 [5]
0.431 0.570

5 0.926 1.329
0.990 1.388

(a) l = 0; � = 0 partial wave.

large � is concentrated near z = �1. The non-monotonous slope of the eigenpotential for
A = 3 around 4 Å should be noted. This behaviour is due to the crossing of the adiabatic
potential curves.

The binding energy results are given in table II. It is seen that using the FE method
we obtain results for the HFDHE2 potential and for the A = 3 case, which are lower
than those obtained via the Faddeev equations [11, 12] and the GFMC method [5]. They
are, however, in agreement with the l = 0, � = 0 result of the Faddeev-Noyes-calculation
of Carbonell et al. [13]. The same is true for the A=4 case where the results for the
HFDHE2 potential are about 20% less than those of the VMC and GFMC methods [5],
but in good agreement with the results of ref. [11]. To the best of our knowledge, there
are no results available with either of the Aziz potentials for the A = 5 case and therefore
no comparison can be made.

The root mean square (r.m.s.) radii results are presented in table III together with the
results of ref. [5]. It is seen that our results are up to 20% higher than the GFMC results,
indicating that the bound-state wave function obtained by SIDE has a larger spatial range
which reflects the underbinding.

The EAA results are rather unsatisfactory. Better results could have been obtained
using the Uncoupled Adiabatic Approximation (UAA) [15]. However, crossing of the adi-
abatic potential curves made the resulting improvement unstable and therefore the EAA
can only be used for interpretation purposes.

The differences in the binding energies between the two potentials are, depending on
A, between 7% and 16%. Given the small differences between the two potentials, shown

TABLE III. – Same as in table II for the root mean-square radii results (in Å).

A Exact GFMC

3 7.59 5.98 ( [5])
7.29

4 6.11 5.16 ( [5])
6.02

5 5.62
5.55
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in fig. 1, this is a surprising result which explicitly exhibits how small differences in the
two-body forces are enhanced in the many-body environment.

4. – Conclusions

We started our investigation using the basic assumption that the dominant interac-
tion within the molecule is the two-body 4He-4He force. To obtain a stable solution for
molecules with A > 3, we then transformed the original SIDE equation in terms of a new
set of coordinates of Cartesian type which are more suitable for molecular calculations
and physical interpretation.

The binding energies obtained by solving this equation via the FE method are consid-
erably smaller than the exact GFMC results, while the r.m.s.-radii are larger than those
obtained by the Monte Carlo methods. There are mainly two sources for such a discrep-
ancy. The first is due to the omission of the higher-order partial waves. These are expected
to be important due to the effective hard-core nature of the interatomic force, which in the
semi-classical picture corresponds to large impact parameters and large relative angular
momenta. In cases where the potential is not as repulsive as the Aziz et al. potentials, the
higher partial wave effects can be included, to a good approximation, via the hypercentral
potential, i.e. via the IDEA method [15, 16]. In the present case, however, this is not pos-
sible, since the hypercentral potential is highly repulsive resulting in failure of the IDEA.
The second reason is the importance of the higher-order correlations which can only be
included variationally, using for example a Jastrow-type correlation function. It is, there-
fore, of utmost importance that the integrodifferential equations used in this investigation
be modified to take higher partial waves and many-body correlations into account.

A surprising result of this investigation is the differences found between the two real-
istic forces, namely the HFDHE2 and the HFD-B potential. Although the differences
between the two potential are rather small (see fig. 1), they, nevertheless, gave binding
energy results which differ by up to 16%. This indicates that in future calculations the
HFD-B potential should be given a preference over the HFDHE2, which was employed
in the Monte-Carlo calculations.

For A > 5 molecules the results were not stable and the SIDE should be modified to
handle them. Such a modification of the equations was carried out and calculations are in
process.
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