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Abstract: Correlated basis function theory and Fermi hypernetted chain theory are extended to treat
finite Fermi systems . In this first paper, the effects of the scalar nucleon-nucleon correlations are
investigated by studying some model N = Z nuclei . Results of calculations performed using central
nucleon-nucleon potentials, without tensor components, are presented and are compared with
results from other theories .

1 . Introduction
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In recent years much progress has been made in the development of the non-
relativistic nuclear many-body theory aiming to describe the properties of all the
nuclear systems, from deuterons to nuclear matter, by means of the hamiltonian

where the two-body potential U;i is required to fit the deuteron and the nucleon-
nucleon scattering data, and the three-body potential V;;k is needed to have a good
description of both light nuclei and nuclear-matter properties .
The two- and three-nucleon potentials, v;; and V;;k , are unambiguously determined

at large interparticle distances by meson exchange processes . At intermediate and
short distances semi-microscopic or purely phenomenological descriptions are
usually adopted . Several realistic potentials, satisfying the above requirements, are
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now widely used in modern nuclear many-body theories and all lead to comparable
results ' ) .

Light nuclei have been successfully described within different approaches.
Faddeev`) and Green function Monte Carlo (GFMC) 3 ) theories solve exactly the
many-body Schr6dinger equation in the A = 3, 4 cases for several nuclear potentials.

Variational methods 4,5 ), are also very successful in describing the ground-state
properties of light nuclei and moreover, they allow for accurate studies of the
dynamical properties of these systems .

For heavier systems, no exact method has been so far able to deal with realistic
interactions . GFMC has been used in `O but only with a simplified interaction') .

Microscopic calculations, based on the hamiltonian (1 .1), have been performed
for studying the equation of state of the infinite systems of nucleons, such as neutron
and nuclear matter, by using standard perturbation theory') or correlated basis
function (C

	

F) theory x,9 ) .
The development of the CI$F theory in the last decade, has allowed for microscopic

and reliable evaluations of the dynamical properties, such as momentum distribution
and electromagnetic responses, of both light nuclei and nuclear matter 4,9) .

The CI$F theory is based on a set of correlated A-body wave functions,

W�(1,2, . . .,A)=F(1,2, . . .,A)I)� (1,2, . . .,A), (1 .2)

where O � (l, 2, . . ., A) is the generic mean-field state (a S(ater determinant of plane
waves in nuclear matter), F(1, 2, . . ., A) is an A-body correlation operator acting
on 0� . A correlation operator, which has been found to properly take into account
the correlations induced by the nuclear hamiltonian, has the following form :

F(l, . . . , A) = 11 f(ri) H fst3(hj))

	

(1.3)

1 n the above equation f(r;i ) is a scalar two-body correlation function depending
ore the interparticle distance r;i only (Jastrow factor) and 9 is the symmetrizer of
the product of the state-dependent correlation factors fsj,(i, j) given by

.Î(r,i)AD(i,j) =I+

	

900(rij)0(" )(ij) .
h

We have for the scalar component 9`" _ "(r;i) = f(r,i) -1 . The operators O`"'(i,j )
include the central components (n = 1, 4), (1, cr i - or_i, -r i - Ti, ur, - Or.jTj ' Ti), both the
isoscalar and isovector tensor (n = 5, 6) and the spin-orbit (n = 7, 8) components.
The functions f(r) and 9'"'(r) depend upon several variational parameters fixed
by minimizing the ground-state expectation value of the hamiltonian, (H). For A , 6
nuclei, (H) and other quantities of interest may be calculated using Monte Carlo
techniques to sample the necessary many-body integrals . This is not feasible in
larger nuclei anj in nuclear matter . In this last system, Fermi hypernetted chain
(FHNC) theory has been successfully applied '°,") .
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Recently Pieper et al. ' 2 ) have performed variational calculations of the binding
energy of '60 with the trial wave functions (1 .3) using Monte Carlo techniques . In
this calculation, the scalar part of the correlation has been exactly treated, whereas
the contribution of the operational components I n > 1) has been approximated
considering up to four-body cluster terms. Guardiola et al. ") have used low-order
cluster expansions to study N = Z nuclei, up to 4°Ca, with simple central interactions
and Jastrow correlation . Boscd and Guardiola '4) have applied similar techniques
to light nuclei (A --< 16) using realistic interactions and state-dependent correlations .

Applying finite-order cluster-expansion techniques becomes more and more
difficult and unreliable as A increases, and it is a prohibitive task for large nuclei
such as 203Pb. However, microscopic calculations of nuclei in this mass region are
indeed most needed to have a clear understanding of the interplay between surface,
shell erects and correlation erects . To this aim, the extension and the application
of the FHNC theory to finite nuclei appears particularly appealing since this
approach could provide the tool to overcome the technical and numerical difficulties
of the variational Monte Carlo (VMC) and of the finite cluster expansion techniques .

Fantoni and Rosati ' 5 ) originally generalized the FHNC theory with simple
Jastrow correlation to treat finite Bose and Fermi systems. Later, Krotscheck et
al. '6) implemented and applied this theory to study surface properties of quantum
liquids .

From the experience developed in nuclear-matter calculations, we know that the
operatorial components of 9(ij) are smaller than the scalar ones, and their contribu-
tion can be treated, with a good accuracy, in the single operator chain (SOC)
approximation '°) . However, it should be stressed that the many-body contributions
from the scalar components of the correlation function cannot be approximated
with partial cluster summations, mainly when searching for the energy minimum .
The goal of this first paper is to ascertain the degree of real applicability and

accuracy of the FHNC method for finite Fermi systems in dealing with central
correlations . We present a detailed variational calculation of the binding energies
of various N = Z nuclei, for the case of state-independent Jastrow correlation
operators and semi-realistic nucleon-nucleon (NN) central interactions . The distri-
bution functions entering the calculations are evaluated by using the FHNC treat-
ment of ref. 'S) . A similar calculation was done by Krotscheck ") in an A= 16
system for the Malfliet-Tjon potential, with a simplified version of the FHNC
equations .
The extension of the theory to state-dependent correlation operators, of the type

used in nuclear-matter calculations, and to N 0 Z nuclei will be given in a forth-
coming paper.
We find that FHNC estimates agree fairly well with the available Monte Carlo

results .
The plan of the paper is the following: in sect . Z we present some technical details

of the FHNC evaluation of the one-body density, of the two-body distribution



442

	

G. Co' et A / Doubly closed shell nuclei (1)

function and of (); the results obtained for 4He, 160, 4Ta are presented and
discussed in sect . 3, and finally, in sect . 4, we present our conclusions .

where we have defined

where

and

TF

, M -
K
4m

h2

4m

2. F C metho

In this work we consider a variational wave function of the ground state of an
nucleus of the following form:

W0(1,2, . . ., A)=(1,2,...,A),,(1,2,...,A), (2.1)
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, ,, = I and therefore 9"'

	

0. Thef(rij ) . This is equivalent to taketakef.s
mean-field ground-state wave function OJI, 2, . . .,A) is taken to be the Slater
determinant of the single-particle wave function 0,ji),

JI, . . ., A) =

	

- - -) OA (A)),

	

(21)

where -4 is the antisymmetrization operator and 0,ji) are eigenfunction~ of the
single-particle hamiltonian

h

	

V"+ U(r).

	

(23)2m r

The more general case, with state-dependent correlations and N 0 Z will be
discussed in following papers .
The kinetic-energy expectation value is given by

h 2

	

2(T)

	

0*G

	

GO()
2m

and jdr indicates the integration over the spatial coordinates as well as the sum
over the spin and isospin indices . We calculate (T) by using the Jackson-Feenberg
transformation to eliminate terms of the form (VjF)(VjO()) involving three-body
operators expectation values ") .
The resulting expression can be written as

(T~ = TJF = TF+ Tt)-)

	

(2.6)

'(F E (,V2 F) -1

	

)2) 00~ ,(ViF

(2A)

(15)

(2.7)

(2 .8)
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The two-body potential expectation value is given by

The tensor and the spin-orbit components ofthe two-body potential give vanishing
contribution for spin-isospin saturated systems when pure Jastrow correlations are
used . Therefore, in this first analysis, it is more consistent to consider nucleon-
nucleon interactions of a central type (v4 interaction), namely

ing an expansion in power series of the function

2 .1 . DISTRIBUTION FUNCTIONS

(v) = l ~k0

	

v(ij)

	

o

	

.	(2 .9)

v(iJ)-
v(n )(rtJ)®(n )li,j) .

	

2.1®
n = 1,4

The FHNC theory allows to calculate the expectation values (2.7)-(2.9) perform-

h (r) =f2(r) -1 .

	

(2.11)

The product form of the correlation in eq. (2 .1) generates cluster terms character-
ized by both the number of particles and the number of the dynamical correlations
h (ri;) linking the particles . In addition, each n-body cluster may contain statistical
correlations generated by the Pauli principle .

It is worth noting that both the numerator and the denumerator of (X) contain
a finite number of cluster diagrams . By developing this ratio in powers of h, we get
an infinite series of cluster terms 15 ) whose properties will be summarized in the
following.
The FHNC theory sums to all orders the various cluster terms by using the

integral-equation method .

The key quantities entering the calculation of (H) =(W HVI� ) are the one- and
two-body distribution functions

P1(r1)=P(r1) =`
~s(r1-r1)

u}~

	

(2.l2)

In fact the r.h.s . of eqs . (2.7)-(2.9) can always be expressed in terms of the FHNC
quantities entering the evaluation of the distrib - ition functions .
We will now outline the procedure to calculate the distribution functions within

the FHNC theory. A more complete description of the FHNC theory can be found
in ref. 15 ) .
The clusters contributing to P2n'(r1, r2 ) are most conveniently represented by

diagrams, hereafter denoted as two-point renormalized FHNC diagrams (RF NC),

(2.13)
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in order to distinguish them from the standard FI-I NC diagrams encountered in the
case of translationally invariant many-body systerns, as nuclear matter or liquid
helium . A fevv examples of RF

	

NC diagrams are given in fig. 1 .
The

	

F

	

C diagrams, besides the two external points 1 and 2, representing the
arguments of p (, "(r, ,

	

may have any number of internal points (i 0 1, 2), irrespec-
tive of the mass number

	

of the considered nucleus . The label i stands for both
the coordinate ri and the spin-isospin assignments

	

of the particle i. For
each internal point i, the integration over ri and the summation over spin-isospin
states are implied.
The points are joined either by dynamical correlations (h-bonds), which are

graphically represented by a dashed line, or by exchange links (e-bonds), drawn as
oriented solid lines and representing the uncorrelated density matrix

X*(i)X*(i)X,,(j)X, (j)P , ,(r� ~;),	(2 .l4)
(r' 14

	

%%'1

where the sum on a is extended to the AA states of the Fermi sea of the A-nucleus
considered.
The diagonal part of eq. (2.14) is

(2.15)

and gives the uncorrelated one-body distribution function . It should be graphically

s

e f
l . A few examples of cluster diagrams contributing to the distribution funct--_é -~ A dashed line

stands for the dynamical correlation h (i,j) and an oriented solid line for the statistical correlation po(i,j ) .
A black dot associated with a point, implies integration over its coordinates .
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represented by a one-point exchange loop but, for the sake of simplicity, we have
omitted it in fig . 1 .

If the 11's'l-s.) representation is used for the single-particle orbitals, the exchange
function p; .,, is not only diagonal in the spin variables but also independent on
them. The isospin dependence comes on account of the fact that different single-
particle orbitals for neutrons or protons might be allowed for . We consider N = Z
and assume the neutrons and protons single-particle states being the same, so the
exchange function is spin-isospin independen, . Its explicit expression is given in
appendix B.
The RFHNC diagrams are constructed by following the rules given below :
(a) there are no isolated points : the external points 1 and 2 must be reached by

at least one bond and the internal points i 0 1, 2 by at least two bonds;
(b) the e-bonds are arranged in closed loops with no common points, each

carrying a factor 2(-1)" - ', n being the number of points in the loop . The only
exception comes from the two-point loop, carrying a factor (--1), instead of (-2) ;

(c) as a result of rule (b), a given point i can be reached by at most two e-bonds .
On the contrary, there is no limitation on the number of h-bonds reaching a given
point . Any pair of points i and j can be joined by at most one h-bond;

(d) each point i carries a vertex correction function e(r; ) . There are three types
of points and correspondingly three different vertex corrections :

(i) type d points are reached by dynamical correlations only and are vertex
corrected by ed(ri ), which coincides with the one-body distribution function p(r, ) ;

(ii) type e points are reached by an exchange loop and, if they are internal points,
by at least one h-bond. They are vertex corrected by ej r, ) ;

(iii) type p points belong to an exchange (or permutation) loop and are not
reached by any h-bond. Their vertex correction is denoted with ~.,(r;) and it is given
by

Ori)=Ct(r,)-I ,

	

(2.l6)

where the factor 1 is subtracted because diagrams where the point i is not reached
by any h-bond are strictly prohibited. In fact, the subtraction of the factor 1 from
ee(ri) implies that ep(ri) vanishes in the limit of the uncorrelated wave function
[h (r) = 0] . The external points can be either of type d or of type e ;

(e) the only pre-factor of a RFHNC diagram is the so-called symmetry factor
1/ 31, where 1,10 is the number of permutations of the internal points leaving unchanged
the corresponding cluster terra ;

(f) the RFHNC diagrams must be irreducible .
The diagrams are grouped according to the exchange character of the external

points : dd, de, ed and ee. There are also c-c diagram3 i.e . diagrams where
each external point is reached by a single exchange line . A further classification of
the RFHNC diagrams, which will be used throughout the paper, distinguishes the
diagrams in nodal (N,xf3 ), composite (X,,t,) and elementary (E,, 13 ), see appendix A.
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The FHNC theory enables one to evaluate and sum, up to infinite order, the
diagrams belonging to the various groups, by solving a set of coupled integral
equations. These equations are reported in appendix A.
The one-body distribution function, and the vertex correction functions have the

following structure,

and

where the FHNC quantities Ud(r,) and Ujrj ) are the sums of the one-point RFHNC
diagrams in which the external point I is of type d or e, respectively . Notice that,
on account of rule (b), if a given point i of a diagram is of type e, then its vertex
correction &(rj ) must include one-point diagrams in which the external point is of
type d. There is no such a limitation for "q), which in fact coincides with the full
one-body distribution function . For instance the diagram If of fig . I is included in
Oq) and the functions associated with the two different branches of the diagrams
(1- i or 11 -j and I - k1) are contained in Ud(r,) .

For the two-body distribution functions we find the expression

and

2.2. ENERGY EXPECTATION VALUE
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p:( ri ) E-: ed(r i )

	

po (ri ) + Ujr,.)] exp [ Ud(r l )],

	

(117)

~Jri ) = exp [ Q(rl )] .)	(118)

P2

	

f-2 ) == PI (rl)PI(r2)&d(ri a r2)+ A

	

r2)+P(r,)PI(r2)&d(ri, 0)
+ ,exchAr2lgn A 1 0 4

	

(r, , r_,1

	

ce

	

ce

	

(119)

p;n
01r i , P =: a,p(p)&(%)g!

e
eh( ri ~ 0) ~

Tî_ = -

	

h

	

d3ri d.3
r.)

p(l)(
r

1 ,
r~,) 1 [fl ri 2)] ,4m 1

	

-

	

2

(120)

with a,, = 3, 3, 9 for n = 2, 3, 4, respectively . Only the diagrams of the exchange type,
characterized by the two external points I and 2 belonging to the same exchange
loop, as ir. diagram I d, contribute to p"'

	

q) in a spin-isospin saturated system2
and for state-independent correlations .

The partial distribution functions M i gee,

	

and,sum up the RFHNC diagrams
of the type specified by the subscripts (see diagrams I a c M, I b E ', I c and I d E
,). Their expressions are given in appendix A together with the expressions of Ud
and Q .

The evaluation of the energy mean value leads to the following expression for TG :



where

The cluster expansion of To [eq . (2.8)] is obtained by following the same procedure
used for the corresponding kinetic-energy term of nuclear matter Is) . Three different
types of cluster terms must be distinguished, leading to

where the evaluation of the generic term T~' requires the use of n-body distribution
functions .
The term T,(j" sums the cluster diagrams in which the external point 1 [on which
is acting and associated with the dummy label i in eq . (2.8)] is not involved in

any exchange . The resulting expression is

where PTI is defined as

where
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1[f(rl2)] = f2 1

	

f(r12)J '(rl2)+2f(rl2)f ,(r12) -f P2(r12)

	

(2.22)(r12)

	

r12

T,p =T '+T~'+TC',

	

(2.23)

~2
Tß) - -4m

	

d3r1 PT1(rl) e(rl)f

	

,

	

(2.24)

PTI(rl) = l ~a(rl)~I~Na(rl)- Y_ V 14~a(rl)

When the external point 1 is involved in an exchange loop, it is necessary to
distinguish the case of the two-point from the n(>2)-point loop, leading to Td,
and to T" ) , respectively . T(' is given by

2
T(2 ) - t,

	

f d'rl d3r2 ee(rl)PT2(rl , r2)f[gdd(rl, r2) - 1 ]ee(r2)+ep(r2)I ,

	

(2.2b)4m

PT2(rl, r2) = PO(rl, r2)v?Po(rl, r2) -

	

1Pôlr1, r2) ' v1P'1(rl, r2) .

PT3(rl, r2) =1 EX"(2)X"(2)ç2Po(rl, r2)X,(1)X,(1)
v .�

(2.25)

(2.27)

The evaluation of T(' requires, in principle, the knowledge of a three-particle
distribution function . However, as in the case of nuclear matter, the leading term
of T(' in eq. (2.8) is 0*® ;0, leading to two-point RFHNC diagrams, in which the
two-body exchange link

(2.28)

closes the appropriate exchange loops summed by the 1~HNC functions of the cc
type (see appendix A). The final expression for T(3) is

T( ) = T`3.2) + -1-0 .3)

	

(2.29)
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where

v being the degeneracy number and N`,, Nc~ °3 («,13 = x, p) and E« are the sums of
the cc nodal and elementary diagrams described in appendix A.
Te term

	

;O* -

	

;O in eq. (?.8) leads to T(,;;'; ', containing the three-body operator
,p(,(r,, r3)

	

, po(rl, r2). This term has been verified to be very small in nuclear
matter') and therefore is neglected in the present calculation .
The center-of-mass kinetic energy, T, . �, ., given by

X (ee(r2)i[gdd(rl9 r2) - 11Ncc(rl9 r2)+ Ncc(rl, r2)+ Ncc(rl, r2)I

+ep(rl)[

	

cc(rl, r2)+ NPc(rl, r2)]

+ee(r2)gdd(rl9 r2)Ecc(rl9 r2)I 9

	

(2.30)

G. Co' et al. / Doubly closed shell nuclei (1)

must be subtracted from (T+ V) to get the energy mean value (E) = (H) - Tc.m . .

T` .� ,, is written as

fi
Tc.n, . = -4mA

~
_I

	

d3r, PT1(rl) -
_1

	

d3rl d3r-' PT4(rl , r2) ) ,

	

(2 .32)

where the density PT4(rl, r2) is defined as

,h 2

	

1P

	

2

Tc.nn . - -2i~lA

	

Î

	

i

	

W()

	

9

PT4(rl, r2~- _p (ri, r2)

	

1 '

	

2Po(rl, r2)+

	

1Po(rl, r2) -

	

2po(rl, r2) .

	

(2.33)

The explicit expressions for P, PT1 , . . . . PT4 are given in appendix 13 . In the case
of an harmonic-oscillator single-particle potential U with parameter w, eq . (2.33)
gives the well-known result T,., . = 4hw. The final expression for (E) is

(E)= Ti-- + Tj, - Tc . ., . +? 1

	

d.3 ri d3 r2( p21 ) (rl . r2)v(l'(r12)

4
v

	

vlnl(rl,
r,)p ;nl(r1, r2)

n=2

3. esults

(2.31)

(2.34)

The best variational choices for both f(r) and the single-particle wave functions
O,g (r,,) are obtained by solving the Euler equations [S(H)/8f(r)]=0 and
[S( )/ S0,,, (r Y )] = 0 [ref. l ')] . An approximated solution of these equations can be
numerically obtained in the case of pure Jastrow correlations l '), but it becomes a
prohibitive task when realistic nucleon-nucleon interactions and correlations are
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considered . An alternative procedure consists in parametrizing the wave functions
and minimizing (H) with respect to the variational parameters .
We have followed the latter procedure and we have generated the single-particle

wave functions 0,x with two different mean fields : the harmonic-oscillator well
characterized by oscillator length b = b/ mca, and a Woods-Saxon well (Uws) of
the form

where UO , R, a are the variational parameters for the Woods-Saxon well and b for
the harmonic oscillator.
We have used correlation functions f(r) of the simple gaussian form

orfF� I (r) determined by minimizing the lowest-order cluster expansion (H2) of (H),
given by

where

h2
(H2)

	

4m

	

d3r1 Pr1(rl)

+ I d3 rl d3r2 fQ(r1, r2) - P(r, r2)[f(rl2)® 2f(rl2) -f '2(r12) ]} .

	

(3.3)

b`Q(rl , r2) =

	

Pr2(rl , r2)[f2(rl2) - 1]4m

Uws(r) =

	

Uo

	

(3.1)1+exp[(r-R)/a]

f(.;(r) =1 + a exp(-ßr2) ,

	

(3.2)

+i[Po(r1)Po(r2) - Pô(rl, r2)]f2(rl2)V(1 )
(rI2)

I
. .ri

	

(2 ) +3v'31(r

	

+9v(4 ) r ,

	

2 r

	

r2

	

' r

	

(3.4)2

	

(r12)

	

12)

	

( 1_)]P11( 1

	

)f ( 12))

	

)

and

2
R(rl, r2)=

b

	

[Po(rl)Po(r2)-PPi(rl, r,)]
4m

under the constraints

f(r ;l)=1, and f'(r :d)=0,

with the healing distance d being a variational parameter .
The minimization is achieved by solving the following Euler-Lagrange equation :

u"(r) - V(r)u(r) = Au(r) ,

449

(3.5)

(3 .6)
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where we have define

with the constraints

e
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u(r) = rvlP=(r) f(r) ,

	

(3.7)

P(r) i 4P(r)

u(d)=d (d),

The quantities P and

	

are obtained by integrating P(r,, r2) and Q(rl, r2 ) over
r, and r2 and keeping the interpar ticle distance r12 fixed, namely

1 x
(r) = f

	

r, dri
r12 JO

2[P(d)+dfi'(d)]
u'(d )

	

2

jr12 - rlj

r2 dr2X(r, , r-,, r12) .

(3.9)

(3 .10)

where X can e either P or Q.
n this way we obtain a parametrization of the correlation function f(r) very
cient i reproducing the short-range behavior of the optimalf(r). Moreover, this

scheme is readily generalizable to the case of state-dependent correlations and to
a mean-field potential which includes isospin and spin-orbit dependence.

In order to test the accuracy of the F1-INC scheme in treating the strong nucleon-
nucleon correlations, we have considered nucleon-nucleon central potentials which
are strongly repulsive at short distances and have been used in previous calculations
in complex nuclei .
The first interaction we have used is the spin-isospin independent Malfliet-Tjon

potential 19 ) (L'M-r), which has been used in variational Monte Carlo (VMC), Green
function onte Carlo (GFMC) ') and FI-INC/c 17 ) calculations of 160. This interac-
tion does not saturate nuclear matter and leads to unphysically dense nuclei and
has been considered only for the sake of comparison with previous calculations .
The second interaction we have used is the Brink-Boeker BI central potential

(VB, ) 20). It is an effective nucleon-nucleon interaction, since it does not fit the
two-body data, and it is determined in such a way to reproduce both nuclear matter
and 4 e binding energies in Hartree-Fuck theory . It has been used in VMC
calculations of '6

	

[refs. -1,22)] .
e have also considered the semi-realistic central interaction S3 by Afnan and

Tang 23) (vs3)- It reproduces the s-wave two-body scattering data up to roughly
60

	

eV; it provides reasonable value of the binding energies and of the radii of the
3,

	

nuclei and an equation of state of nuclear matter which is not too different
from those obtained with realistic two-body interactions . Since the original S3
potential is only defined for two-particle states of even parity, analogously to what
has been done in ref. 13), we supplemented the potential in the odd channels with
a repulsive interaction given by the repulsive term of the even channels .
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In addition to the binding energies and the one-body density p,(r), particular
attention has been also devoted to the normalization sum rules:

and

1S2 -_
A(A--1)

S, - 1

	

d3rpl(r) =1 ,

	

(3-1 la)A f
d3 ri d3r2

Pi ' ) (rl,

	

(3.1 lb)

SCI. =

	

1

	

d3ri d3 r2 P?" -2,3)(ri, r2) = - 1 ,3A

	

(3.11c)

which provide useful information on the accuracy of the approximations used to
solve the FHNC equations . The sum rule (3.llc) holds only in a spin-isospin
saturated system .
The sums, at all orders, of the nodal N O and composite X,,ß diagrams (see

appendix A) can be expressed in a closed form through the FHNC equations, once
the sum of the elementary diagrams Eaß is given. Unfortunately, no exact method
to evaluate the elementary contribution has been devised so far, so one has to use
approximations to estimate E,,,, .
The simplest approximation consists in setting E,,ß = 0 (FHNC/0 approximation) .

This is the approximation used in most of the calculations of the equations of state
of nuclear and neutron matter ") . These studies indicate that the elementary diagrams
give very little contribution in the case of translationahy invariant nuclear systems,
when realistic nucleon--nucleon interactions are used .
A better level of approximations is obtained by including the most important

elementary diagrams . The well-known FHNC/4 approximation includes only the
lowest-order elementary diagrams E,ß/4, i.e . those originated by four particle
clusters (see fig . ld) .
We tested the validity of the FHNC/0 approximation comparing our results of

the ground-state properties of an '60 nucleus interacting via the Malfliet-Tjon
potential with the VMC calculations of ref. 6) . The calculation has been performed
with the same single-particle wave functions of ref. 6) generated by a Woods-Saxon
potential with parameters Uo = -207 MeV, a = 0.5 fm and R =1 fm. We used the
correlation function fE�,(r), solution of eq. (3.6) with the same value of the healing
distance (d = 2 fm), used in ref. 6) . We obtained for the binding energy the value
(H)FHNCio= -987 MeV, to be compared with the VMC result (H)vmc = -10241
5 MeV. Also the results obtained for the sum rules give us confidence about the
validity of FHNC/0. The sum rules S, and S2 are satisfied within less than 1%,
whereas S? = -1 .030 .
A calculation of the ground-state properties of the '60 nucleus interacting with

a Malfliet-Tjon potential within the framework of the FHNC/c approximation has
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been done by Krotscheck "), who uses a correlation function obtained by solving
(

	

)FHNC/c ./ Sf(r) = 0, and a set of Woods-Saxon parameters (Uo= -310 MeV,
ca = 0.6 fm, and

	

=1.86 fm) reproducing the r.m.s . radius of the GFMC calculation
of ref. 6) . With the same set of parameters, and using fE� 1 (r) with d = 2 fm, we
obtained for the binding energy of 16® the value of (H)FHNC/o = -1152

	

eV to be
compared

	

with

	

(

	

)ref. � , = -1055

	

eV.

	

A

	

marginally

	

better

	

energy

	

((H) =
-1059 MeV) has been obtained in ref. ") employing the single-particle wave func-
tions coming from 8(H)FHNC/ ./S0a(r) =0. The GFMC result of ref. 6) is (H)GFMC=
-1194f20

	

eV. The one-body distribution function p, (r) we have obtained is
practically indistinguishable from that of ref. ").
The results presented above indicate that the FHNC/0 approximation is very

accurate. In fact, from the comparison of the FHNC/0 with the Monte Carlo results
it comes out that the contribution of the elementary diagrams is small, especially
in view of the fact that in the considered model nucleus the central density is
u p ysically high [ p,(0) = 1 .21 fm -;] and the importance of the elementary diagrams
is known to increase rapidly with the density of the system .
On the other hand, one has to be careful in drawing this conclusion, because the

purely scalar character of the alfliet-Tjon potential may mask the erect of the
elementary diagrams of the exchange type . In fact, sum rule (3.11c) is not satisfied
with the same level of accuracy as the others andthis is a signature of the importance
of these diagrams .
The explicit FHNC expression of p2"') in eq . (3.11 c) reads

G. Co' et al. / Doubly closed shell nuclei (I)

p(n-_1)
( r1 9 r2) = an&( r1) &( r2)9dd(r1 -) r2)

X - v[~cc(rl r2)+Ecc(rl, r2)
-

po(=~1 r2)]2+Eééch(ri, r2)I

Eéc`h being the sum of the ee elementary diagrams whose external points (1, 2)
belong to the same exchange loop . It can be shown that, performing the expansion
of S,T in power series of the function h (eq . 2.11), the sum rule (3.11c) is fulfilled
at each order in h. The FHNC/ approximation cannot satisfy this sum rule since
the elementary diagrams are disregarded, and, already at the first order in h, the
diagram E ( ' ) (shown in fig. 1d), belonging to Ecech, appears. We have explicitly
calculated the correction to the sure rule due to this diagram and we found the
value S,T = -0.998, largely improved with respect to the FHNC/0 value.
The validity of the FHNC/

	

approximation and the role of the elementary
diagrams is better studied with potentials having spin and isospin dependence . The
Majorana term of the potential is particularly sensitive to the exchange part of the
distribution function p2(rl, r2 ). For central v4 potentials, the expectation value of
the Majorana part is given by

(3 .12)

(VM) = 1

	

d;ri d;r, v(4)(r12)

	

E

	

p(2 n)(rl

	

r» -j _	(3 .13)
n=-1
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The B1 potential is a Wigner-Majorana admixture with a large Majorana part .
Using this potential, we have calculated the binding energies of 4He, '60 and 4°Ca
with harmonic-oscillator single-particle wave functions and with correlation func-
tions of both gaussian and fE.,(r) forms. In table 1 we compare our results obtained
with the gaussian correlation function fo(r) to the VMC results available for 4He
and 160, and, in the case of 40Ca, to the results of the low-order cluster expansion
FART/Ill'3 ) . The first row for each nucleus lists the FHNC/0 results . The second
row reports the results obtained in FHNC-1 approximation, and the third row gives
the VMC or the FAHT/III results .
The FHNC-1 approximation consists in adding to vM the dressed E"" diagram

obtained from the diagram of fig . Id by inserting gdd in each exchange line and
substituting h with gdd -1 between the internal points (i, j) . The contribution of
E" ) to the vW term and to the kinetic energy has been found to be negligible .

In 4He and 160 the expectation values of both Wigner potential and kinetic energy
are in good agreement with the VMC results and the sum rules S, and S2 are very
well satisfied . This makes us confident that the FHNC/0 treatment of the Jastrow
correlations is rather accurate . However, for both S,r and v M a more accurate
treatment of the statistical correlations is needed. The inclusion of E"' brings the
FHNC estimates very close to the VMC results, and S,r is satisfied within less than
1%.
The result displayed in fig. 2 for the one-body density of ' S0 shows the good

agreement with the VMC calculation of ref. 22 ) . In the same figure we present also
the uncorrelated density po(r) to stress the effect of the short-range correlations .

TABLE 1

Ground-state expectation values for 4He,' 60 and 40Ca nuclei for the 131 potential, with harmonic-
oscillator single-particle wave functions and gaussian correlations fa . The parameters are : a = -0.48
(4He), -0.51 ('60), -0.53 (4°Ca); 16(fm-2 ) = 1.56 (4tie), 1.52 (' 60), 1.60 ( 4°Ca) ; b(fm) =1 .231 (4He),
1 .543 ('60), 1 .667 (4°Ca) . We list the expectation values of the Majorana and Wigner ((v,) and (vw))
potentials, of the kinetic energy ((T)), of the center-of-mass contribution T, .,,, ., and of the energy ((E)) .
All the energies are expressed in MeV. The VMC results are from ref. 2') (the errors are -- t0.2 MeV);

the FAHT/III results are from ref. '3)

Nucleus Theory (VM) (vw) (T) T. .. . (E)

4He FHNC/0 -132.5 24.5 83.9 20.5 -44.5
FHNC-1 -125.6 -37.7
VMC -123 .8 24.8 83.0 -36.4

''AO FHNC/0 -421 .6 -63.3 329 .8 13 .1 -168.2
FHNC-1 -403.8 -150.4
VMC -402.6 -62.3 327 .1 -150.9

40Ca FHNC/0 -1084 -387 964 11 -518
FHNC-1 -1035 -471
FAHT/ 111 -478
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Fig. 2 . Density of `60 calculated with the B1 potential, harmonic-oscillator single-particle wave functions
and gaussian correlation (see text) . The points with vertical error bars show the VMC results of ref. 22) .

The dashed line is the uncorrelated one-body density po (r) .

In absence of V

	

C calculations for 4°Ca, we compare, in table 1, our results with
those of ref. ") obtained within the FART/ 111 approximation . Our result diners
from the FA

	

T/111 calculation of ref. ") of about 0.5 MeV per nucleon. This is
consistent with the results of ref. 2 ') in ' 60, where the same difference has been
found between VMC and FART/III.

With the same harmonic-oscillator mean fields used in table 1, we have repeated
the calculations with the correlation fE.,(r) discussed at the beginning of the section .
These calculations have been performed to test the FHNC method with a class of
trial wave functions and correlations which will be used in conjunction with realistic
nucleon-nucleon interactions . The results are given in table 2 and they are compared
with the V C energies '4) . As in the previous case the FHNC results to be a fully
reliable approximation . The binding energies obtained with fE �,(r) are slightly lower

Ground-state properties of 4He, `0 and 4°Ca nuclei for the B1 potential, with harmonic-oscillator wave
functions and Euler correlation fE � , . The energies are expressed in MeV and the lengths in fm . The
parameters of the harmonic oscillator are the same as in table 1 . The VMC results are from ref. 24) .

Nucleus Theory (VM) (vw) (T) TC .m . (E) d

4He FHNC/0 -126.6 17 .3 84.7 20.5 -45.1 2.20
FHNC-1 -l19.4 -37.9

l6® FHNC/0 -435.4 -49.1 330.0 13 .1 -167.2 2.04
FHNC-1 -420.2 -152.4
VMC -4l7.2 -49.9 328 .4 -151 .8

4®Ca FHNC/0 -1108 -354 953 11 -520 1 .96
FHNC-1 -1070 -482
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TABLE 3

Ground-state properties of 160 and 4®Ca nuclei for the S3 potential, with harmonic-oscillator single
particle wave functions and Euler correlations fEu1 . The harmonic-oscillator parameters are: k.o .(fm) _

1.538(160), 1.654(4°Ca). The energies are expressed in MeV and the lengths in fm .

than the corresponding results for the gaussian correlation . We have not performed
a full minimization varying the harmonic-oscillator parameters or using a Woods-
Saxon well, which would result in a further lowering of the energy . Thf- investigation
will be a subject of a future study.
We have finally considered the S3 potential as an example of semi-realistic

nucleon-nucleon interaction, which is closer to a realistic interaction as far as the
short-range repulsion is concerned. We did not find peculiar differences with respect
to the previous cases. The results for ' 60 and "Ca are shown in table 3 . It should
be noticed that the contribution of the E"' term is always of the same magnitude,
independently on the used interaction . FH NC- 1 appears to be a realiable approxima-
tion . We have also computed the binding energy of 4He with b =1 .22 fm and gaussian
correlation, with a = -0.725 and ,8 = 2.1 fm -2 and compared with the available VMC
result 25 ) . We obtained for the energy of 4He the value of -24.7 MeV to be compared
with ~H)vmc = -23.9 MeV.

4. Conclusions

This work is the first step towards a description of medium-heavy nuclei, such
as 4°Ca and 2°spb, with correlated wave functions of the type extensively used in
nuclear matter . In fact, exact techniques for solving the many-body Schrödinger
equation, like Fadeev or GFMC, are at present applicable in light systems only .

In this paper we have presented the basic formulation to apply CBF theory to
complex nuclei, and we have performed some numerical calculations to test the
validity of our approach .
We have developed a new FHNC scheme, named FHNC-1, which is able to treat

at a satisfactory level of accuracy the state-independent part of the nucleon-nucleon
correlation . This is known to be the part of the correlation which needs to be treated
with the highest possible accuracy . The FHNC-1 scheme consists in adding to the

FHNC/0 approximation for finite systems the leading elementary diagram of the

exchange type, which is the only one contributing to the first order of the power-series
cluster expansion .

Nucleus Theory (v) (T) T..�, . (E) d

16O FHNC/0 -479 .1 378.7 13 .2 -113.5 2.08
FHNC-1 -470.8 -105.3

4'Ca FHNC/0 -1483 1124 11 -370 2.12
FHNC-1 -1463 -350
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e have calculated the binding energy of 4He, '60 and 4°Ca. There is a very good
agreement between F NC-1 estimates and the available V C results. FHNC/0
as been found reliable enough for calculating the expectation values of scalar

operators. In fact it provides very good results for the Malfliet-Tjon potential as
well as for (T) and (vw) for all the cases considered . Moreover, sum rules S, , S2
are very well satisfied within the FHNC/0 approximation.

n the contrary, the expectation values of spin- and isospin-dependent operators,
such as the ajorana part of the interaction or S,,, require the inclusion of the
leading elementary diagrams of exchange type .

e have carried out calculations for two homework potentials, Malfliet-Tjon and
rink- oeker potentials, and also for the central semi-realistic potential S3 by

Afnan and Tang.
The relative importances of the elementary diagrams result to be quite similar for

the various potentials .
The calculated one-body densities reveal strong correlation effects, particularly

at small r, where up to 15% difference has been found between the correlated and
the uncorrelated densities .
The F

	

NC-t approximation is readily applicable to the case of state-dependent
correlation operators, and therefore to the use of realistic nucleon-nucleon inter-
actions.
Other interesting extensions of the FHNC-1 scheme are the treatment of N O Z

nuclei and the calculation of the one-body density matrix and of the momentum
distribution . Work along these lines is in progress .

e are very grateful to E.

	

wend a, A.M. Lallena, S. Pieper and M. Viviani for
providing us with unpublished VMC results. Part of the calculations have been
performed using the CASPUR facility at NIC, Rome.

Appendix A

In this appendix we give the explicit expressions of the quantities which are used
for the calculation of the energy expectation value, as shown in sect. 2 .
The subindices have the following meaning: d means dynamical and indicates a

point reached only by dynamical correlations, e means exchange and indicates a
point reached by two statistical correlation (e-bonds). Finally c means cyclic and
a point labelled with c is reached only by one e-bond belonging to a cyclic statistical
permutation .
The diagrams are classified in :

- nodal, N, if they are containing at least an internal point where every path, joining
the external points 1 and 2, has to pass through (for example the diagrams la, lb
and Ie),



- composite, X, if they can be decomposed in terms of nodal diagrams (fig . lc, If)
- elementary, E, all the other kinds of diagrams (fig. ld) .

In the following we shall indicate the coordinate ri as i and the convolution over
3 with the symbol (1) . ä'he sums of the nodal diagrams are

Ndd(1, 2) = (Xdd(1, 3)6d(3) + Xde(1, 3)ße(3)1 Ndd(3, 2) + Xdd(3, 2))
+(Xdd(1, 3)f,,(3)1 Nde(2, 3)+Xde(2, 3)) ,

	

(A.1)

Nde(1, 2) = (Xdd(1, 3)ed(3)+Xde(1, 3)&(3)j Nde(3, 2)+Xde(3, 2)) ,
+(Xdd(1, 3)ee(3)INee(2, 3)+Xee(2, 3)),

	

(A.2)

Nee(1, 2) = (Xed(1, 3)6d (3) + X,,(1, 3)ee(3) 1 Nde(3, 2)+Xde(3, 2))
+(Xed(1, 3)ße(3) I Nee(2, 3)+Xee(2, 3)) .

	

(A.3)
To calculate the sum of the cyclic nodal diagrams, we used the following definitions :

Nc,, = N" ) + N(P) ,

	

(A.4)
with

given by

and

NPp(1, 2) = -(po(1, 3)6,(3) 1 N'P(3, 2))

- (po(1, 3)C6e(3) -1 1 ! NPP(3, 2) - po(3, 2)),
with

N'P(1, 2) = NP'(2, 1) .

	

(A.10)
The X,,ß functions have been defined as

and
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N(`,P) = Nax+ N"Pcc

	

cc

	

cc ,

NC~(1, 2) = (Xcc(1, 3)&(3) ( Xcc(3, 2) + N'~(3, 2) + NPx(3, 2)),
N'P(1, 2) = (Xcc(1, 3)&(3) -po(3, 2)+ NxP(3, 2) + NPp(3, 2)),

Ncc(1, 2) - - (po(1, 3)&(3) S Xcc(3, 2) + Ncc(3, 2))
po(l, 3)[&(3)-1]I NPc(2, 3))

Xdd(1, 2) = gdd(1, 2) - Ndd(1, 2) -1 ,

Xde(1, 2) = Xed(2, 1) = gdd(1, 2)[ Nde(1, 2) + Ede(l, 2)] - Nde(1, 2),

Xee(1, 2) = gdd(1, 2){ N,,(1, 2) + Eee(1, 2) + [ Nde(1, 2) + Ede(1, 2)]'`

- vC Ncc(1, 2) - po(l, 2) + Ecc(1, 2)]Z}

where Ec p represent the sums of the ap elementary diagrams .

(A.5)

(A.F)

(A.7)

(A.9)

(A.11)

(A.12)

(A.13)

X,,J 1, 2) = gdd(1, 2)[N«(1, 2) - po(l, 2) + Ecc(1, 2)] - Ncc(1, 2) + po(l, 2),
(A.14)
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and

and

with

e distribution functions are now given by

gdd(1, `) =.Î2(1, 2) exp[

	

dd( 1 , 2) + Edd(1, 2)] ,

	

(A.15)

gde(1, 2) = ged(2, 1) =

	

de(1, 2)+

	

de(1, 2),

	

(A.16)

gedé
r
(1, 2) = gdd(1, 2)(	ee(1, 2) + Eee`(1, 2)+[

	

de(1, 2) + Ede(1, 2)]2} +

	

ee(1, 2),
(A.17a)

gee

	

(1, 2) = ®Vgdd[

	

cc(1, 2) - Po(1, 2) + Ecc(1, 2))2 + Eee

	

(1, 2)

	

(A. 17b)

gcc(1, 2) =

	

C,(1,
2) + NcC(1, 2) - Po(1, 2) .

	

(A.18)

The functions Ud , e entering the vertex corrections ed,e are solutions of

d(rl) =

	

d'r ((

	

dd(rl, i-2) o Edd(rl, !'2) -Sdd(rl, i'2)[gdd(rl, r2) _ 1 ] IUr2)

+l

	

de(rl, r2) - EdJrl, I'2 ) _ Sdd(rl 9 r2)gde(rl , r2)

- Sde(rls r2)[gdd(rl, r2) - 1II&(r2)),

	

(A.19)

e(rl)=

	

d; r (l

	

ed(rl, r2) - Ede(rl9 r2)

- Sdd(rl, ®'2)gde(rl, r2) - Sed(rl, r2)[gdd(rl, r2)-11}

+l

	

ee(rl, r2) - Ece(rl, r2) - Sdd(rl, r2)gee(rl, r2)

-See(rl, r2)[gdd(rl, r2) - 1] - Sed(rl, r2)gde(rl, r2)

- Sde(rl, r2)ged(rl, r2)+2PSee(rl, r2)gee(rl, r2)}ee(r2)

- PPO(rl, r2)[N'p l(rl, r2) - Po(rl, r2 (A.20)

Smn = ?Nmn + E,,,n

n this appendix the expressions of the two-body densities defined in sect . 2 are
given .

For the single-particle wave functions we use the representation

0cr(1)=4~n,, .i.(rl,sl,tl)= n,l(rl)~~.~,.(®l,~l) ".~(1)~~(1),

(A.21)
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where Y,,, , are the spherical harmonics, R�,, the radial wavefunctions and Xs,, the
spin and isospin spinors .

For the sake of simplicity, in the following we shall understand the subindex r
of the radial wavefunction.
The PTI(r,) defined in eq. (2.25) is a one-body density whose explicit expression

is

PTI(rl) = v Y_(21+1)

	

R,(tl)R"(rl)+2RI (rl)Ri(rl)-Ri(r,)2-2
I(1+1) R2

r
47r nl

	

r,

	

r2

	

t (	1)

(in the present calculation v = 4).
The uncorrelated two-body density defined in eq. (2.14) is given by

with

Po(rl, r2) =
2I+1
4T

	

R,(r,)R,(r2)Pj(cos H)

	

(1, 2),

	

(B.3)

where P, are the Legendre polynoms, 8 the angle between the vectors r, and r2 , and

J) = I XS(i)XS-(J)XI(~)X~(J)
ss'I

The density PT2 of eq. (2 .8) is given by

PTZ(rl, r2) =

	

,7T)2

	

I

	

(21+ 1)(21'+ 1)R,(r2)R',(r~)
(4

	

nln t
r r

x j[ R,(rl)

	

R"(rl)+2
R',(rl)- I (1

2
1)

Rjrl)
% L.

	

r,

	

r,

- R'(rl)R ',(rl)I
pip,--sin20

RI(rl)Rr(rl)PI, (1, ~)

	

(1$.4)
rl

where we have dropped the argument of the Legendre polynoms and of their
derivatives .
The expression of the density PT3 of eq. (2.28) is

PT3(r,r2)= 1 Y_(21+1) Rl'(rl)+ 2 R'r(rl) - /(I - 1)r2 Rt(rl)

	

Rt(r2)PjH(1,2) .
4T n t

	

r,

The density PT4 can be written as

PT4(r19 r2) = vIPT6(rl, r2) -PO(rl, r2)PT5(r19 r2)],

PT5(rl, r2) =

	

1 E

	

cos ®R ;(rl)Ri(r2)Pt+

	

Ri(rl)R1(r2) + Rj(r2)

	

'(ri)
r

	

r24T m

	

1
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(B.5)

(B.6)

xsin2®P;+ RI(rl)Rt(r2) [(1+cos ®)Pi-cos 0 sin20 poi ]	,

	

( .7)
r, r2

	

]
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PT6('9

	

1
r')=(4?r)2 � iE,~

(21+1)(21'+1)R,(r2)Rt-(r,)

x

	

sin`0
(R'(r,)R,,(r2) pip

c.+
Ri (ri)Ri , ( r2)[

	

P~Pi,
r2	r,

	

)

2 Rj(rj)'Rr(r2)P;Pi .
+cos 0

(
R,(r,) R,,(r2 )P,P,-sin`0

	

,)] .

	

(B.8)
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