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Abstract : We report on variational calculations of the energy E(p, ß) of asymmetric nuclear matter
having p = p� +pp = 0.05 to 0 .35 fm-~, and ß = (P � -p~)lp = 0 to l . The nuclear hamiltonian
used in this work consists of a realistic two-nucleon interaction, called °i<, that fits the available
nucleon-nucleon scattering data up to 425 MeV, and a phenomenological three nucleon
interaction adjusted to reproduce the empirical properties of symmetric nuclear matter. The
variational many-body theory of symmetric nuclear matter is extended to treat matter with
neutron excess . Numerical and analytic studies ofthe ß-dependence of various contributions to the
nuclear matter energy show that at p < 0.35 fm -' the ßa terms are very small, and that the
interaction energy EI(p, ß) defined as E(p, ß)- TF(p, ß), where TF is the Fermi-gas energy, is well
approximated by EI o(p)+ß 2EIZ(p) . The calculated symmetry energy at equilibrium density is
30 MeV and it increases from IS to 38 MeV as p increases from 0 .05 to 0 .35 fm -3 .

Recently we') [denoted by I henceforth] reported on variational calculations
of symmetric nuclear matter with a hamiltonian consisting of a realistic two-nucleon
interaction operator called c't4, and a phenomenological three-nucleon interaction
(TNI). The vt4 interaction operator is obtained by fitting the deuteron properties
and the nucleon-nucleon scattering data in S, P, D and F waves up to 400 MeV
[ref. 2)] . By itself the vt4 interaction does not give satisfactory properties of nuclear
matter . The TNI is obtained by requiring that the vt4 +TNI model gives the correct
energy, density and compressibility of nuclear matter. The contribution of TNI
to the ground state energy of nuclear matter is small. The TNI is divided into two
parts . One of them, called TNR, generates a density-dependent repulsive two-
nucleon interaction that is added to the vt4 interaction in nuclear matter calculations.
The contribution of the other part is attractive, and it is represented by a function
of density, TNA(p�, pa) as discussed in I. The i't4+TNI hamiltonian has also been
used to study the equation of state of hot and cold nuclear and neutron matter 3) .
In this paper we present our studies of the energy E(p, ß) ofcold asymmetric nuclear
matter having (p �-pP)/p = ß. Symmetric-nuclear andneutron matter are the limiting
cases having ß = 0 and 1 respectively .

Work supported by NSF PHY78-26582.
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E(p, ß) = TF+EZH+ Wo(MB)+W,+W~+ WF(MB)+U+UF+TNA,

	

(1 .1)

where TF is the Fermi-gas kinetic energy, EZH is the contribution oftwo-body clusters,
and terms W°(MB) to OF are contributions of many-body clusters . 1'he terms EZH
to OF are calculated with a density-dependent two-nucleon interaction that rep-
resents t~ t4 +TNR. The W°(MB), W, and W~ represent the bulk of many-body cluster
contributions via Fermi-hypernetted-chain (FHNC), separable, and single-operator-
chain (SOC) diagrams respectively ; while WF{MB), U and OF represent many-body
cluster contributions to the kinetic energy . The values of these contributions in
symmetric nuclear and pure neutron matter are given in table 1 at p = 0.159 fm -a
the assumed equilibrium density of nuclear matter.

TAHLE I

The breakdown of nuclear and neutron matter energy

The W; is the sum of W� Wn, E,s(MB) and EQ(MB) of I .

It is relatively simpler to calculate the contribution of many-particle isospin
correlations in the symmetric nuclear matter. In this case only the so called C-part a)
of the product of isospin operators is needed, and only closed rings of isospin
operators have a non-zero C-part. Further the C-part of a product OfT; ~ T! operators
forming a single operator ring is independent of the order of the operators, and so
it is simple to sum all single operator rings with chain equations 4) . All these sim-
plifications are lost when we consider the ß ~ 0 asymmetric matter . However
calculating the energy of ß = 1 neutron matter is simple . In this case s; ~ T; operators
can be replaced by unity and the two nucleon correlation operator becomes a sum of
central, spin-spin tensor and spin-orbit correlations.
With the hope of using the available ß = 0 and 1 results in the calculation of

E(p, ß) we studied the ß-dependence of EZH, W°(MB), W~ and W,. That of EZH and
W°(MB) is studied numerically by calculating these at ß2 = 0 to 1 in steps of 0.1 .
It is difficult to sum W~ and W, contributions by chain equations when ß ~ 0 or 1 .
However three-body diagrams give the largest contribution to W~ and W, . Their
ß-dependence is studied analytically and it seems that they can have significant ß°

p(fm - ') 0.159 0.159
ß 0 1 .0
T,. 22.01 34 .93
Eze -36.89 -19.48
Wo(MB) - 3.40 -2.05
W~ 2.94 1 .99
W! 5.07 1 .53
U+UF+ WF(MB) 0.38 0.046
TNA -6.11 -2.04
E,a, -16.00 14.94
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and ß2 terms, but rather small ß°24 terms. Even four-body chain diagrams do not
give large ßa contribution .
To a surprisingly high accuracy [0.3 % (0 .4 %) at p = 0.159 (0.35)] the large

EzB(p, ß) can be reproduced by a sumof ß° and ß2 terms. The calculated Wo(MB, p, ß)
also has small ß"Za dependence. The coefficient of the ßa term of W°(MB, p, ß) is
practically zero at p = 0.159, and it is of the order of 1 MeV at p = 0.35 fm -3 .
The TNA has by definition only ß° and ß2 terms, and so, if we assume that the small
U, OF and WF(MB) terms also have negligible ß"? 4 dependence, it appears that the
E(p, ß) may be well approximated by :

This is the main result of this work .
The EIo(p) and EIZ(p) obtained from the existing results 3) for E(p, ß = 0, 1),

and the symmetry energy Es Ym(p) are reported in sect . 2. Sect. 3 reports the two-
body Euler-Lagrange equations for asymmetric matter, and the calculation of
Eas(p, ß) . The generalization of FHNC equations to the case of asymmetric matter,
and the calculation of Wo(MB, p, ß) is reported in sect . 4. The ß-dependence of W~
and WS is analysed in sect . 5. The main results are given in sect . 2 ; sects . 3-5 are
rather technical, and assume familiarity with refs. ' ~ 4).

2. Results

The interaction energy of nuclear matter is defined as

Assuming validity of the approximation (1 .2) we have :

EIo(p) = EI(p, 0),

	

(2.2)

EIZ(p) = EI(p, 1)-EI(p, 0).

	

(2.3)

The EIo(p) and EIZ(p) are calculated using the E(p, 0) and E(p, 1) tabulated in ref.') .
Five point interpolations were used to obtain E(p, ß = 0, 1) at the desired values
of p. The E,ym(p) is defined as

ô
2

~ ß)
Esym(P) = 2

~
I (2.4)
B

_
o

and it is given by

Es ym(P) _ ~Tt~P~ 0)+EIZ(P) . (2 .5)

The EIo(p), EIZ(p) and E6rm(p) are tabulated in table 2.
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TABLE 2
The coefficients El o(p) and EI Z(p) of the interaction energy of nuclear matter, and the symmetry energy

of nuclear matter

The calculated symmetry energy at the equilibrium density (p = 0.16 fm-3) is
30 MeV. Empirically the symmetry energy is not very accurately determined . Its
values range from 28-40 MeV [refs. s,6)] in mass formulas . Our results for E~,m

are in fair agreement with the results obtained by Fantoni and Rosati') (31 .1 MeV
at p = 0.17 fm -3 ) with the semi-realistic OMY potential, and by Seimens and
Sjôberg H) (25-30 MeV at kP = 1 .35 fm - ') with the Reid potential and lowest order
Brueckner theory .

3. Calculation of E2H(p, ß)
The variational calculations use a variational wave function :

tpv(P, ~ = is ~ [	~

	

.ÎP(ri;, d, d,, a)O ~}~(P, ß)~

	

(3.1)
~~J P=t,8

The variational parameters d, d~ and a should be varied in principle to minimize the
E(p, ß) . However, the equilibrium values ofd, d, and a are not too different in nuclear
and neutron matter. For example at p = 0.159 fm -s the equilibrium values of
d, d~ and a in nuclear and neutron matter are respectively 2.15, 3.44, 0.8 and 2.79,
3.44, 0.8, and the neutron matter energy obtained with these two sets of d, d~ and a
is 14 .9 and 14.6 MeV respectively. In the following sections we neglect the ß-depen-
dence of d, d, and a and take their values from symmetric nuclear matter calculations .
The results presented in sect . 2 tacitly assume that the small effect ofthe ß-dependence
of d, d, and a on E(p, ß) is linear in ßZ .

The fP(d, d� a) are calculated from two-body Euler-Lagrange equations [eqs .
(2.14}{2 .24) of I] which depend upon the 45. Thus even for fixed values of d, d, and a
thef° depend upon ßandp. Theßandp dependence ofthe f P equations is contained

p EI o EI Z E,Ym

0 .0492 -18.37 9.54 15 .13
0.0676 - 23.04 1 I .59 18 .51
0 .0975 - 29.49 14 .39 23 .22
0 .1257 - 34.12 16 .30 26.76
0 . 1589 - 38 .01 17 .73 29.96
0 .1975 -40.76 18 .59 32.72
0.2234 -41 .75 18 .76 34.11
0 .2515 -42.17 19 .01 35.62
0 .2767 - 41 .98 18 .66 36.36
0.3034 -41 .42 17 .94 36.75
0 .3497 - 39.74 17 .34 38 .02
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in the functions ~T,s{r, p, ß) given by eqs. (2 .8}-(2 .11) of I. Here x = c, q or qq (for
central, Lz and L4), and T, S are the pair isospin and spin . In asymmetric matter we
have two Fermi momenta kF� and kFP for neutrons and protons, and it is convenient
to define functions 'Yx�(T, S, r) :

1
(y`xN(T, S, r))z = i

	

~

	

~

	

L~*(kzku)-( -1)T+s~*(kukz)~~z~(kxkk),

	

(3.2)
kx > kpz k N <kak

~(k,~k,,) = exp (i(kz ~ r, +k� ~ rz)),

	

(3.3)

where ~ and u can be n or p for neutrons and protons. The ~T.s(r, p, ß) are given by

Here lx is the familiar Slater function l(kFx r) .
The fP(p, ß) are obtained by solving the eqs. (2.14}{2.24) of I with the above

~`r,s~ They do not exhibit significant ß-dependence. The important correlations,
such as f` or f" change by <2~ in going from ß = 0 to 1 . Nevertheless this ß-
dependence is taken into account in the following calculations.

In symmetric nuclear matter only the C-parts of operator products contribute.
In asymmetric matter terms linear in O also contribute. We define this term as the
T,j part of the 170p,

IIOP = C(IIOp)+ ~ T,;(I70P)O,j + . . . .

	

(3.8)
i<j

The Tj parts, like the C-parts do not contain any Q or r operators and

T;(170°) _ ~C(OijlIOp).

	

(3.9)

With these definitions Eze(p, ß) is given by:

EzH =

	

~

	

~ ~p Id3r(C(fizOizHfzazfkzOiz)
t,k=1,8 j=1,14

+OizTlz(,iizOizHjl zOi zfizOi z)iai~

(~T.s{r, P, ß))z = (~~P(T. S, r))z+T{(Y~~~(T S, r))z+(Y~PP(T~ S, r))
z
}. (3 .4)

The explicit forms of Yfz�(T, S, r) are given below :

(~âa(T~S+r))z =~PaPv{1-(-1)T+slzlt<}~ (3 .5)

(`1~~�(7. S~ r))z = ~PaP,~{-iarz(kFZ+kFr~) - ( -1 )r+s~r . Vl,~l�}, (3 .6)

(Y~~,4,(T, S, r))
z
= ~PxPk{r4(~kFZ+kFa)+ziskFakFU+3rz(kFa+kF �)

(3 .7)
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- ~ ~P J d3r<C(DÎZÎizOizH'izOiz.ÎizOiz)
n=1,4 + O; z Tt z(Oi z.ÎizOi zHizai z .ÎizOi z)iex

n= 1 .4

~z ('

~p ~
J
d3r<C(Oizf~izOizO .ÎizOiz)' V

The three integrals above correspond to the contributions of Wo diagrams
1 .2 and WF diagram 1 .3 of fig . 1 respectively . The C and Tt z parts can be expressed

B -

L5

!'n = Pn/P

l~ = yn/n+yp/p

(1)air ° 1

(L~)dlr - SrZCynkFn+y'p1iFP)

(L`)atr = Z(L~)dtr+A+B

A

_l
175

2

+OÎZTtz(Oiz,fizOizOickzOiz)' oi~x .

cjc
1.6
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(3.10)

1 .1 and

Fig. 1 . Diagrams 1 .1-3 give the two-body energy, while 1 .4 and 1.5 illustrate the Wo(MB) rnntribution .
The three-body diagram 1 .6 forms part of the W~ contribution .

TABLE 3

The expectation values of L" and iL" operators

Yp = PplP

/r - !'n/n-!'v/D

(t)dlr - ~ 2

(L=T)dlr - Sr~IrV'nkFn-ti'pkFp)

175 r`(YnkFn+ypkFpl

r`y~'pl 5(kFn+ 1C Fp)+ 14kFnkFp)
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as sum over terms containing 1, LZ, La , r ~ 0 and Lzr " ~ operators. The required
expectation values < )a;~ and < )~ x of these operators in asymmetric matter are given
in table 3, where O; Z is abbreviated by T .

The calculated EZH(p, ß) at p = 0.159 fm - a is given in table 4. It is almost exactly
linear in ßZ . The absence of significant ßa terms in EZH can be understood as follows .
The f~s have little ß-dependence, so the ß-dependence of EzH must come from the
expectation values in table 3. (1)a ;~ and (T)a ;~ do not have ßa terms, while the ßa
terms in (Lz)a;~ and (Lzi)a;~ are very small as can be seen by expanding these in
powers of ß:

The contribution of <La) terms is very small and it does not give significant ßa
terms. So it is understandable that the direct part of EZH has no significant ß"2a
dependence.
The exchange part of EZH involves h and l= functions which may be expanded in

powers of ß as follows. Let kF denote the Fermi momentum of nuclear matter at
density p, and x = kF r. We get

The above can be rewritten as

(L2iiair a ßz-~rßa+ . . . .

	

(3.12)

h(r) _

	

~

	

_

	

1 _

	

1 . ßznX6n- 3

n=o, ~ (2n)! 3zn
d 2n

dx) (x3l(X)),

	

(3.13)

2n+ I1

	

2
1+ 1 azn+ 1x6n

12
_d

	

(X3l(X)) .h(r) _

	

~

	

~2n+ 1)! 3

	

(x

	

dx)
n=0. m

(3.14)

l~(r) = lo(x)+ lZ(x)ß z +la(x)ßa+ . . .,

	

(3.15)

h(r) = ßl,(x)+ß313(x)+ . . .,

	

(3.16)

where l,(x) arè functions independent of ß. Since the h and !T are multiplied by short
ranged functions with a typical range of ~ 1 .5 fm their main contribution comes
from small distances . However l;ZZ(x) are quite small at small r as can be seen from
fig . 2, and hence the exchange part of EZH is also quite linear in ßz.
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Fig. 2. The functions 1, _, at kF = 1 .33 fm - ' .

4. Calculation of central correlation chains and Wo(MB)

The central correlation chains are treated in the FHNC approximation . In asym-
metric matter we must keep track of neutron and proton exchange loops separately.
This is done by classifying the chains as : Gaa , Ga~, Gg~, G<ê, G<ç, G<ç, G~~ and G~~.
The subscripts, d for direct, e for closed exchange loop and c for incomplete chain
of exchanges, specify the exchange patterns at the ends ofthe chain. The superscripts,
n for neutron and p for proton, specify the type of exchange loops at the ends . The
G~ has a neutron exchange loop at one end, G<ç has a neutron loop at one end and
a proton loop at the other, and G~~ has incomplete proton exchange chain etc.
The derivation of the equations for the G's is quite straightforward, and hence

we merely give the results. In the following equation ~., ~ can be n or p.
We define the generalized Slater functions :

and partial distribution functions :

9aa = (Î° ) Z exp (Gaa), (4.2)

9"as = 9aaGâ~~ (4.3)

9~~ _ ~9aaL,~ (4 .5)

Xaa = 9aa-Gaa- I (4.6)
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X«

	

«

	

Gee "

	

4.9

The integral operators that join links at neutron or proton vertices are given by :

v=n.P

These chain functions are used to calculate the FHNC contribution to Wo(MB)
represented by diagrams of type 1 .4, 1 .5 of Cg. 1 . The main contribution of these
diagrams is thought to come from terms having i, j and k 5 6 . The terms having
i, j or k > 6 give relatively smaller contribution to Wid, and we neglect their con-
tribution to Wo(MB) in the present work.
With the 1~, !~, Yp and 1'n of table 3 we define :

0"(X(r~k) ; Y(rk,)) = P"J d3rkX(rrk)Y(rk;)" (4.10)

The chain equations are obtained as

Gaa = ~ [ev(Xda+Xâe ;9aa-1)+®v(Xda ;9âe)], (4.11)
v=n.p

fide ~ ~®v(Xdd+Xde,Nde)+ev(Xdd ;~%eé)], (4" 12)
v=n.P

Geé = ~, ~®v(Xed+Xee ; Nde)+®v(Xed ; yeé)]+ (4.13)

Gr.ae = !''nGâe - YpGâe, (4.15b)

Gc.e e = YéGee +YPGéé+ 2)'pYnGeé" (4.16)

Gs.e e = YnGee +YpGéé -2Yp.YnGeé, (4.17)

h° = exp (Gâd). (4.20)
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The contribution of Wo(MB) diagrams 1 .4 and 1 .5 of fig . 1 is given by

WO(MB)1 .4 = ~p

	

~

	

~ d3r{C(f i~iHJafkV )
i,J,k=1,6

+T(f'O'HJOJfkOk)[h`[~2+2G~ .ae+G~.«+(G~.a~)Z] -ßZ]}~ (4.21)

Wo(MB)1 .s = -Hp
i,j,k=1,8

The calculated Wo(MB) at p = 0.159 fm_ 3 is given in table 4, it is quite linear in ß2 .

TABLE 4
The calculated E2B and Wo(MB) at p = O.ls9 fm - ~ at various values of ß2

The coefficients A and B of the last column are determined from E2B + Wo(MB) at ß2 = 0 and 0.9 .

Note that the Wo(MB) in table 1 differs from that in table 4 at ß = 0 and 1 . In the
calculation of nuclear and neutron matter 3) we include (i) some of the terms having
one or more of i, j and k = 7, 8 and (ü) single operator rings in the links of FHNC 4) .
Both these small effects are neglected here.

5. ß-dependence of W~ and We

The three-body diagrams give the largest contribution to W~ and W� and hence
we first discuss their ß-dependence . Any product II of any number of O t2 , 023
and 031 operators can . be reduced by repeated use of the Pauli identity to the form:

II = C(II)+

	

~

	

T~(II)T,tJ+BT 1 ~ i2xT3+terms having a;=1,3 operators .

	

(5.1)
i<J53

ß2 E2H Wo(MB) E2B + Wo(MB) A+Bß2

0 - 36 .88 - 3.08 - 39 .97
0.1 -35.14 -3.02 -38.17 -38.13
0.2 - 33 .40 - 2.95 - 36 .36 - 36 .29
0.3 - 31 .6s - 2.88 -34 .54 -34 .45
0.4 -29 .90 - 2.81 - 32 .71 - 32 .61
0.5 - 28 .13 - 2.74 - 30 .88 - 30 .77
0.6 - 26 .36 - 2.67 - 29 .03 - 28 .93
0.7 -24.s7 -2.60 -27.18 -27.09
0.8 -22.77 -2.s3 -2s.31 -2s.25
0.9 -20.96 -2.46 -23.41 "
0.99 -19.29 -2.39 -21 .68 -21 .76
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In direct diagrams the <II) is simply

the sl ' TZ X T3 gives zero contribution . Hence, to the extent the ß-dependence of
the f" can be neglected, the contributions of all three-body direct W~ and W, diagrams
have only ß° and ßz terms.
Exchange three-body diagrams involve the functions h and l i, and in principle

their contribution can have ß" Z a terms. However they appear to be small. For
example the contribution of the important W~ exchange diagram 1 .6 of fig. 1, is
given by (j, p = a or t)

-~PzAJ I iizL~izF~`3~i~z(3h -li)lsd 3rlzd3rls "

	

(5.3)

To extract "the ß-dependence we expand 3l~ - If in powers of ß2

3h-h = 31ô +(6I°Iz-li)ß2 +(3Iz-Z1113+61°l4)ß4.

	

(5.4)

1'he function multiplying ßa is much .smaller than that multiplying ßz in the
above expansion, and so we may expect these contributions to have only ß° and

ßz

terms. At kF = 1.33 fm -1 and r < 2 fm the coefficient of ßa in (5 .4) is <5~ of that
of the ßz term .

It can be shown that in three-body W~ or Wg diagrams with exchanges, the ßa

terms can come only through the l;ZZ functions. The contribution of such diagrams
has a product of operators II that can be reduced to the form 5.1 . It is convenient
to include in this product the spin exchange operators ~(1 +Q; ~ QJ), but treat the iso-
spin exchange explicitly . One then has to consider the eight different possibilities in
which the particles 1, 2 and 3 in the right-hand 5P' are nnn, nnp, npn, pnn, ppp, ppn,
pnp andnpp. The contribution for any given possibility can be written as an integral
containing the ß-dependence via the y�, yp, I� and IP . The sum of the contributions
of all the eight possibilities can be expressed, as is done to obtain eq . (5 .4), with an
integral containing h, h and ß. To the extent all but I° and Il can be neglected the
contribution has only ß° and ßZ terms.
Four-body W~ and W, diagrams can give ß4 terms. However, their contribution

is small ( ~1 MeV) and so their ßa terms should also be small. The ß-dependence
of four-body spin-isospin and tensor-isospin direct single-operator-chain diagrams
is easy to calculate with the following method . The ß-dependence comes from the
product II of the four i; . iJ operators in the chain. The contribution depends upon
the order of the four T, . TJ operators in 17, and the total contribution is the sum of
their contributions in all possible orders . Let us consider the simple order:

T1 " T2T2 " ti3T3 ~ T4T4 ~ TI = T1iT1IZ2iT2JT3JT3kT4kT4! " (5.5)
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In asymmetric matter the <TtT;~ is given by the matrix Qi;

~TiTt% = QÎ+
and the contribution of term (5.5) is given by Tr (Q*QQQ).

Both Q and Q* can be diagonalized simultaneously to the form :

1 0 0

	

1 0 0
0 1-ß 0

	

0 1+ß 0
0 0 1+ß' 0 0 1-ß

and so the Tr of (n-s) Q-matrices and s Q*-matrices is given by
Tr (Q" -s(Q*p) = 1 +(1 +ßp(1-ß)"-' +(1-ßp(1 +ßp-' "

(5.7)

(5 .8)

The expectation value of a product of n Ta ' Tb operators forming an SOR in any
order has the form (5.8) with a value of s, in range 1 to n -1 determined by the order.
Thus the expectation value of the symmetrized product is given by :

~S(T1 ' TZTZ ' T3 . . . T� ' T1)~ _

	

~,

	

P;(1 +(1 +ßp(1-ßl -s +(1-ßp(1 +ß,

	

~,

	

(5.9)
s= l,n- 1

where P; gives the probability of all orders whose expectation value contains s
Q*-matrices. The P; can be obtained from the recursion relation :

(5 .10)

Pâ = PZ = 0,

	

Pi = 1 .

	

(5.11)

Eq . (5 .9) gives the ß-dependence of four-body spin-isospin and tensor-isospin
direct single operator rings as

~S(T1 ~ T2T2 ~ T3T3 " T4T4 " T1~ = 3-~ß2+~~"

	

(5.12)

The coefficient of ßa is non-zero, but it is reasonably small. Hence we may expect
that the order ofmagnitude of the ßa term is probably smaller than the contribution
of four-body terms (which is ~ 1 MeV at kF = 1 .33 fm-1). Earlier calculations'' s)
also find that the ßa term in nuclear matter energy at kF = 1.33 fm-1 is less than
1 MeV.

The authors would like to thank Dr. K. E. Schmidt for suggesting the recursion
relation (5.10) for the P;.
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