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a b s t r a c t

Artificial neural networks have proved to be useful in a host of demanding applications, there-
fore becoming increasingly important in science and engineering. Large-scale problems constitute
a challenging task for training neural networks using the stochastic gradient descent method and
variations, which are based on the random selection of mini-batches of training points at every
iteration. The challenge lies on the mandatory use of diminishing search step sizes in order to
retain mild error fluctuations throughout the training set preserving so the quality of the network’s
generalization capability. Variance counterbalancing was recently proposed as a remedy for addressing
the diminishing step sizes in neural network training using stochastic gradient methods. It is based
on the concurrent minimization of the average mean squared error of the network along with the
error variance over random sets of mini-batches. Also, it promotes the use of advanced optimization
algorithms instead of the slowly convergent gradient descent. The present work aims at enriching
our understanding of the original variance counterbalancing approach, as well as reformulating it as a
multi-objective problem by taking advantage of its bi-objective nature. Experimental analysis reveals
the performances of the studied approaches and their competitive edge over the established Adam
method.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In the era of artificial intelligence and machine learning, cre-
ting an effective neural network is particularly important in
umerous scientific problems. The challenge lies in the selection
f an appropriate network architecture and an efficient train-
ng method for the problem at hand. Neural architecture search
NAS), a growing field of machine learning, has offered a signif-
cant amount of research concerning the automation of neural
etwork design [1], object detection [2], image classification [3],
eta-learning [4], and hyperparameter optimization [5]. How-
ver, NAS methods are computationally expensive as they typi-
ally involve huge search spaces of diverse network architectures
o test, train, and evaluate. Efficient training algorithms constitute
n essential part of such demanding tasks.
Even in the case that a well suited network architecture is

vailable for a specific problem, big data that is often met in
emanding applications underline the necessity for efficient train-
ng algorithms. For instance, such problems met in Physics in-
lude the development of interatomic potentials using data from
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electronic structure calculations [6], the construction of high-
dimensional potentials for multicomponent systems [7], the rep-
resentation at several stages of silicon atoms in a neural network
[8], and the modeling of potential energy surfaces based on
density functional theory [9].

Typical gradient descent optimization algorithms are usually
inefficient for network training in such problems within strict
running time constraints. For this reason, stochastic variants such
as the stochastic gradient descent (SGD) are widely used [10]. The
foundation of SGD lies in the work of Robbins and Monro [11]. In
essence, it constitutes a stochastic approximation of the gradient
descent optimizer, where the gradient is estimated on a randomly
selected subset of the data instead of the whole training set at
each iteration. This can be beneficial, especially in cases of large
datasets. SGD counts a number of variants such as Adam [12],
AdaGrad [13], and AMSGrad [14], among others, which are all
based on gradient information. As such, they are expected to
exhibit inferior performance compared to quasi-Newton optimiz-
ers that maintain an approximation of the Hessian matrix. A
comprehensive review of optimization methods for large-scale
learning can be found in [15].

A common characteristic of SGD algorithms is the use of mini-
batches [16]. A mini-batch is a typically small subset of the
training set. At each iteration, the algorithm selects at random
a mini-batch over which, it calculates the gradient of the mean
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quared error (MSE) of the network. Based on this information,
rule that depends on the specific SGD variant is used to up-
ate the network’s parameters. Low MSE variations among the
ini-batches are related to nice generalization properties of the
etwork. However, this requirement typically implies small step
ize updates that delay the algorithm’s convergence.
Recently, a number of research works have been focused

pecifically on the step size in SGD algorithms that employ mini-
atches. De et al. [17] proposed a big batch SGD scheme that
daptively grows the batch size over time, enabling an automated
earning rate selection that does not require stepsize decay. Bay-
in et al. [18] proposed a hypergradient descent to compute an
nline step size. They showed the effectiveness of their methods
n a range of optimization problems. However, the proposed
ethods heavily depend on the choice of two parameters: the

nitial step size and the hypergradient learning rate.
Lagari et al. [19] proposed the Variance CounterBalancing (VCB)

ethod. Instead of individual mini-batches, the method employs
andomly selected sets of mini-batches. Thus, the produced ob-
ective function consists of the average MSE over the set of
ini-batches along with a term that penalizes large MSE vari-
nce. The VCB approach is a remedy for the slow convergence
n stochastic learning, eliminating the need to reduce the step
ize, while it also promotes the use of efficient optimizers such as
uasi-Newton methods. Thus, it can yield significant performance
nhancement as it was experimentally shown in [19].
By construction, the underlying optimization problem is bi-

bjective, as it is composed of two distinct objectives, i.e., the
verage MSE and its variance. In the standard VCB approach, the
ptimization problem is solved as a constrained single-objective
roblem using a penalty function technique [19]. Nevertheless,
ts inherent bi-objective form allows a multi-objective treatment
hat can offer solutions of comparable quality, while allowing the
se of the rich multi-objective optimization algorithmic artillery.
The contribution of the present paper is twofold:

(a) It offers a comprehensive presentation of the single-objectiv
VCB approach equipped with the BFGS algorithm with
strong Wolfe–Powell line search conditions.

(b) It introduces its extension to the multi-objective frame-
work, where the MSE and the variance over the sets of
mini-batches stand for the two objective functions. For
this purpose, the state-of-the-art multi-objective particle
swarm optimization (MOPSO) optimizer [20] is used.

he two VCB approaches are demonstrated and compared in
oth noiseless and noisy function approximation problems using
adial Basis Function (RBF) networks. Moreover, they successfully
ompete against the established Adam method, adding merit to
he general VCB framework.

The structure of the paper is as follows: Section 2 contains
etailed descriptions of the two VCB variants, namely the single-
bjective formulation with the BFGS optimizer, and the proposed
ulti-objective formulation with the MOPSO optimizer. It also
ffers brief descriptions of the corresponding optimizers and
he neural network model considered in the experimental part.
ection 3 is devoted to the experimental assessment of the VCB
pproaches over diverse datasets. Finally, the paper concludes in
ection 4.

. Methods and algorithms

As baseline of our presentation, we henceforth consider the
roblem of approximating a continuous function, f : X ⊂
n
→ R, using a neural network. The trainable parameters of

he network are assumed to be collectively included in a vector
∈ W , where W is an appropriate domain related to the specific

pplication. The network type is irrelevant for our presentation.
2

2.1. Variance counterbalancing method

Let T be the given training set consisting of τ > 0 training
vectors,

T = {(x1, y1), (x2, y2), . . . , (xτ , yτ )} , (1)

ith xi ∈ X ⊂ Rn, and yi = f (xi) ∈ R, for all i = 1, 2, . . . , τ .
lso, let N(x, w) denote the output of the neural network with
arameter vector w for the training vector x. The training proce-
ure comprises the minimization of the MSE of the network with
espect to w over the whole training set, i.e.,

min
∈W

E(w) =
1
τ

τ∑
i=1

(N(xi, w)− yi)2 .

This is usually achieved using gradient-based optimizers. SGD
defines a family of algorithms that are commonly used for this
purpose. A well-known drawback of SGD is its slow convergence,
especially in cases of large training sets [19].

In order to accelerate training, the notion ofmini-batch is used.
mini-batch is defined as a small, randomly selected subset of

he training set T . The optimization algorithm is used to consec-
tively minimize the MSE of the neural network over a number of
ini-batches instead of the whole training set. For a mini-batch

i consisting of ζ > 0 randomly selected training points,

i =
{
(xi1 , yi1 ), (xi2 , yi2 ), . . . , (xiζ , yiζ )

}
⊂ T ,

ith ζ ≪ τ , the associated minimization problem is defined as

min
∈W

Ei(w) =
1
ζ

ζ∑
j=1

(
N(xij , w)− yij

)2
. (2)

A desirable minimizer w∗ should inherit the neural network en-
hanced generalization performance. This implies that the specific
minimizer retains small fluctuations of the MSE among different
mini-batches. According to [19], a plausible hypothesis is that

E(w∗) ≈ Ei(w∗), i = 1, 2, . . .

Based on this assumption, a suitable objective function can be
constructed in order to ameliorate the MSE fluctuations among
the mini-batches. Considering a fixed number of mini-batches,
η > 1, the error variance that is defined as

σ 2(w) =
1
η

η∑
i=1

(Ei(w)− E(w))2 ,

can be used to counterbalance E(w) by introducing a penalty
term. Thus, a new objective (penalty) function is formed,

F (w, λ) = E(w)+ λ σ 2(w),

where λ > 0 is the penalty coefficient [19].
In order to avoid the time-consuming computation of the full

MSE over the whole training set, E(w) can be approximated by
the average MSE over the considered mini-batches [19], i.e.,

Ē(w) =
1
η

η∑
i=1

Ei(w). (3)

This implies the approximate objective function

F̄ (w, λ) = Ē(w)+ λ σ̄ 2(w),

here

¯
2(w) =

1
η

η∑
i=1

(
Ei(w)− Ē(w)

)2
, (4)

is the approximated variance.
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Algorithm 1 The standard VCB method [19]
1: procedure VCB(T ,W , η, ζ , [λmin, λmax])
2: c ← 0, wc ← initialize(W ), w∗ ← wc ▷ Initial parameter

vector
3: E(wc )← fullMSE(T ), E∗ ← E(wc ) ▷ Full MSE computation
4: while (Not Stopping) do
5: c ← c + 1 ▷ Start new VCB cycle
6: Sc ← pickMiniBatches(T , η, ζ ) ▷ New set of mini-batches
7: (Ēc , σ̄ 2

c )← setMSE(Sc , wc−1) ▷ Average MSE and variance
8: λc ← updatePenalty(E∗, Ēc , σ̄ 2

c , [λmin, λmax]) ▷ Penalty
coefficient

9: w∗c ← solve(F̄ (w, λc ),W , Sc ) ▷ Solve problem of Eq. (5)
10: E(w∗c )← fullMSE(T ) ▷ Full MSE calculation
11: if (E(w∗c ) < E∗) then
12: w∗ ← w∗c , E

∗
← E(w∗c ) ▷ Update best solution

13: end if
14: end while
15: return w∗, E∗
16: end procedure

According to the VCB method [19], the training of the network
roceeds in cycles (epochs). At the cth cycle, a set Sc consisting of
> 1 mini-batches is taken,

c =
{
Tc1, Tc2, . . . , Tcη

}
,

here each mini-batch consists of ζ randomly selected training
oints from the training set T . Then, the minimization problem

min
∈W

F̄ (w, λ) = Ē(w)+ λ σ̄ 2(w), (5)

s solved using a gradient-based optimizer. The minimization
rocedure provides a solution vector (network parameters) w∗c
long with Ē

(
w∗c

)
, i.e., its average MSE for the specific set of

mini-batches Sc . The solution vector w∗c corresponds to a specific
arameter setting of the neural network. The full MSE, E

(
w∗c

)
,

of the network is also evaluated once at the end of each cycle,
using the whole training set T . The solution vector that achieves
the overall best full MSE value E∗, i.e., the lowest value of E

(
w∗c

)
over all cycles, is tracked and updated as it is the final solution
eventually returned by the VCB method [19].

The penalty coefficient λ of Eq. (5) is suggested to follow a
retarded penalty approach [19]. More specifically, in the cth cycle
it is updated right before the minimization of Eq. (5) as follows:

λc =
E∗ − Ē

(
w∗c−1

)
σ̄ 2(w∗c−1)

, (6)

where E∗ is the overall best full MSE up to the (c−1)-th cycle, and
Ē

(
w∗c−1

)
, σ̄ 2(w∗c−1), are the average MSE and the corresponding

variance, respectively, for the solution w∗c−1 of the previous cycle.
In order to ensure that λc takes reasonable values, it is restricted
within a user-defined interval [λmin, λmax].

The VCB method is outlined in Algorithm 1. The input of the
algorithm comprises the complete training set, T , the parameter
domain of the network, W , the number η > 1 of mini-batches
per mini-batch set, the number ζ > 0 of training points per
mini-batch, and the acceptable range [λmin, λmax] for the penalty
coefficient. In Step 2, the algorithm initializes the cycle counter c ,
as well as the parameter vector wc ∈ W and the overall best
solution w∗. In Step 3, it evaluates the full MSE, E(wc), using the
complete training set T , and sets the overall best solution value
E∗.

The while-loop of Steps 4–14 defines a complete cycle of the
VCB method. First, the cycle counter is updated in Step 5 and
a new set Sc of η randomly selected mini-batches, each one

consisting of ζ points picked from the training set T is determined

3

in Step 6. The average MSE, Ēc , and the corresponding variance,
σ̄ 2
c , for wc−1 over Sc are calculated in Step 7. This allows the

calculation of the new penalty coefficient value λc according to
Eq. (6) in Step 8. In Step 9, the optimizer is evoked for solving the
minimization problem of Eq. (5), producing a new solution w∗c ∈
W . Note that, during the minimization each candidate solution w
is assessed according to its MSE on the set of mini-batches only,
instead of the whole training set. The resulting solution w∗c of the
cth cycle is then evaluated over the complete training set T in
Step 10 and, subsequently, the overall best solution is updated in
Steps 11–13. At this point, the current VCB cycle is complete and
the algorithm decides to either continue its run or stop.

Various conditions can serve as the termination criteria of the
algorithm. Most frequently the following two conditions are used
either individually or combined:

(i) A prescribed maximum number of function evaluations,
tmax, is reached.

(ii) A prescribed maximum number of VCB cycles, cmax, is
reached.

In our approach, one function evaluation corresponds to the eval-
uation of the neural network or its gradient on a single training
point.

2.2. Single-objective VCB method

The standard VCB method is based on the iterative solution
of the single-objective optimization problem of Eq. (5). Since
the objective function F̄ (w, λ) is differentiable, gradient-based
optimizers are directly applicable. Assuming a fixed value of
the penalty coefficient λ, the objective function F̄ (w, λ) can be
written as a function in w, with partial derivatives

∂ F̄ (w)
∂wl

=
∂ Ē(w)
∂wl

+ λ
∂σ̄ 2(w)
∂wl

, l = 1, 2, . . . , κ, (7)

where κ > 0 is the number of tunable parameters of the network,
i.e., the dimension of the parameter vector w. From Eq. (3) it
follows that

∂ Ē(w)
∂wl

=
1
η

η∑
i=1

∂Ei(w)
∂wl

,

where, taking into account Eq. (2), we have

∂Ei(w)
∂wl

=
2
ζ

ζ∑
j=1

[(
N(xij , w)− yij

) ∂N(xij , w)

∂wl

]
. (8)

Also, from Eq. (4), it follows that

∂σ̄ 2(w)
∂wl

=
2
η

η∑
i=1

[(
Ei(w)− Ē(w)

) (
∂Ei(w)
∂wl

−
∂ Ē(w)
∂wl

)]
.

Thus, all the partial derivatives involved in Eq. (7) are completely
defined. Their specific form for the RBF network considered later
in our experimental assessment is given in Section 2.4.

The application of gradient-based algorithms such as SGD for
the minimization in Eq. (5) is straightforward. The gradient of the
objective function F̄ (w) is defined as

∇w F̄ (w) =
(
∂ F̄ (w)
∂w1

,
∂ F̄ (w)
∂w2

, . . . ,
∂ F̄ (w)
∂wκ

)T

,

consisting of the partial derivatives defined above. Alternatively,
quasi-Newton methods can be used to increase efficiency. In
the present study, we consider the established BFGS algorithm
combined with the strong Wolfe–Powell line search conditions.
BFGS is a state-of-the-art optimization algorithm that requires
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nly first-order derivative information [21]. Starting from a ran-
omly selected initial point w(0)

∈ W , the algorithm produces a
equence of iterates,
(k+1)
= w(k)

+ αkp(k),

where p(k) is the search direction and αk > 0 is the step size. The
search direction is given as

p(k) = −Hk∇w F̄
(
w(k)) ,

where F̄ is our objective function and Hk is a symmetric, positive-
definite approximation of the inverse Hessian matrix of F̄ eval-
uated at the current point w(k). This matrix undergoes rank-2
updates at each iteration as follows:

Hk+1 = Hk +

(
sTkyk + yTkHkyk

) (
sksTk

)(
sTkyk

)2 −
HkyksTk + skyTkHk

sTkyk
,

here

k = ∇w F̄
(
w(k+1))

−∇w F̄
(
w(k)) , sk = w(k+1)

− w(k).

The initial approximation H0 can be simply taken as the identity
matrix.

The step size αk > 0 is determined through line search, accept-
ing only values that satisfy the strong Wolfe–Powell conditions:

(a) Armijo condition (sufficient reduction):

F̄
(
w(k+1)) ⩽ F̄

(
w(k))

+ ρ1αk∇w F̄
(
w(k)) p(k)

(b) Curvature condition:⏐⏐⏐∇w F̄ (
w(k+1))T p(k)⏐⏐⏐ ⩽ ρ2 ⏐⏐⏐∇w F̄ (

w(k))T p(k)⏐⏐⏐
The parameters 0 < ρ1 < ρ2 < 1 are algorithm-dependent. Thus,
starting from an initial step size α0, the line search procedure
iterates by either reducing or expanding the step until a suitable
value is found or a maximum number of line search iterations,
k[ls]max, is reached.

Starting with a symmetric, positive-definite approximation
of the inverse Hessian matrix, BFGS equipped with the Wolfe–
Powell conditions retains these properties for all the subsequent
updates. However, in some cases, the line search may exceed its
allowed number of iterations before both the Wolfe–Powell con-
ditions are satisfied. Along with possible numerical inaccuracies
(e.g., due to ill-conditioned Hessians), such cases may prevent
the algorithm from retaining positive definite inverse Hessians.
In such cases, the Hessian can be reset to the identity matrix.

In our approach, the optimization algorithm stops its run and
returns the best-detected solution back to the VCB method if
the available computational budget (i.e., network evaluations)
tmax is exceeded. Additional termination conditions may apply,
depending on whether the user has specified a fixed number of
VCB cycles or not. In the first case, the optimizer is assigned a
predetermined computational budget for each cycle. If a local
minimum is reached or convergence stagnates before exceeding
the cycle’s budget, the optimizer is restarted from a new initial
point. For this purpose, two restarting conditions are checked
after producing each new parameter vector w(k+1):

(a) Restarting condition 1
This is the relative function improvement condition defined
as⏐⏐F̄ (

w(k+1)
)
− F̄

(
w(k)

)⏐⏐⏐⏐F̄ (
w(k+1)

)⏐⏐ ⩽ εf , (9)

where ε > 0 is a user-defined improvement tolerance.
f u

4

(b) Restarting condition 2
This is the gradient-norm tolerance condition defined as∇w F̄ (

w(k+1)) ⩽ εg , (10)

where εg > 0 is a user-defined gradient-norm tolerance.

If either condition holds, the algorithm proceeds to the next
iteration with a new initial point selected at random; otherwise
it continues its current trajectory.

In case the user has not specified the exact number of VCB
cycles, the optimizer stops either if the maximum computational
budget is reached or either of the conditions of Eqs. (9) and (10)
is verified. As soon as the optimizer stops, the obtained solution
is returned to the VCB method, which further progresses with its
current cycle as it was previously described in Algorithm 1.

2.3. Multi-objective VCB method

The minimization problem of Eq. (5) consists of a penalty
function that involves two distinct objectives, namely the average
MSE, Ē(w), and the corresponding variance, σ̄ 2(w), which are
evaluated over the current cycle’s set of mini-batches. An ideal
solution would concurrently minimize both functions. However,
this may be impossible due to conflicting objectives. Thus, a
novel multi-objective formulation is appealing as an alternative
approach.

More specifically, instead of the penalty function of Eq. (5), we
consider the vectorial objective function

F̄ (w) =
[
Ē(w) σ̄ 2(w)

]T
,

where w ∈ W is the vector of tunable parameters of the network.
The main goal is to find a Pareto optimal solution, i.e., a parameter
ector w∗ that has one of the following properties for all wi ∈

\ {w∗}:

(1) Ē(wi) = Ē(w∗) and σ̄ 2(wi) = σ̄ 2(w∗)
(2) Ē(wi) > Ē(w∗) or σ̄ 2(wi) > σ̄ 2(w∗) (or both)

n other words, Pareto optimality dictates that moving away from
∗ would increase at least one of the objectives. Moreover, given
wo objective vectors,

¯ (w1) =
[
Ē(w1) σ̄ 2(w1)

]T
, F̄ (w2) =

[
Ē(w2) σ̄ 2(w2)

]T
,

e say that F̄ (w1) dominates F̄ (w2), and denote F̄ (w1) ⪯ F̄ (w2), if
nd only if it holds that:

(a) Ē(w1) ⩽ Ē(w2) and σ̄ 2(w1) ⩽ σ̄ 2(w2)
(b) Ē(w1) < Ē(w2) or σ̄ 2(w1) < σ̄ 2(w2) (or both)

he set of all parameter vectors w ∈ W with non-dominated
bjective vectors F̄ (w) is called the Pareto optimal set,
∗ ≜

{
w ∈ W : ∄w′ ∈ W such that F̄ (w′) ⪯ F̄ (w)

}
,

hile their corresponding set of objective vectors is called the
areto front,

F∗ ≜
{
F̄ (w) =

[
Ē(w) σ̄ 2(w)

]T
: w ∈ P∗

}
.

hus, in the multi-objective framework, there is a whole set
∗ of potentially interesting solutions. These solutions corre-
pond to incomparable (non-dominated) objective vectors, grant-
ng different performance properties to the associated neural
etwork settings. This is the main motivation for considering the
ulti-objective formulation in the VCB method.
Naturally, the multi-objective formulation requires suitable

ptimizers. Evolutionary computation has offered a variety of ef-
icient multi-objective optimization algorithms [22]. Vector eval-
ated evolutionary algorithms employ a population of search
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oints that can concurrently approximate multiple solutions.
herefore, more than one solution of the Pareto optimal set can be
etected in a single run. Among the available algorithms, NSGA-
I (non-dominated sorting genetic algorithm) [23] and MOPSO
multi-objective particle swarm optimization) [20] stand in a
rominent position. Regarding its representation and vector op-
rations, MOPSO is inherently designed for continuous problems.
ence, it can be reasonably considered as a promising optimizer
or the studied problem.

MOPSO adopts the standard PSO concept. It assumes M >

search agents, called the particles, which collectively form a
opulation P , called the swarm,

= {w1, w2, . . . , wM} ,

o probe the network’s parameter space W . Each particle wi
orresponds to a candidate solution, which is interpreted as an
lternative parameter vector of the network, similarly to the
ingle-objective case presented in the previous section. Thus, each
article is a κ-dimensional vector wi = (wi1, wi2, . . . , wiκ)

T
∈ W ,

hich iteratively updates its position in W , in order to detect
etter candidate solutions. For this purpose, each particle wi
ssumes an adaptable position shift, vi, also called its velocity. The
elocity is updated at each iteration according to the best findings
f the particle itself as well as those of the whole swarm.
While probing the search space W , each particle retains in
separate memory the best position it has ever visited. These
ositions are stored in a set of best positions,

= {b1, b2, . . . , bM} .

urthermore, aiming at visiting the most promising regions of W ,
he non-dominated solutions detected from the beginning of the
urrent run of the algorithm are stored in a repository set,

=
{
r1, r2, . . . , rξ

}
,

hich is updated at each iteration.
At the kth iteration of the algorithm, the particles and veloci-

ies are updated as follows [20]:

v
(k+1)
ij = ω v

(k)
ij + rand(φ1)

(
b(k)ij − w

(k)
ij

)
+ rand(φ2)

(
rlj − w

(k)
ij

)
, (11)

(k+1)
ij = w

(k)
ij + v

(k+1)
ij , (12)

or all i = 1, 2, . . . ,M , and j = 1, 2, . . . , κ , where ω is an
nertia coefficient that restricts the magnitude of the velocities;
and(φ) is a random number generator that returns a uniformly
istributed decimal random number in the interval [0, φ] at each
all; b(k)i ∈ B is the corresponding best position of the particle;
nd rl is a vector selected from the repository R (we explain the
election mechanism later). The parameters are usually set to
heir default values, namely ω = 0.729, φ1 = φ2 = 1.49, as
uggested in the theoretical analysis of PSO in [24]. Further details
n PSO can be found in [25,26].
In MOPSO, the initial swarm is randomly initialized in the

earch space W , while the initial velocities are all set to zero.
Despite the use of the inertia coefficient, the velocities are also
clamped by a maximum absolute value vmax, i.e.,

vmax ⩽ vij ⩽ vmax, ∀ i, j.

he value of vmax may be determined as a fraction of the range of
he search space for each dimension component. After updating
ll particles and velocities and evaluating the new swarm, the

est position of each particle is updated according to the Pareto

5

domination property,

b(k+1)i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w

(k)
i , if F̄

(
w

(k)
i

)
⪯ F̄

(
b(k)i

)
,

b(k)i , if F̄
(
b(k)i

)
⪯ F̄

(
w

(k)
i

)
,

rand
{
w

(k)
i , b

(k)
i

}
, if w(k)

i , b
(k)
i , are incomparable,

where rand
{
w

(k)
i , b

(k)
i

}
returns either w(k)

i or b(k)i at random.
The repository set R is a special feature of the MOPSO algo-

rithm. Initially, R admits all the particles with non-dominated
objective vectors (henceforth called the non-dominated particles)
from the initial swarm. At each iteration, the non-dominated
particles of the updated swarm are merged with R, and the new
repository is formed by all non-dominated vectors among them.
In order to prevent the uncontrollable growth of the repository,
a maximum repository size shall be defined.

In the case where the number of the available non-dominated
vectors exceeds the size of the repository, an adaptive grid proce-
dure is applied. This procedure aims at retaining non-dominated
vectors that reside in less crowded areas of the objective space.
More specifically, the adaptive grid is defined in the objective
space as a set of hypercubes (orthogonals in our bi-objective case)
formed by partitioning the range of each objective function in a
user-defined number of intervals δ > 0. Then, non-dominated
particles with objective vectors residing in less populated hyper-
cubes are prioritized in R. The exact mechanism of the adaptive
grid procedure is thoroughly described in [20].

The selection of a specific vector from R for use in Eq. (11)
follows a fitness-based roulette-wheel selection. First, the fitness
of each non-empty hypercube of the adaptive grid is set to be
inversely proportional to the number of non-dominated vectors
it contains. Then, each hypercube is assigned a selection proba-
bility that is proportional to its fitness, and probabilistic selection
is applied among the hypercubes. Eventually, a non-dominated
vector is taken at random from the selected hypercube, and the
corresponding vector of R is used for the velocity update.

The MOPSO algorithm in [20] has an additional special fea-
ture, namely a mutation procedure that is used to stochastically
perturb the particles’ positions produced from Eqs. (11) and (12).
The specific mutation aims at inducing diversity in the swarm in
order to alleviate premature convergence. The specific operator
calculates the mutation probability at each iteration as follows
[20]:

ψ (k)
=

(
1−

k
kmax

) 5
γ

, (13)

where k is the current iteration of MOPSO; kmax is the prescribed
maximum number of iterations; and γ is a user-defined control
parameter also called themutation rate. Small values of γ produce
rapidly diminishing probability values. The probability is used for
deciding whether a particle will undergo mutation, as well as
for scaling the magnitude of the mutation. In the latter case, the
mutation is performed within a subspace, which is the fraction of
the original search space that is defined by γ [20].

In our approach, the algorithm terminates its run if the avail-
able computational budget tmax (network evaluations) is exceeded
Similarly to the single-objective case, additional termination con-
ditions apply if the user specifies a fixed number of VCB cycles.
In this case, the optimizer runs until it exceeds the assigned
computational budget for each cycle. Also, a restarting condi-
tion is triggered in order to avoid spending function evaluations
without gaining significant progress. Thus, the swarm reinitializes
its positions and velocities every time it exceeds a number of
iterations, k[R]max, with no change in the repository set R. On the

other hand, if the user has not specified the exact number of VCB
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ycles, the run is terminated if either a user-defined maximum
umber of MOPSO iterations kmax is reached or the repository set
has not changed for k[R]max consecutive iterations.
The MOPSO algorithm returns the detected Pareto optimal set
∗ to the main VCB algorithm. It is up to the user whether the
areto set will be fully or partially evaluated over the whole
raining set for the full MSE calculation step. Since the detected
on-dominated solutions are incomparable with respect to their
bjective vectors, the ideal choice would be to evaluate the whole
et. However, this requires a considerable number of network
valuations. Thus, a different strategy of assessing only one or a
ew Pareto solutions of interest may be adopted.

Our MOPSO implementation closely follows the original MOPSO
lgorithm in [20]. The reader is referred to that work for a
horough presentation and analysis of the algorithm.

.4. Radial basis function neural networks

In principle, the VCB method can be applied to any neural
etwork type. Our experimental investigation adopts the widely
sed RBF networks and demonstrates the workings of the pro-
osed approach on regression problems. For completeness pur-
ose, we offer a brief description of the RBF network and its
roperties (network output, derivatives, etc.), along with our
mplementation details.

The RBF network [27] is a type of feedforward neural network
hat uses radial basis activation functions. The output of the
etwork is a linear combination of neuron weights and the output
f the radial basis functions for the corresponding input pattern
ector. RBF neural networks have proved to be very effective in
unction approximation tasks [28]. They usually consist of three
ayers, namely the input layer, the hidden layer, and a linear output
ayer. Assuming a training set T defined as in Eq. (1), the input
ayer simply transfers an n-dimensional input pattern vector x ∈
to the neurons of the hidden layer. Each neuron implements a
aussian radial basis function,

(x, µl, σl) = exp
(
−

(x− µl)T (x− µl)
2 σ 2

l

)
,

where µl is the mean (center) vector of the lth neuron and σl
is the corresponding scalar value of the standard deviation. The
output produced at the output layer of the network is a linear
combination of the neurons’ responses:

N(x, w) = θ0 +
L∑

l=1

θl G(x, µl, σl), (14)

where L is the number of neurons; θl, l = 0, 1, . . . , L, are the
scalar weights of the neurons, with θ0 being a bias weight; and
w is the vector of network parameters.

In our implementation, the relevant order of the network’s
parameters in w is as follows:

w = ( θ0
bias

, θ1, σ1, µ11, µ12, . . . , µ1n  
neuron 1

, . . . , θL, σL, µL1, µL2, . . . , µLn  
neuron L

)T .

(15)

Thus, the dimension of the network’s parameter space W is κ =
+ nL. All the parameters are restricted in user-defined ranges,

li ∈ [µmin, µmax] , σl ∈ [σmin, σmax] , θl ∈ [θmin, θmax] ,

or all l = 0, 1, . . . , L, and i = 1, 2, . . . , n.
The partial derivatives of N(x, w) in Eq. (8) of the single-

objective VCB approach are defined as follows:
6

∂N(x, w)
∂wk

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if wk is the θ0 component,
G(x, µl, σl), if wk is a θl component,
θl
∥x−µl∥

2

σ 3
l

G(x, µl, σl), if wk is a σl component,

θl
(xi−µli)
σ 2
l

G(x, µl, σl), if wk is a µli component,

for all l = 1, 2, . . . , L, and i = 1, 2, . . . , n. Using these par-
tial derivatives, we can fully define the gradient vector required
for the application of gradient-based methods as described in
Section 2.2. On the other hand, the multi-objective approach of
Section 2.3 needs only the objective function value and, thus, the
network output of Eq. (14) is sufficient.

3. Experimental analysis

Our experimental analysis aimed at assessing the VCB ap-
proaches for training RBF networks on different datasets. Taking
into consideration the stochasticity of VCB as well as the selected
solvers, multiple independent experiments and relevant statisti-
cal analysis of the obtained solutions were conducted. All datasets
were split in training and validation sets, and the quality of the
obtained networks was assessed in terms of their generalization
properties on the validation set.

3.1. Algorithm setting and notation

All algorithmic and experimental settings are summarized
in Table 1. More specifically, for each dataset, three different
training–validation ratios (henceforth denoted as T–V ratios) were
considered, namely 60% − 40%, 70% − 30%, and 80% − 20%.
Regarding the number of VCB cycles, we considered two alterna-
tives, namely a fixed number of 10 cycles, as well as the case of
unspecified number of cycles, which allows the algorithm to run
as long as there is available computational budget. Also, for the
multi-objective VCB case, we considered 7 different strategies for
the selection of Pareto optimal solutions that undergo full MSE
evaluation. The different strategies are denoted as follows:

(1) Strategy 0: Select all vectors in the Pareto optimal set.
(2) Strategy 1a: Select the Pareto optimal vector that has the

smallest value, f ∗1 , for the first objective function, Ē(w).
(3) Strategy 1b: Select the Pareto optimal vector that has the

smallest value, f ∗2 , for the second objective function, σ̄ 2(w).
(4) Strategy 1c: Select the intermediate vector of the Pareto set

that has the smallest distance from the ideal point (f1∗, f2∗).
(5) Strategy 1r: Select a vector from the Pareto optimal set at

random.
(6) Strategy 3a: Select 3 vectors from the Pareto optimal set at

random.
(7) Strategy 3b: Select 3 representative vectors, namely the

three vectors of Strategies 1a, 1b, and 1c.

If the Pareto set has less than 3 vectors, Strategy 1c selects
a vector at random, while Strategies 3a and 3b select the entire
Pareto set. We will henceforth use the following notation for the
studied VCB variants:

so/c (single-objective VCB), mo/c/s (multi-objective VCB)

where c ∈ {0, 10} stands for the number of cycles, with 0 denot-
ing the unspecified number case and 10 denoting the fixed num-
ber; s ∈ {0, 1a, 1b, 1c, 1r, 3a, 3b} stands for the selected strategy.

Each mini-batch set consisted of 10 mini-batches. It was
formed by selecting 10% of the training set at random, and equally
allocating the patterns to the mini-batches.

In all test cases, we considered RBF networks of 5 neurons
with their center vector components lying in the interval [−5.0,
5.0], their standard deviations in [0.1, 2.0], and their weights in
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Table 1
Summary of the experimental settings.
Single-objective VCB

VCB cycles Undefined (so/0) or 10 (so/10)
Penalty parameter λ ∈ [0.1, 70]
Maximum BFGS iterations 100
Maximum line search iterations 100
Wolfe–Powell conditions parameters ρ1 = 10−4 and ρ2 = 0.1
Minimum relative improvement 10−4

Gradient-norm tolerance 10−4

Multi-objective VCB

VCB cycles Undefined (mo/0/∗) or 10 (mo/10/∗)
Pareto solutions for full MSE 1 (mo/∗/1∗) or many (mo/∗/0, mo/∗/3∗)
Number of objectives 2
Swarm/repository size 10
Maximum MOPSO iterations 100
Swarm restart iterations 20 (if repository not improved)
Grid intervals per dimension 20
Velocity clamping percentage 0.2 (20%)
Mutation parameter 0.25

Adam

Step size 0.001
Exponential decay rates 0.9 and 0.999
Error tolerance 10−8

Common settings

Experiments per algorithm 25
Computational budget 106 (network evaluations)
Training–Validation ratio 60%–40%, 70%–30%, 80%–20%
Mini-batches per set 10
Pattern vectors per set 10% of total number/mini-batches per set

RBF neural networks

Number of hidden neurons 5
Center components range [−5.0, 5.0]
Standard deviations range [0.1, 2.0]

Weights range [−20.0, 20.0]

f
n
V
i

F

3

t
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f

[−20.0, 20.0]. The available computational budget was set to 106

function evaluations (i.e., single-pattern network evaluations),
and 25 independent experiments were conducted for each solver.
All the selected parameter values are commonly used in the
relevant literature.

In the single-objective VCB approach, the BFGS optimizer de-
scribed in Section 2.2 was used. Its maximum number of iter-
ations was set to 100, which is used also as the termination
condition in case of unspecified number of cycles. Moreover, line
search was given a maximum of 100 iterations, while the domain
of the penalty parameter λ was set to [0.1, 70.0] according to
the suggestions in [19]. The minimum relative improvement and
the gradient-norm tolerance were both set to 10−4. Finally, the
parameters of the Wolfe–Powell conditions were set to 10−4 and
.1, respectively, as suggested in the relevant literature [29].
In the multi-objective case, there were two objectives as ex-

lained in Section 2.3. The swarm size and repository size in
OPSO were both equal to 10. MOPSO was allowed to run for
00 iterations in the case of unspecified number of VCB cy-
les. In order to tackle search stagnation, failing to update the
epository for 10 consecutive iterations triggered the swarm-
estarting procedure. The velocity update parameters were set to
heir default values given in Section 2.3, while the adaptive grid
ssumed a partitioning of 20 intervals per dimension. The velocity
lamping percentage was 20%, and the mutation parameter was
qual to 0.25. These values were set according to the discussion
n [20] and our relevant experience, and they were verified in a
rial-and-error preprocessing phase.

The above settings defined 2 variants of the single-objective
nd 14 variants of the multi-objective VCB approach that were
pplied on the studied problem and compared among them. Fur-
her comparisons were conducted between the VCB approaches
nd the established Adam algorithm [12]. The default parameters
7

of Adam were used, i.e., the step size was set to 0.001; the
exponential decay rates of the moment estimates were set to
0.9 and 0.999, respectively; and the error was equal to 10−8. For
airness purpose, Adam was allowed to perform either the same
umber of cycles (each one with a different mini-batch) with the
CB approach or an unspecified number using the limit of 100
terations as the termination condition of each cycle.

A flowchart of the proposed methodology is illustrated in
ig. 1.

.2. Employed statistical tests

We examined four test cases (datasets). The analysis for each
est case and T–V ratio included the following:

(1) Calculation of statistical MSE information, namely mean,
standard deviation, median, minimum, and maximum MSE
value on the validation set.

(2) Boxplots of the obtained MSEs on the validation set.
(3) Two-sample Wilcoxon rank-sum tests at 0.05 significance

level for each pair of algorithms to verify the statistical sig-
nificance of the observed median performance differences.

ll the software for the experiments was implemented in Math-
orks Matlab

®
.

.3. Test Case 1: Function approximation dataset without noise

In the first test case, we considered the 2-dimensional Mexican
at function, which is defined as

(x) =
sin

(
x21 + x22

)√
x2 + x2

,

1 2
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Fig. 1. Flowchart of the proposed methodology.
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Fig. 2. The 2-dimensional Mexican Hat function.

ith x ∈ X ≜ [−5.0, 5.0]× [−5.0, 5.0]. The function is illustrated
n Fig. 2, and, evidently, it possesses a plethora of local minima.
he dataset was generated using a 200 × 200 grid in X , which
efines 40,000 data points that were all evaluated with f (x).
mong them, a percentage dictated by the corresponding T–V
atio was selected at random to form the training set, while the
est were used as the validation set.

The obtained MSE statistics are summarized in Table 2. More
pecifically, it reports the mean, standard deviation, median, min-
mum, and maximum MSE over the 25 independent experiments,
or each algorithm and T–V ratio. The minimum value per column
or both the single-objective and the multi-objective variants
s boldfaced, while the overall best value per column is also
nderlined. In order to gain further insight, the obtained MSE
alues are also illustrated in the boxplots of Fig. 3. Note that the
8

results of the Adam algorithm are depicted separately to avoid
distortion due to the significantly larger MSE values.

In addition, statistical significance tests were conducted for
each pair of algorithms to verify that the observed median per-
formance differences are not the outcome of random fluctuations.
For this purpose, the Wilcoxon rank-sum test (a.k.a. Mann Whit-
ney U test) at 0.05 significance level was used and the results
are reported in Table 3. More specifically, for each comparison of
a row algorithm vs a column algorithm in the table, ‘‘=’’ implies
statistically insignificant difference between the compared algo-
rithms. In case of significant difference, right and left tailed tests
were conducted for the pair of algorithms, with ‘‘+’’ denoting that
he row algorithm was superior than the column algorithm, and
‘–’’ denoting the opposite result.

Table 2 and Fig. 3 reveal interesting information regarding the
lgorithms’ performance. Firstly, we verify that the two single-
bjective VCB approaches exhibited different performance be-
ween them. The so/0 variant, i.e., the one with unspecified
umber of cycles, achieved the lowest MSE mean and standard
eviation for all T–V ratios, while the so/10 variant, i.e., the
ne with the fixed number of cycles, was evidently inferior. The
xplanation behind this observation lies in the effort spent at
ach cycle. While so/10 had a predefined computational budget
o spend at each cycle, so/0 was capable of stopping the cur-
ent cycle only after achieving a satisfactory MSE value for the
iven mini-batch. We observed that, in some cases, this could
e achieved earlier than in so/10, while in other cases multiple
estarts of the optimizer were required. Thus, so/0 had the oppor-
unity of self-tuning driven by the termination conditions of the
ptimizer, which were beneficial in alleviating under- and over-
raining. It is worth noting that so/0 frequently performed less
ycles than so/10.
Interestingly, the benefits of using unspecified number of

ycles were verified also for the multi-objective VCB variants.
ig. 3 clearly reveals that the mo/10/∗ variants had inferior
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Table 2
MSE statistics for the Mexican Hat function approximation without noise.
T–V Ratio Algorithm Mean St.D. Median Min Max

60%− 40% so/0 7.43e−02 1.75e−02 6.92e−02 6.33e−02 1.54e−01
so/10 2.43e−01 2.25e−01 1.31e−01 6.82e−02 9.04e−01
mo/0/0 1.71e−01 9.28e−02 1.44e−01 5.81e−02 4.92e−01
mo/0/1a 1.76e−01 1.36e−01 1.35e−01 6.89e−02 7.09e−01
mo/0/1b 1.74e−01 9.99e−02 1.51e−01 7.76e−02 4.82e−01
mo/0/1c 1.43e−01 7.62e−02 1.15e−01 6.60e−02 4.04e−01
mo/0/1r 2.07e−01 1.92e−01 1.38e−01 6.87e−02 9.74e−01
mo/0/3a 1.56e−01 1.19e−01 1.07e−01 7.53e−02 5.45e−01
mo/0/3b 1.59e−01 8.94e−02 1.20e−01 6.56e−02 4.30e−01
mo/10/0 2.95e+00 1.95e+00 2.51e+00 8.72e−01 8.92e+00
mo/10/1a 2.13e+00 1.15e+00 2.21e+00 4.84e−01 4.17e+00
mo/10/1b 3.03e+00 1.93e+00 2.73e+00 1.05e+00 7.59e+00
mo/10/1c 2.58e+00 1.39e+00 2.39e+00 4.22e−01 5.92e+00
mo/10/1r 2.13e+00 1.26e+00 1.81e+00 4.95e−01 4.66e+00
mo/10/3a 3.02e+00 1.71e+00 2.97e+00 3.76e−01 7.20e+00
mo/10/3b 3.59e+00 2.47e+00 3.03e+00 3.41e−01 9.72e+00
Adam 1.06e+02 8.83e+01 7.39e+01 1.32e+01 3.09e+02

70%− 30% so/0 7.11e−02 9.63e−03 6.94e−02 5.26e−02 9.90e−02
so/10 1.20e+00 2.98e+00 2.52e−01 7.12e−02 1.14e+01
mo/0/0 1.81e−01 9.56e−02 1.46e−01 7.44e−02 4.37e−01
mo/0/1a 2.77e−01 2.70e−01 1.79e−01 6.63e−02 1.15e+00
mo/0/1b 3.58e−01 5.22e−01 2.02e−01 5.78e−02 2.27e+00
mo/0/1c 2.30e−01 2.52e−01 1.37e−01 7.37e−02 1.15e+00
mo/0/1r 7.77e−01 2.55e+00 1.38e−01 6.42e−02 1.30e+01
mo/0/3a 2.55e−01 1.84e−01 1.75e−01 7.47e−02 7.21e−01
mo/0/3b 2.20e−01 1.49e−01 1.81e−01 8.15e−02 7.71e−01
mo/10/0 3.55e+00 1.82e+00 3.36e+00 9.22e−01 7.83e+00
mo/10/1a 2.85e+00 1.45e+00 2.91e+00 6.33e−01 6.78e+00
mo/10/1b 3.52e+00 2.05e+00 3.27e+00 1.45e+00 1.03e+01
mo/10/1c 2.74e+00 1.85e+00 2.32e+00 5.06e−01 6.35e+00
mo/10/1r 2.82e+00 1.87e+00 2.26e+00 3.69e−01 8.69e+00
mo/10/3a 3.67e+00 2.07e+00 3.20e+00 1.38e+00 8.65e+00
mo/10/3b 3.55e+00 1.80e+00 3.43e+00 9.94e−01 6.47e+00
Adam 1.29e+02 1.21e+02 7.84e+01 3.42e+00 3.46e+02

80%− 20% so/0 7.49e−02 1.58e−02 7.10e−02 5.78e−02 1.40e−01
so/10 1.51e+00 2.49e+00 7.42e−01 9.85e−02 1.24e+01
mo/0/0 1.99e−01 8.99e−02 1.68e−01 9.47e−02 4.57e−01
mo/0/1a 3.30e−01 2.98e−01 2.58e−01 8.73e−02 1.44e+00
mo/0/1b 2.97e−01 2.04e−01 2.83e−01 7.71e−02 8.30e−01
mo/0/1c 2.38e−01 1.77e−01 2.04e−01 7.32e−02 8.63e−01
mo/0/1r 4.88e−01 8.62e−01 1.68e−01 7.37e−02 4.38e+00
mo/0/3a 2.67e−01 2.57e−01 1.68e−01 5.99e−02 1.25e+00
mo/0/3b 2.17e−01 1.19e−01 1.85e−01 8.04e−02 5.51e−01
mo/10/0 3.73e+00 2.72e+00 3.47e+00 5.50e−01 1.14e+01
mo/10/1a 3.47e+00 1.50e+00 3.20e+00 1.22e+00 6.93e+00
mo/10/1b 4.44e+00 2.70e+00 3.44e+00 4.89e−01 1.20e+01
mo/10/1c 3.39e+00 1.86e+00 3.17e+00 5.73e−01 7.16e+00
mo/10/1r 4.07e+00 2.35e+00 3.40e+00 2.12e−01 1.12e+01
mo/10/3a 4.61e+00 2.58e+00 4.49e+00 5.86e−01 9.56e+00
mo/10/3b 3.79e+00 2.06e+00 3.45e+00 1.46e+00 1.06e+01
Adam 1.90e+02 1.64e+02 1.14e+02 1.48e+01 5.05e+02
performance compared to the mo/0/∗ variants. In this case, we
observed a clear tendency of the MOPSO algorithm to spend
larger fractions of the computational budget on the current mini-
batch of each cycle, rather than promoting a higher number
of cycles. Thus, our first test case clearly suggested that this
approach shall be promoted instead of selecting a fixed arbitrary
number of cycles.

Focusing on the multi-objective case, an interesting observa-
tion is the lack of significant effect of the full MSE evaluation.
Despite the apparent small deviations in the MSE statistics be-
tween the multi-objective variants in Table 2, the statistical tests
of Table 3 show that the median performance is statistically
equivalent among the variants with same number of cycles (ei-
ther 10 or undefined) in almost all cases. This equivalence is a
consequence of the small sizes of the resulting Pareto sets of each
cycle, which do not induce significant additional computational
burden in the variants that employ more than one Pareto vector.

Finally, we shall underline that all VCB approaches, even the
less effective mo/10/∗ variants, outperformed the established
9

Adam approach. Moreover, a closer look at Table 2 shows that
the T–V ratio interacts with performance, with higher training
ratios resulting in slightly inferior solutions for so/10 (10 cycles
variant). On the other hand, so/0 offers mixed findings by incon-
sistently improving or worsening its performance slightly when
increasing the training percentage from 60% up to 80%, while the
same holds for the multi-objective variants. This behavior was
expected as higher training ratios are frequently associated with
over-training, which is counterbalanced by the algorithms’ in-
herent design. Nevertheless, the gradient-based single-objective
approaches appear to be more susceptible to this effect than the
stochastic multi-objective ones.

3.4. Test Case 2: Function approximation dataset with noise

Our second test case consisted of the same problem as in the
previous section, although using a training set that was contam-
inated with Gaussian noise. More specifically, at each function
value of the training set, Gaussian noise of maximum magnitude
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Fig. 3. MSE boxplots for the Mexican Hat function approximation without noise.
Fig. 4. MSE boxplots for the Mexican Hat function approximation with noise.
equal to 10% of the actual value was added. All the rest of
our experimental settings were retained as in Test Case 1. This
experiment was motivated by our intention to assess the effect
of noise, which is habitually met in real-world applications.

The results are summarized in Tables 4 and 5, and in Fig. 4, fol-
lowing the same presentation style as in Test Case 1. The boxplots
in Fig. 4 suggest the existence of performance differences among
the algorithms compared to the noiseless case of the previous
section. Although the general performance trends of the most
efficient algorithms are still observed, we can see some alter-
ations in their pairwise comparisons. For instance, the mo/10/1∗
10
approaches are not systematically equivalent to mo/10/0, and
Adam does not produce declining performance as the training
ratio increases.

Table 5 verifies that noise becomes also a tie-breaker between
algorithms in cases of lower training ratio, e.g., between mo/10/1r
and mo/10/0 (the former becomes better) for the 60% − 40%
case, and between so/10 and mo/0/0 (the latter becomes su-
perior) for the 70% − 30% case. However, the noise appears to
induce the inverse effect for the 80% − 20% case, where over-
training is typically an issue. More specifically, for that case,
so/10 achieved statistically equivalent performance with mo/0/0
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Table 3
Wilcoxon rank-sum tests (row algorithm vs column algorithm) for the Mexican Hat function approximation without noise.
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T–V Ratio 60% – 40%

so/0 + + + + + + + + + + + + + + + +

so/10 − = = = = = = = + + + + + + + +

mo/0/0 − = = = = = = = + + + + + + + +

mo/0/1a − = = = = = = = + + + + + + + +

mo/0/1b − = = = = = = = + + + + + + + +

mo/0/1c − = = = = = = = + + + + + + + +

mo/0/1r − = = = = = = = + + + + + + + +

mo/0/3a − = = = = = = = + + + + + + + +

mo/0/3b − = = = = = = = + + + + + + + +

mo/10/0 − − − − − − − − − = = = = = = +

mo/10/1a − − − − − − − − − = = = = = + +

mo/10/1b − − − − − − − − − = = = = = = +

mo/10/1c − − − − − − − − − = = = = = = +

mo/10/1r − − − − − − − − − = = = = = + +

mo/10/3a − − − − − − − − − = = = = = = +

mo/10/3b − − − − − − − − − = − = = − = +

Adam − − − − − − − − − − − − − − − −

T–V Ratio 70% – 30%

so/0 + + + + + + + + + + + + + + + +

so/10 − = = = = = = = + + + + + + + +

mo/0/0 − = = = = = = = + + + + + + + +

mo/0/1a − = = = = = = = + + + + + + + +

mo/0/1b − = = = = = = = + + + + + + + +

mo/0/1c − = = = = = = = + + + + + + + +

mo/0/1r − = = = = = = = + + + + + + + +

mo/0/3a − = = = = = = = + + + + + + + +

mo/0/3b − = = = = = = = + + + + + + + +

mo/10/0 − − − − − − − − − = = = = = = +

mo/10/1a − − − − − − − − − = = = = = = +

mo/10/1b − − − − − − − − − = = = = = = +

mo/10/1c − − − − − − − − − = = = = = = +

mo/10/1r − − − − − − − − − = = = = = = +

mo/10/3a − − − − − − − − − = = = = = = +

mo/10/3b − − − − − − − − − = = = = = = +

Adam − − − − − − − − − − − − − − − −

T–V Ratio 80% – 20%

so/0 + + + + + + + + + + + + + + + +

so/10 − − − − − − − − + + + + + + + +

mo/0/0 − + = = = = = = + + + + + + + +

mo/0/1a − + = = = = = = + + + + + + + +

mo/0/1b − + = = = = = = + + + + + + + +

mo/0/1c − + = = = = = = + + + + + + + +

mo/0/1r − + = = = = = = + + + + + + + +

mo/0/3a − + = = = = = = + + + + + + + +

mo/0/3b − + = = = = = = + + + + + + + +

mo/10/0 − − − − − − − − − = = = = = = +

mo/10/1a − − − − − − − − − = = = = = = +

mo/10/1b − − − − − − − − − = = = = = = +

mo/10/1c − − − − − − − − − = = = = = = +

mo/10/1r − − − − − − − − − = = = = = = +

mo/10/3a − − − − − − − − − = = = = = = +

mo/10/3b − − − − − − − − − = = = = = = +

Adam − − − − − − − − − − − − − − − −
A
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nd mo/0/1r, while the mo/0/0 variant surpassed its (formerly
quivalent) mo/0/1r counterpart. Note that, in all cases, Adam
xhibited inferior performance than the tested VCB approaches.

.5. Test Case 3: Real estate dataset without noise

The third test case consisted of the Real Estate dataset that is
vailable at [30]. It consists of 414 observations and 6 features,
amely transaction date, house age, distance to the nearest mass
apid transit station, number of convenience stores, latitude, and
ongitude. The predicted value is the house price of unit area.
ur experimental setting was aligned with the previous test
ases.
11
The results are summarized in Tables 6 and 7, and in Fig. 5.
n interesting observation in Fig. 5 that differs from the previous
est cases is the performance profile of the so/0 variant. More
pecifically, although it was capable of attaining satisfactory me-
ians (depicted as red lines in the boxplots), the range of the
btained MSE values was significantly wider than the rest of the
CB variants. This behavior suggests declining robustness of the
pecific variant, which can be interpreted as an effect of the small
ataset size.
Contrary to so/0, the rest of the VCB variants retained con-

istent performance profiles, with the mo/10/∗ variants being
ven more competitive against their mo/0/∗ counterparts. Even
he Adam approach was capable of achieving competitive results,
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Table 4
MSE statistics for the Mexican Hat function approximation with noise.
T–V Ratio Algorithm Mean St.D. Median Min Max

60%− 40% so/0 7.76e−02 1.68e−02 7.29e−02 6.75e−02 1.49e−01
so/10 5.46e−01 1.70e+00 1.32e−01 7.29e−02 8.63e+00
mo/0/0 1.29e−01 5.30e−02 1.08e−01 7.62e−02 2.97e−01
mo/0/1a 1.32e−01 6.09e−02 1.13e−01 7.42e−02 2.98e−01
mo/0/1b 3.80e−01 3.51e−01 2.77e−01 7.93e−02 1.62e+00
mo/0/1c 1.65e−01 1.04e−01 1.34e−01 7.00e−02 5.60e−01
mo/0/1r 2.51e−01 2.68e−01 1.45e−01 7.29e−02 1.07e+00
mo/0/3a 1.74e−01 1.07e−01 1.41e−01 6.92e−02 4.93e−01
mo/0/3b 1.84e−01 1.86e−01 1.27e−01 5.62e−02 9.68e−01
mo/10/0 3.21e+00 1.50e+00 3.41e+00 3.39e−01 8.06e+00
mo/10/1a 2.43e+00 1.02e+00 2.27e+00 4.78e−01 4.44e+00
mo/10/1b 2.97e+00 1.79e+00 2.54e+00 3.70e−01 7.93e+00
mo/10/1c 2.36e+00 1.24e+00 2.05e+00 5.33e−01 4.76e+00
mo/10/1r 2.42e+00 8.50e−01 2.17e+00 1.14e+00 5.16e+00
mo/10/3a 2.99e+00 1.82e+00 2.60e+00 7.36e−01 8.76e+00
mo/10/3b 2.27e+00 1.32e+00 2.32e+00 4.68e−01 4.87e+00
Adam 1.64e+02 1.30e+02 9.60e+01 2.00e+00 4.41e+02

70%− 30% so/0 7.00e−02 9.19e−03 6.72e−02 5.56e−02 1.00e−01
so/10 6.48e−01 1.22e+00 2.17e−01 7.01e−02 5.73e+00
mo/0/0 2.94e−01 5.86e−01 1.49e−01 6.37e−02 3.04e+00
mo/0/1a 2.21e−01 1.25e−01 1.85e−01 7.90e−02 6.30e−01
mo/0/1b 3.59e−01 2.66e−01 2.84e−01 7.48e−02 9.92e−01
mo/0/1c 1.96e−01 1.08e−01 1.62e−01 7.59e−02 4.15e−01
mo/0/1r 2.24e−01 1.57e−01 1.66e−01 6.17e−02 7.29e−01
mo/0/3a 3.17e−01 4.73e−01 1.35e−01 7.65e−02 2.34e+00
mo/0/3b 2.02e−01 1.04e−01 1.95e−01 6.82e−02 4.28e−01
mo/10/0 3.09e+00 1.64e+00 3.01e+00 9.06e−01 6.23e+00
mo/10/1a 2.89e+00 1.28e+00 2.72e+00 7.75e−01 5.32e+00
mo/10/1b 3.48e+00 1.84e+00 3.07e+00 8.72e−01 8.14e+00
mo/10/1c 2.57e+00 1.73e+00 1.78e+00 4.06e−01 6.29e+00
mo/10/1r 3.48e+00 1.80e+00 3.07e+00 7.97e−01 6.79e+00
mo/10/3a 4.05e+00 1.57e+00 3.56e+00 1.69e+00 7.94e+00
mo/10/3b 3.22e+00 1.84e+00 2.79e+00 5.94e−01 7.36e+00
Adam 1.76e+02 1.12e+02 1.68e+02 1.10e+01 4.05e+02

80%− 20% so/0 7.14e−02 9.77e−03 6.78e−02 6.37e−02 1.12e−01
so/10 4.49e−01 4.51e−01 2.74e−01 9.07e−02 1.72e+00
mo/0/0 2.00e−01 1.07e−01 1.70e−01 6.81e−02 4.11e−01
mo/0/1a 3.01e−01 3.38e−01 1.97e−01 7.50e−02 1.42e+00
mo/0/1b 3.73e−01 2.37e−01 3.29e−01 9.34e−02 9.88e−01
mo/0/1c 2.19e−01 2.02e−01 1.63e−01 5.66e−02 1.05e+00
mo/0/1r 3.95e−01 3.07e−01 3.55e−01 9.37e−02 1.37e+00
mo/0/3a 2.30e−01 2.75e−01 1.51e−01 6.57e−02 1.39e+00
mo/0/3b 3.55e−01 6.27e−01 2.00e−01 7.90e−02 3.24e+00
mo/10/0 3.43e+00 1.55e+00 3.55e+00 4.92e−01 6.81e+00
mo/10/1a 3.55e+00 1.71e+00 2.97e+00 1.40e+00 7.78e+00
mo/10/1b 3.42e+00 1.84e+00 3.24e+00 5.92e−01 9.83e+00
mo/10/1c 4.25e+00 2.39e+00 3.79e+00 4.01e−01 1.07e+01
mo/10/1r 3.13e+00 1.55e+00 3.00e+00 5.14e−01 6.57e+00
mo/10/3a 4.03e+00 2.11e+00 3.55e+00 1.56e+00 1.03e+01
mo/10/3b 3.49e+00 1.47e+00 3.31e+00 1.18e+00 6.22e+00
Adam 1.23e+02 1.04e+02 1.18e+02 2.64e+00 3.75e+02
although at the presence of a few outliers. This is clearly observed
in Table 7, where we can verify the statistically equivalent per-
formance of most of the algorithms with the exception of Adam
which, however, was far more competitive than in the previous
test cases. Also, the marginal yet observable overall superiority of
mo/0/∗ compared to mo/10/∗ variants can be noticed.

.6. Test Case 4: Real estate dataset with noise

Our last test case was based on the Real Estate dataset con-
aminated with Gaussian noise. Similarly to Test Case 2, Gaussian
oise of maximum magnitude equal to 10% of the actual value
as added to each function value of the training set, while the
est of the experimental settings remained unaltered.

The results are reported in Tables 8 and 9, and in Fig. 6. The
ddition of noise serves again as a tie-breaker, an observation that
s aligned with that of Test Case 2. For small training ratios, the
ddition of noise brings closer the performance of the algorithms,
12
as it is revealed in Table 9. However, for larger training ratios,
the performance of the multi-objective VCB variants differs, with
mo/0/0 occupying a salient position among the most effective
ones. The rest of the results came with no surprise as so/10
was still slightly better than so/0 in terms of the average MSE,
although not in terms of its median. The latter implies higher
standard deviations in the MSE values, which can be interpreted
as reduced robustness of the specific single-objective VCB variant
under the effect of noise.

3.7. Sensitivity analysis

Sensitivity analysis is an essential ingredient of quality assur-
ance for methods involving multiple parameters. The proposed
VCB methods include several parameters that may have an im-
pact on their performance. The dataset size as well as the number
of mini-batches per set are among the most important ones.
Thus, we analyzed the performance of two promising approaches,
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Table 5
Wilcoxon rank-sum tests (row algorithm vs column algorithm) for the Mexican Hat function approximation with noise.
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T–V Ratio 60% – 40%

so/0 + + + + + + + + + + + + + + + +

so/10 − = = + = = = = + + + + + + + +

mo/0/0 − = = + = = = = + + + + + + + +

mo/0/1a − = = + = = = = + + + + + + + +

mo/0/1b − − − − − − − − + + + + + + + +

mo/0/1c − = = = + = = = + + + + + + + +

mo/0/1r − = = = + = = = + + + + + + + +

mo/0/3a − = = = + = = = + + + + + + + +

mo/0/3b − = = = + = = = + + + + + + + +

mo/10/0 − − − − − − − − − − = − − = − +

mo/10/1a − − − − − − − − − + = = = = = +

mo/10/1b − − − − − − − − − = = = = = = +

mo/10/1c − − − − − − − − − + = = = = = +

mo/10/1r − − − − − − − − − + = = = = = +

mo/10/3a − − − − − − − − − = = = = = = +

mo/10/3b − − − − − − − − − + = = = = = +

Adam − − − − − − − − − − − − − − − −

T–V Ratio 70% – 30%

so/0 + + + + + + + + + + + + + + + +

so/10 − − = = = = = = + + + + + + + +

mo/0/0 − + = + = = = = + + + + + + + +

mo/0/1a − = = = = = = = + + + + + + + +

mo/0/1b − = − = − = = = + + + + + + + +

mo/0/1c − = = = + = = = + + + + + + + +

mo/0/1r − = = = = = = = + + + + + + + +

mo/0/3a − = = = = = = = + + + + + + + +

mo/0/3b − = = = = = = = + + + + + + + +

mo/10/0 − − − − − − − − − = = = = + = +

mo/10/1a − − − − − − − − − = = = = + = +

mo/10/1b − − − − − − − − − = = = = = = +

mo/10/1c − − − − − − − − − = = = = + = +

mo/10/1r − − − − − − − − − = = = = = = +

mo/10/3a − − − − − − − − − − − = − = = +

mo/10/3b − − − − − − − − − = = = = = = +

Adam − − − − − − − − − − − − − − − −

T–V Ratio 80% – 20%

so/0 + + + + + + + + + + + + + + + +

so/10 − = = = = = − = + + + + + + + +

mo/0/0 − = = + = + = = + + + + + + + +

mo/0/1a − = = + = = = = + + + + + + + +

mo/0/1b − = − − − = − − + + + + + + + +

mo/0/1c − = = = + + = = + + + + + + + +

mo/0/1r − = − = = − − − + + + + + + + +

mo/0/3a − + = = + = + = + + + + + + + +

mo/0/3b − = = = + = + = + + + + + + + +

mo/10/0 − − − − − − − − − = = = = = = +

mo/10/1a − − − − − − − − − = = = = = = +

mo/10/1b − − − − − − − − − = = = = = = +

mo/10/1c − − − − − − − − − = = = = = = +

mo/10/1r − − − − − − − − − = = = = = = +

mo/10/3a − − − − − − − − − = = = = = = +

mo/10/3b − − − − − − − − − = = = = = = +

Adam − − − − − − − − − − − − − − − −
o
p
s
a
v
o
c

s

amely so/0, and mo/0/0, by varying each one of the two pa-
ameters while retaining the rest fixed to their values given in
ection 3.1.

.7.1. Dataset size
The amount of data demanded in learning tasks depends on

arious factors, such as the complexity of the studied problem
s well as of the learning algorithm. Common practice dictates
erformance analysis with respect to the dataset size. In our
nalysis, we distinguished three cases, namely using 40%, 70%,

nd 100% of the original dataset.

13
For the Mexican Hat problem, the complete dataset consisted
f 40,000 data points. Therefore, the resulting number of data
oints for the three cases were 16,000, 28,000, and 40,000, re-
pectively. Fig. 7 illustrates the median and the standard devi-
tion of the achieved validation MSE for the so/0 and mo/0/0
ariants over 25 independent experiments, for the case with-
ut noise (upper row) and with noise (lower row), for all the
onsidered T–V ratios.
Evidently, the fluctuations of the obtained MSE as the dataset

ize increases become stronger for the multi-objective variant
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Fig. 5. MSE boxplots for the Real Estate dataset without noise.
Fig. 6. MSE boxplots for the Real Estate dataset with noise.
han the single-objective one. This is aligned with the observa-
ions in Sections 3.3 and 3.4, where so/0 was shown to be robust,
utperforming mo/0/0. The results were further verified using the
ilcoxon rank-sum test as reported in Table 10. The performance

onsistency was verified regardless of the addition of noise in the
ata.
An interesting observation is that the two variants become

quivalent when only 40% of the dataset is used for the 60%–
0% and 80%–20% T–V ratios. This indicates that using smaller
atasets may require careful setting of the size of the training
nd validation sets, as it reasonably affects the performance of the
olvers. In fact, as we can see in Fig. 7, using only the 0.4 fraction
14
(i.e., 40%) of the dataset resulted in smaller differences of the MSE
between the so/0 and mo/0/0 variants than those observed for
higher fractions.

Regarding the Real Estate dataset, which consists of 414 data
patterns, the 40% fraction consists of 166 data patterns, while
the 70% fraction consists of 290 data patterns. Fig. 8 reveals that
mo/0/0 was by far more robust than the so/0 approach, exhibiting
smaller performance fluctuations both in the noisy as well as in
the noiseless case. Moreover, there was a clear improving trend
of the results as the dataset size increased.

Despite the evident differences in robustness, the results re-
ported in Table 11 reveal that the two methods are statistically
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Table 6
MSE statistics for the Real Estate dataset without noise.
T–V Ratio Algorithm Mean St.D. Median Min Max

60%− 40% so/0 1.20e−02 4.09e−03 8.85e−03 8.48e−03 1.69e−02
so/10 9.29e−03 6.52e−04 9.27e−03 7.86e−03 1.06e−02
mo/0/0 9.36e−03 5.82e−04 9.28e−03 8.61e−03 1.10e−02
mo/0/1a 9.39e−03 5.60e−04 9.26e−03 8.45e−03 1.06e−02
mo/0/1b 9.59e−03 7.14e−04 9.47e−03 8.58e−03 1.13e−02
mo/0/1c 9.54e−03 5.53e−04 9.57e−03 8.49e−03 1.06e−02
mo/0/1r 9.61e−03 5.53e−04 9.49e−03 8.73e−03 1.13e−02
mo/0/3a 9.28e−03 4.03e−04 9.26e−03 8.36e−03 9.99e−03
mo/0/3b 9.50e−03 5.57e−04 9.37e−03 8.54e−03 1.06e−02
mo/10/0 9.87e−03 7.76e−04 9.95e−03 8.55e−03 1.18e−02
mo/10/1a 1.02e−02 9.75e−04 1.00e−02 8.60e−03 1.23e−02
mo/10/1b 1.02e−02 9.60e−04 1.01e−02 8.71e−03 1.23e−02
mo/10/1c 9.75e−03 8.72e−04 9.69e−03 8.62e−03 1.18e−02
mo/10/1r 1.01e−02 7.22e−04 1.03e−02 8.60e−03 1.12e−02
mo/10/3a 1.01e−02 1.05e−03 9.88e−03 8.66e−03 1.28e−02
mo/10/3b 9.91e−03 7.55e−04 9.83e−03 8.42e−03 1.16e−02
Adam 1.28e−02 3.67e−03 1.10e−02 7.88e−03 2.05e−02

70%− 30% so/0 8.85e−03 3.84e−03 6.17e−03 5.80e−03 1.39e−02
so/10 7.07e−03 2.01e−03 6.63e−03 5.86e−03 1.64e−02
mo/0/0 6.87e−03 6.42e−04 6.79e−03 5.76e−03 8.00e−03
mo/0/1a 6.97e−03 6.57e−04 7.03e−03 5.84e−03 8.44e−03
mo/0/1b 7.05e−03 7.47e−04 6.89e−03 5.96e−03 9.30e−03
mo/0/1c 6.78e−03 7.22e−04 6.71e−03 5.59e−03 8.37e−03
mo/0/1r 6.82e−03 6.73e−04 6.80e−03 5.77e−03 8.45e−03
mo/0/3a 6.56e−03 5.40e−04 6.59e−03 5.39e−03 7.40e−03
mo/0/3b 6.62e−03 4.67e−04 6.56e−03 5.93e−03 7.81e−03
mo/10/0 6.98e−03 6.23e−04 6.81e−03 5.92e−03 8.39e−03
mo/10/1a 7.43e−03 9.03e−04 7.28e−03 6.22e−03 1.00e−02
mo/10/1b 7.92e−03 1.02e−03 7.75e−03 6.39e−03 9.94e−03
mo/10/1c 7.47e−03 6.37e−04 7.39e−03 6.33e−03 8.94e−03
mo/10/1r 7.20e−03 8.40e−04 7.11e−03 5.88e−03 9.22e−03
mo/10/3a 7.25e−03 9.56e−04 7.12e−03 5.94e−03 1.01e−02
mo/10/3b 7.22e−03 1.16e−03 6.94e−03 5.75e−03 1.04e−02
Adam 4.22e−01 2.05e+00 8.48e−03 5.83e−03 1.02e+01

80%− 20% so/0 8.75e−03 3.77e−03 5.69e−03 5.20e−03 1.29e−02
so/10 5.75e−03 6.90e−04 5.73e−03 4.66e−03 7.39e−03
mo/0/0 6.21e−03 9.71e−04 6.29e−03 4.54e−03 9.02e−03
mo/0/1a 6.04e−03 8.43e−04 5.98e−03 4.85e−03 8.45e−03
mo/0/1b 6.50e−03 8.62e−04 6.43e−03 4.81e−03 8.69e−03
mo/0/1c 6.39e−03 1.23e−03 6.11e−03 4.56e−03 9.88e−03
mo/0/1r 6.33e−03 9.86e−04 6.36e−03 4.87e−03 8.17e−03
mo/0/3a 6.16e−03 6.12e−04 6.04e−03 4.83e−03 7.36e−03
mo/0/3b 6.02e−03 7.35e−04 5.82e−03 5.06e−03 8.22e−03
mo/10/0 6.07e−03 7.46e−04 6.02e−03 4.36e−03 7.64e−03
mo/10/1a 6.09e−03 1.04e−03 6.13e−03 4.69e−03 8.79e−03
mo/10/1b 6.45e−03 1.03e−03 6.63e−03 4.98e−03 8.08e−03
mo/10/1c 6.58e−03 1.34e−03 6.20e−03 5.08e−03 1.02e−02
mo/10/1r 6.69e−03 1.48e−03 6.36e−03 5.18e−03 1.25e−02
mo/10/3a 6.56e−03 9.68e−04 6.36e−03 4.96e−03 9.00e−03
mo/10/3b 6.04e−03 7.66e−04 6.10e−03 4.89e−03 7.49e−03
Adam 1.57e+00 7.79e+00 7.33e−03 4.73e−03 3.89e+01
Fig. 7. Sensitivity analysis on the dataset size for the Mexican Hat problem without noise (upper row) and with noise (lower row).
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Table 7
Wilcoxon rank-sum tests (row algorithm vs column algorithm) for the Real Estate dataset without noise.
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T–V Ratio 60% – 40%

so/0 = = = = = = = = = = = = = = = =

so/10 = = = = = = = = + + + = + + + +

mo/0/0 = = = = = = = = + + + = + + + +

mo/0/1a = = = = = = = = + + + = + + + +

mo/0/1b = = = = = = = = = + + = + = = +

mo/0/1c = = = = = = = = = + + = + = = +

mo/0/1r = = = = = = − = = + + = + = = +

mo/0/3a = = = = = = + = + + + = + + + +

mo/0/3b = = = = = = = = = + + = + + + +

mo/10/0 = − − − = = = − = = = = = = = +

mo/10/1a = − − − − − − − − = = = = = = +

mo/10/1b = − − − − − − − − = = = = = = +

mo/10/1c = = = = = = = = = = = = = = = +

mo/10/1r = − − − − − − − − = = = = = = +

mo/10/3a = − − − = = = − − = = = = = = +

mo/10/3b = − − − = = = − − = = = = = = +

Adam = − − − − − − − − − − − − − − −

T–V Ratio 70% – 30%

so/0 = = = = = = = = = = = = = = = +

so/10 = = = = = = = = = + + + + + = +

mo/0/0 = = = = = = = = = + + + = = = +

mo/0/1a = = = = = = = = = = + + = = = +

mo/0/1b = = = = = = − − = = + + = = = +

mo/0/1c = = = = = = = = = + + + = = = +

mo/0/1r = = = = = = = = = + + + = = = +

mo/0/3a = = = = + = = = + + + + + + = +

mo/0/3b = = = = + = = = + + + + + + + +

mo/10/0 = = = = = = = − − = + + = = = +

mo/10/1a = − − = = − − − − = = = = = = +

mo/10/1b = − − − − − − − − − = = − − − =

mo/10/1c = − − − − − − − − − = = = = − +

mo/10/1r = − = = = = = − − = = + = = = +

mo/10/3a = − = = = = = − − = = + = = = +

mo/10/3b = = = = = = = = − = = + + = = +

Adam − − − − − − − − − − − = − − − −

T–V Ratio 80% – 20%

so/0 − = = = = = = = = = = = = = = =

so/10 + = = + = + + = = = + + + + = +

mo/0/0 = = = = = = = = = = = = = = = +

mo/0/1a = = = + = = = = = = = = + + = +

mo/0/1b = − = − = = = − = = = = = = = +

mo/0/1c = = = = = = = = = = = = = = = +

mo/0/1r = − = = = = = = = = = = = = = +

mo/0/3a = − = = = = = = = = = = = = = +

mo/0/3b = = = = + = = = = = = = + + = +

mo/10/0 = = = = = = = = = = = = = + = +

mo/10/1a = = = = = = = = = = = = = = = +

mo/10/1b = − = = = = = = = = = = = = = +

mo/10/1c = − = = = = = = = = = = = = = +

mo/10/1r = − = − = = = = − = = = = = = +

mo/10/3a = − = − = = = = − − = = = = − +

mo/10/3b = = = = = = = = = = = = = = + +

Adam = − − − − − − − − − − − − − − −
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quivalent regarding their medians in almost all cases, with the
nly exception when 40% of the noisy dataset is used, with the
raining set occupying 60% of it. In that case, the neural network
ses just 100 training patterns.
Summarizing, the sensitivity analysis on the dataset size for

he selected variants verified the robustness and consistency
f both variants under varying dataset size, with the single-
bjective variant being superior under bigger datasets, and the
ulti-objective variant dominating under smaller datasets.

.7.2. Number of mini-batches per set
The second parameter considered in our sensitivity analysis

as the number of mini-batches per set. For the large dataset
16
f the Mexican Hat problem, four different numbers of mini-
atches were examined, namely 2, 5, 10, and 20. Fig. 9 reveals
hat when employing 2 batches, the mo/0/0 variant exhibits
trong variation in results. As the number of batches increases, its
erformance becomes more promising. The so/0 variant exhibits
ore stable behavior in terms of its median MSE value. Statistical
omparisons of the two approaches are reported in Table 12,
learly verifying that, in all cases, the so/0 variant was statistically
uperior to mo/0/0. This result is in line with the previous analysis
or the dataset size as well as with the main results presented in
ections 3.3 and 3.4.
On the other hand, the dataset used in the Real Estate problem

s quite smaller in size. As a consequence, the studied number
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Table 8
MSE statistics for the Real Estate dataset with noise.
T–V Ratio Algorithm Mean St.D. Median Min Max

60%− 40% so/0 8.90e−03 4.07e−03 6.19e−03 5.91e−03 1.47e−02
so/10 7.47e−03 1.29e−03 6.87e−03 5.80e−03 1.06e−02
mo/0/0 7.15e−03 8.25e−04 7.12e−03 5.16e−03 8.73e−03
mo/0/1a 7.25e−03 1.10e−03 6.82e−03 5.88e−03 9.49e−03
mo/0/1b 7.71e−03 8.33e−04 7.69e−03 6.43e−03 9.90e−03
mo/0/1c 7.09e−03 8.37e−04 7.05e−03 5.62e−03 9.10e−03
mo/0/1r 7.31e−03 1.07e−03 7.43e−03 5.53e−03 9.70e−03
mo/0/3a 7.18e−03 8.83e−04 7.26e−03 5.46e−03 8.89e−03
mo/0/3b 7.25e−03 8.15e−04 7.32e−03 5.94e−03 9.12e−03
mo/10/0 8.05e−03 1.77e−03 7.98e−03 5.86e−03 1.28e−02
mo/10/1a 8.37e−03 1.70e−03 7.93e−03 6.00e−03 1.37e−02
mo/10/1b 8.75e−03 1.81e−03 8.55e−03 6.04e−03 1.28e−02
mo/10/1c 8.09e−03 1.39e−03 7.75e−03 6.02e−03 1.21e−02
mo/10/1r 8.42e−03 1.32e−03 8.38e−03 5.70e−03 1.11e−02
mo/10/3a 7.72e−03 1.10e−03 7.44e−03 5.97e−03 1.02e−02
mo/10/3b 8.32e−03 1.99e−03 7.73e−03 6.41e−03 1.56e−02
Adam 2.41e−01 1.15e+00 1.07e−02 6.08e−03 5.77e+00

70%− 30% so/0 1.01e−02 4.26e−03 6.39e−03 5.80e−03 1.45e−02
so/10 7.52e−03 1.03e−03 7.26e−03 6.29e−03 1.10e−02
mo/0/0 7.52e−03 7.99e−04 7.32e−03 6.11e−03 9.60e−03
mo/0/1a 7.81e−03 8.71e−04 7.68e−03 6.42e−03 9.43e−03
mo/0/1b 7.87e−03 1.05e−03 7.54e−03 6.10e−03 1.09e−02
mo/0/1c 7.44e−03 6.73e−04 7.26e−03 6.32e−03 9.19e−03
mo/0/1r 7.86e−03 1.11e−03 7.94e−03 6.04e−03 1.07e−02
mo/0/3a 7.54e−03 9.18e−04 7.56e−03 5.81e−03 9.34e−03
mo/0/3b 7.24e−03 6.62e−04 7.07e−03 5.73e−03 8.48e−03
mo/10/0 7.70e−03 1.42e−03 7.37e−03 5.84e−03 1.27e−02
mo/10/1a 8.01e−03 1.01e−03 8.05e−03 5.57e−03 9.79e−03
mo/10/1b 9.31e−03 1.98e−03 8.86e−03 6.44e−03 1.43e−02
mo/10/1c 8.63e−03 1.41e−03 8.38e−03 6.33e−03 1.20e−02
mo/10/1r 8.41e−03 1.49e−03 8.53e−03 5.44e−03 1.07e−02
mo/10/3a 7.99e−03 1.00e−03 8.10e−03 6.54e−03 9.72e−03
mo/10/3b 7.86e−03 8.36e−04 7.80e−03 5.70e−03 9.82e−03
Adam 1.29e−02 4.02e−03 1.22e−02 6.45e−03 2.45e−02

80%− 20% so/0 8.06e−03 2.89e−03 5.84e−03 5.55e−03 1.15e−02
so/10 6.77e−03 5.99e−04 6.75e−03 5.70e−03 8.31e−03
mo/0/0 6.86e−03 5.23e−04 6.82e−03 5.96e−03 8.11e−03
mo/0/1a 7.01e−03 5.07e−04 7.04e−03 5.99e−03 8.14e−03
mo/0/1b 7.39e−03 6.67e−04 7.47e−03 6.15e−03 8.63e−03
mo/0/1c 6.93e−03 6.12e−04 6.92e−03 5.94e−03 8.02e−03
mo/0/1r 7.28e−03 7.25e−04 7.22e−03 5.94e−03 8.96e−03
mo/0/3a 6.69e−03 6.29e−04 6.59e−03 5.37e−03 8.09e−03
mo/0/3b 6.68e−03 5.12e−04 6.73e−03 5.87e−03 7.82e−03
mo/10/0 7.05e−03 8.06e−04 6.71e−03 6.07e−03 8.86e−03
mo/10/1a 7.16e−03 6.87e−04 7.08e−03 6.00e−03 8.57e−03
mo/10/1b 7.62e−03 9.98e−04 7.38e−03 6.46e−03 1.02e−02
mo/10/1c 7.98e−03 1.04e−03 7.82e−03 6.23e−03 1.06e−02
mo/10/1r 7.56e−03 8.67e−04 7.44e−03 6.27e−03 1.01e−02
mo/10/3a 7.43e−03 8.94e−04 7.23e−03 6.07e−03 1.04e−02
mo/10/3b 7.20e−03 6.95e−04 7.07e−03 6.04e−03 9.28e−03
Adam 8.74e−03 2.71e−03 8.35e−03 5.88e−03 1.75e−02
Fig. 8. Sensitivity analysis on the dataset size for the Real Estate dataset without noise (upper row) and with noise (lower row).
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Table 9
Wilcoxon rank-sum tests (row algorithm vs column algorithm) for the Real Estate dataset with noise.
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T–V Ratio 60% – 40%

so/0 = = = + = = = = = = = = = = + +

so/10 = = = = = = = = = + + = + = + +

mo/0/0 = = = + = = = = = + + + + = + +

mo/0/1a = = = = = = = = = + + + + = + +

mo/0/1b − = − = − = = = = = + = + = = +

mo/0/1c = = = = + = = = + + + + + = + +

mo/0/1r = = = = = = = = = + + = + = = +

mo/0/3a = = = = = = = = = + + + + = + +

mo/0/3b = = = = = = = = = + + + + = + +

mo/10/0 = = = = = − = = = = = = = = = +

mo/10/1a = − − − = − − − − = = = = = = +

mo/10/1b = − − − − − − − − = = = = − = +

mo/10/1c = = − − = − = − − = = = = = = +

mo/10/1r = − − − − − − − − = = = = − = +

mo/10/3a = = = = = = = = = = = + = + = +

mo/10/3b − − − − = − = − − = = = = = = +

Adam − − − − − − − − − − − − − − − −

T–V Ratio 70% – 30%

so/0 = = = = = = = = = = = = = = = =

so/10 = = = = = = = = = + + + + = + +

mo/0/0 = = = = = = = = = + + + + = = +

mo/0/1a = = = = = = = − = = + + = = = +

mo/0/1b = = = = = = = − = = + + = = = +

mo/0/1c = = = = = = = = = + + + + = + +

mo/0/1r = = = = = = = = = = + = = = = +

mo/0/3a = = = = = = = = = + + + + = = +

mo/0/3b = = = + + = = = = + + + + + + +

mo/10/0 = = = = = = = = = = + + + = = +

mo/10/1a = − − = = − = − − = + = = = = +

mo/10/1b = − − − − − − − − − − = = − − +

mo/10/1c = − − − − − = − − − = = = = − +

mo/10/1r = − − = = − = − − − = = = = = +

mo/10/3a = = = = = = = = − = = + = = = +

mo/10/3b = − = = = − = = − = = + + = = +

Adam = − − − − − − − − − − − − − − −

T–V Ratio 80% – 20%

so/0 = = = = = = = = = = = = = = = =

so/10 = = = + = + = = = + + + + + + +

mo/0/0 = = = + = + = = = = + + + + = +

mo/0/1a = = = + = = − − = = + + + = = +

mo/0/1b = − − − − = − − − = = + = = = =

mo/0/1c = = = = + = = = = = + + + + = +

mo/0/1r = − − = = = − − = = = + = = = +

mo/0/3a = = = + + = + = = + + + + + + +

mo/0/3b = = = + + = + = = + + + + + + +

mo/10/0 = = = = + = = = = = + + + = = +

mo/10/1a = − = = = = = − − = = + = = = +

mo/10/1b = − − − = − = − − − = = = = = =

mo/10/1c = − − − − − − − − − − = = − − =

mo/10/1r = − − − = − = − − − = = = = = =

mo/10/3a = − − = = − = − − = = = + = = =

mo/10/3b = − = = = = = − − = = = + = = +

Adam = − − − = − − − − − − = = = = −
T
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able 10
ilcoxon rank-sum tests of so/0 vs mo/0/0 under varying dataset size for the
exican Hat problem.
T–V Ratio Without noise With noise

Percentage of dataset Percentage of dataset

40% 70% 100% 40% 70% 100%

60%− 40% = + + = + +

70%− 30% + + + + + +

80%− 20% = + + = + +

f mini-batches was restricted to 2, 5, and 10, in order to retain
atisfactory size. Fig. 10 reveals the increased robustness of the
18
able 11
ilcoxon rank-sum tests of so/0 vs mo/0/0 under varying dataset size for the
eal Estate dataset.
T–V Ratio Without noise With noise

Percentage of dataset Percentage of dataset

40% 70% 100% 40% 70% 100%

60%− 40% = = = + = =

70%− 30% = = = = = =

80%− 20% = = = = = =

o/0/0 approach compared to so/0, as well as their marginal per-
ormance differences as the number of mini-batches increased.
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Fig. 9. Sensitivity analysis on the number of mini-batches per set for the Mexican Hat problem without noise (upper row) and with noise (lower row).
Fig. 10. Sensitivity analysis on the number of mini-batches per set for the Real Estate dataset without noise (upper row) and with noise (lower row).
Table 12
Wilcoxon rank-sum tests of so/0 vs mo/0/0 under varying number of
mini-batches per set for the Mexican Hat problem.
T–V Ratio Without noise With noise

Mini-batches Mini-batches

2 5 10 20 2 5 10 20

60%− 40% + + + + + + + +

70%− 30% + + + + + + + +

80%− 20% + + + + + + + +

The multi-objective variant exhibits in all cases a slightly worse
MSE median than so/0. Nevertheless, the statistical comparisons
reported in Table 13 reveal their median MSE equivalence in
almost all circumstances, with the exception of the 2-batches
case of the noisy Real Estate dataset where so/0 achieved better
median than mo/0/0.
19
Table 13
Wilcoxon rank-sum tests of so/0 vs mo/0/0 under varying number of
mini-batches per set for the Real Estate dataset.
T–V Ratio Without noise With noise

Mini-batches Mini-batches

2 5 10 2 5 10

60%− 40% = = = + = =

70%− 30% = = = = = =

80%− 20% = = = = = =

Overall, when the amount of available data is large, the single-
objective so/0 variant performs better. However, in small datasets,
the mo/0/0 exhibits more robust results.
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Fig. 11. Time requirements for the Mexican Hat problem without noise (1st row) and with noise (2nd row).
Fig. 12. Time requirements for the Real Estate problem without noise (1st row) and with noise (2nd row).
.8. Time requirements

The proposed methods were shown to achieve reasonably fast
raining. Figs. 11 and 12 illustrate the required running time
in seconds) for the studied variants in our main experiments
nalyzed in Sections 3.3–3.6. Interestingly, the multi-objective
pproaches offer faster training than the single-objective variants
hat employ gradients and line search. This observation under-
ines the usefulness of alternative training methods than the
lassical gradient-based approaches (such as SGD). Although run-
ing time cannot be perceived as a reliable performance measure
s it is affected by external factors, it can add to our insight re-
arding the inherent properties and quality of the studied training
lgorithms.

. Conclusions

VCB is a neural network training method that ameliorates the
egative effect of diminishing step size in stochastic gradient-
ased training. It is based on the concurrent minimization of the
verage MSE of the network along with its variance over random
20
sets of mini-batches. The current work extended our under-
standing of the standard VCB, which exploits a single-objective
optimization model that can be solved also with enhanced quasi-
Newton solvers. Moreover, the problem was redefined as a multi-
objective problem, and it was tackled through the established
MOPSO algorithm.

The two approaches were applied and compared on two prob-
lems that embrace small and large dataset, with and without
noise. Each variant assumed two alternatives regarding the num-
ber of VCB cycles, namely a fixed number of 10 cycles and
an alternative without a prespecified value. Also, for the multi-
objective variants, 7 strategies for evaluating the Pareto set at
each cycle, were considered. All variants were statistically com-
pared among them as well as against the established Adam ap-
proach, using typical statistical analysis and significance testing.
Moreover, the sensitivity of the proposed approaches on rele-
vant parameters, namely the dataset size and the number of
mini-batches per set, was further analyzed.

Overall, the studied VCB variants exhibited promising per-
formance against the Adam method. They also revealed perfor-
mance consistency for the multi-objective variants and problem
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ependency for the single-objective variants, which were also
ore susceptible to unfavorable performance fluctuations in the
resence of noise.
Evidently, the requirements of the VCB parameterization offer

rich ground for further research in order to fully understand the
ndividual effect of each parameter, as well as its interplay with
he employed optimizers and the dataset.
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