
Software Impacts 17 (2023) 100526

D

p
o
𝐸

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

SOMO-VCB: A Matlab® software for single-objective and multi-objective
optimization for variance counterbalancing in stochastic learning
Dimitra G. Triantali ∗, Konstantinos E. Parsopoulos, Isaac E. Lagaris
epartment of Computer Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece

A R T I C L E I N F O

Keywords:
Variance counterbalancing
Stochastic learning
Neural networks
Single-objective optimization
Multi-objective optimization
Matlab®

A B S T R A C T

Variance CounterBalancing (VCB) is an effective neural network training method that outperforms traditional
stochastic gradient descent techniques. By minimizing both the average and the variance of the network’s error
over random mini-batches, VCB improves generalization scores and solves the diminishing step-size issue.
The SOMO-VCB software is a Matlab® implementation of VCB that can be used for regression problems as
a single-objective or multi-objective optimization task. The code is easy to modify and flexible, using only
essential Matlab® programming. Recent experiments show that SOMO-VCB is highly competitive compared to
state-of-the-art methods like Adam.

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2023-214
Permanent link to Reproducible Capsule https://codeocean.com/capsule/9169054/tree/v1
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used MathWorks Matlab®

Compilation requirements, operating environments & dependencies Matlab® R2019a, Ubuntu 18.04
If available Link to developer documentation/manual ExemplarManual
Support email for questions d.triantali@uoi.gr

1. Introduction

Artificial neural networks have been placed in a salient position
among machine learning methods for solving challenging problems
in science and engineering. The stochastic gradient descent (SGD)
methods, which constitute the main optimization artillery for training
neural networks, are often characterized by slow convergence rates,
especially in large datasets. This is a consequence of considering the
mean squared error (MSE) of the network over individual mini-batches
randomly selected from the training dataset.

The VCB method was proposed [1] as an alternative approach that
employs random sets of mini-batches and concurrently minimizes the
average and the variance of the network’s MSE. Thus, if 𝑤 is the
arameter vector of the neural network (i.e., synapses weights and
ther possible parameters of its activation functions), then the average,
̄ (𝑤), and the variance, �̄�2(𝑤), of the network’s MSE over randomly

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: d.triantali@uoi.gr (D.G. Triantali), kostasp@uoi.gr (K.E. Parsopoulos), lagaris@uoi.gr (I.E. Lagaris).

selected sets of mini-batches are used to form the objective function for
the network’s training. The main gain of this approach is the alleviation
of slow convergence through the use of more efficient optimizers,
such as quasi-Newton methods, as well as the enhanced generalization
capability of the network.

In its early variants, VCB followed a single-objective (SO) optimiza-
tion approach [1]. Thus, the optimization problem was formulated
through the penalty function:

min
𝑤∈𝑊

𝐹 (𝑤, 𝜆𝑐 ) = �̄�(𝑤) + 𝜆𝑐 �̄�
2(𝑤), (1)

where 𝜆𝑐 stands for the penalty coefficient that needs to be properly set.
The problem was solved using the BFGS algorithm with strong Wolfe-
Powell line search conditions [2]. Recently, the inherent bi-objective
nature of VCB has motivated a multi-objective (MO) formulation of
the problem [3] based on the minimization of the vectorial objective
https://doi.org/10.1016/j.simpa.2023.100526
Received 22 May 2023; Received in revised form 7 June 2023; Accepted 7 June 2023

2665-9638/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2023.100526
https://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2023.100526&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2023-214
https://codeocean.com/capsule/9169054/tree/v1
https://github.com/DimitraTriantali/SOMO-VCB/blob/main/Example.pdf
mailto:d.triantali@uoi.gr
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:d.triantali@uoi.gr
mailto:kostasp@uoi.gr
mailto:lagaris@uoi.gr
https://doi.org/10.1016/j.simpa.2023.100526
http://creativecommons.org/licenses/by/4.0/


D.G. Triantali, K.E. Parsopoulos and I.E. Lagaris Software Impacts 17 (2023) 100526

w
m
(

o
f
r
o
A

D

(
e
c
s
w
o
p
U
o
c
W

n
c
i
f
‘
a
b

Fig. 1. Flowchart of the Variance CounterBalancing method.

function:

𝐹 (𝑤) =
[

�̄�(𝑤) �̄�2(𝑤)
]𝑇 , (2)

hose Pareto optimal solutions can be detected through state-of-the-art
etaheuristics, such as the multi-objective particle swarm optimization

MOPSO) method [4].
The proposed SOMO-VCB software implements both the single-

bjective and the multi-objective VCB approaches, especially designed
or function approximation tasks using RBF neural networks [5]. The
ecently published proof-of-concept results in [3] verify the feasibility
f both approaches as well as their potential in diverse regression tasks.
flowchart of the implemented VCB method is shown in Fig. 1.

escription of the proposed software
The proposed software is implemented in MathWorks Matlab®

https://www.mathworks.com/), a high-level language and interactive
nvironment, and it has been tested in the R2019a release. No existing
odes or specialized toolbox functions were used in order to retain
ource-code portability and completeness. Note that the proposed soft-
are can also be easily adapted to run in GNU Octave (https://octave.
rg/), an open-source alternative software with similar capabilities and
rogram language syntax with Matlab®. Our software was tested under
buntu 18.04 since the Linux operating system is the most popular
ne running on scientific-oriented systems. Thus, Linux/Unix naming
onventions have been used. Nevertheless, adaptation in Microsoft
indows® environments requires only minor effort.
The SOMO-VCB software is organized within a single main folder

amed SOMO-VCB/, as shown in the folder tree of Fig. 2. The source
ode is implemented in m-files, which is the file type of Matlab®, and
s stored in the code/folder. The files are divided into two groups: the
irst group implements the SO approach and includes the files with the
‘so_’’ prefix, while the second group implements the MO approach
nd refers to files with the ‘‘mo_’’ prefix. The contents of each file are
riefly outlined below:

(1) so_vcb_main.m: This is the main file of the SO approach. It
defines all global variables and parameters and implements the
VCB method. Also, it is responsible for reading input data and

Fig. 2. Organization of files and folders of the source code of the SOMO-VCB software.

(2) so_bfgs.m: It contains the BFGS optimizer with Wolfe-Powell
line search. The file is self-contained, including all its relevant
functions.

(3) so_write_log.m: This file contains a function that writes all
input variables in a log file for verification purposes. Also, it
checks the input for infeasible values, producing correspond-
ing error messages. The user can straightforwardly expand the
provided error-traps list.

(4) so_RBF_full.m: This is a function that computes the MSE of
the RBF network over the complete training set. This result is
required to assess the best solution at the end of each VCB cycle.
writing output results.

2

https://www.mathworks.com/
https://octave.org/
https://octave.org/
https://octave.org/


D.G. Triantali, K.E. Parsopoulos and I.E. Lagaris Software Impacts 17 (2023) 100526
(5) so_RBF_set.m: This file includes a function that calculates the
average value and the standard deviation of the MSE of the RBF
network over the current set of mini-batches. It is required for
objective function and gradient evaluations.

(6) mo_vcb_main.m: This is the main file of the MO approach. It
contains all global variables, parameters, and the VCB algorithm.
Also, it is responsible for reading input data and writing the
results.

(7) mo_mopso.m: This file includes the MOPSO algorithm with all
its relevant functions.

(8) mo_update_best.m: This is a function for evaluating each
solution in the detected Pareto set according to its MSE over the
whole training set. It retains the overall best solution detected
so far.

(9) mo_write_log.m: This file writes all input variables in a log
file. It also checks for faulty input values, producing correspond-
ing error messages. It can be easily extended with additional
error traps.

(10) mo_RBF_full.m: This function calculates the MSE of the RBF
network over the complete training set. It is required to assess
the best solution at the end of each VCB cycle.

(11) mo_RBF_set.m: This function computes the average and the
standard deviation of the MSE of the RBF network over the
current set of mini-batches. It is required for objective function
evaluations.

The SOMO-VCB/ folder also includes two folders needed for run-
ning the provided software:

(1) data/: This folder contains all the input data needed for the
algorithms. More specifically, the folder comprises the following
files:

(a) training_set.txt: This is the complete training set.
Each row contains an 𝑛-dimensional training vector 𝑥𝑖
followed by its correct output 𝑦𝑖, all values separated by
spaces.

(b) vcb_data.txt: It determines the VCB parameters.
(c) model_data.txt: This file provides information about

the selected neural network model.
(d) so_data.txt: It contains the parameters of the SO

approach.
(e) mo_data.txt: It contains the parameters of the MO

approach.

The above files are either VCB-related or optimizer-related. The
VCB-related files are common for both the SO and MO approach.
The user can appropriately modify their context to further adjust
the software to the problem of interest.

(2) results/: This is the folder where all results are stored. Run-
ning either the software’s SO or MO version produces three
output files. Depending on the specific approach, the output files
may have either the ‘‘so_’’ or the ‘‘mo_’’ prefix in their names
but the same type of content. Below we denote the prefix as ‘‘*’’
when irrelevant.

(a) *_log: This file contains all parameter names (as ap-
pear in the software) and their assigned values, properly
categorized (model-related, algorithm-related, etc.).

(b) *_report: This is the main output file. It contains one
line per experiment, where each line includes:

i. the number of the current experiment,
ii. the value of the full MSE over the whole training

set for the overall best solution of the experiment,
iii. the number of VCB cycles performed in the exper-

iment,

iv. the number of total network evaluations performed
in the experiment,

v. the running time spent for the specific experiment.

This information is organized in columns in order to
facilitate the post-processing of the results.

(c) *_solution: This file contains the solution vectors of
the corresponding experiments. Each line contains the
corresponding experiment’s number and the complete so-
lution vector.

The purpose of the proposed software lies in producing the results
files. Depending on the specific application and the targeted desirable
analysis, the user can then apply external post-processing procedures
to the obtained solutions.

Finally, within the SOMO-VCB/ folder, the reader will find the
README.pdf file that provides a concise overview of all the provided
files.

Software impacts
Efficient training algorithms are crucial for handling big data in

demanding applications. Our proposed SOMO-VCB software imple-
ments the two major VCB variants, offering comprehensiveness and
efficiency. In order to promote user-friendliness for the non-expert
users, we avoided using complex syntax that could make the code
difficult to understand. This means that some iterative procedures could
be further optimized by utilizing certain features of the Matlab® pro-
gramming language. The simplicity of the proposed code can motivate
researchers to explore its functionalities and even extend it for their
own investigations.

The SOMO-VCB software has been recently validated by Triantali
et al. [3], demonstrating the superiority of VCB approaches against
state-of-the-art SGD methods such as Adam. In future development,
our goal is to expand the software by integrating additional solvers
(e.g., NSGA-II [6], L-BFGS [7]), as well as diverse neural network
architectures that may be used in different applications.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
We acknowledge support of this work by the project ‘‘Dioni: Com-
puting Infrastructure for Big-Data Processing and Analysis’’ (MIS No.
5047222) which is implemented under the Action ‘‘Reinforcement of
the Research and Innovation Infrastructure’’, funded by the Opera-
tional Programme ‘‘Competitiveness, Entrepreneurship and Innovation’’
(NSRF 2014–2020) and co-financed by Greece and the European Union
(European Regional Development Fund).

Acknowledgments

We acknowledge support of this work by the project ‘‘Dioni: Com-
puting Infrastructure for Big-Data Processing and Analysis’’ (MIS No.
5047222) which is implemented under the Action ‘‘Reinforcement of
the Research and Innovation Infrastructure’’, funded by the Opera-
tional Programme ‘‘Competitiveness, Entrepreneurship and Innovation’’
(NSRF 2014–2020) and co-financed by Greece and the European Union
(European Regional Development Fund).

References

[1] P.L. Lagari, L.H. Tsoukalas, I.E. Lagaris, Variance counterbalancing for stochastic
large-scale learning, Int. J. Artif. Intell. Tools 29 (5) (2020) 2050010:1–10.

[2] R. Fletcher, Practical Methods of Optimization, second ed., John Wiley & Sons,
New York, 1987.

[3] D.G. Triantali, K.E. Parsopoulos, I.E. Lagaris, Single-objective and multi-objective
optimization for variance counterbalancing in stochastic learning, Appl. Soft
Comput. 142 (2023) 110331.
3

http://refhub.elsevier.com/S2665-9638(23)00063-5/sb1
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb1
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb1
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb2
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb2
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb2
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb3
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb3
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb3
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb3
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb3


D.G. Triantali, K.E. Parsopoulos and I.E. Lagaris Software Impacts 17 (2023) 100526
[4] C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with
particle swarm optimization, IEEE Trans. Evol. Comput. 8 (3) (2004) 256–279.

[5] D.S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive
networks, Complex Syst. 2 (3) (1988) 321–355.

[6] K. Deb, S. Agrawal, A. Pratab, A fast and elitist multiobjective genetic algorithm:
NSGA-II, in: International Conference on Parallel Problem Solving from Nature,
Springer, 2002, pp. 849–858.

[7] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale
optimization, Math. Programm. 45 (1-3) (1989) 503–528.
4

http://refhub.elsevier.com/S2665-9638(23)00063-5/sb4
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb4
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb4
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb5
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb5
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb5
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb6
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb6
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb6
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb6
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb6
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb7
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb7
http://refhub.elsevier.com/S2665-9638(23)00063-5/sb7

	SOMO-VCB: A Matlab software for single-objective and multi-objective optimization for variance counterbalancing in stochastic learning
	Introduction
	Declaration of Competing Interest
	Acknowledgments
	References


