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Neural-Network Methods for Boundary Value
Problems with Irregular Boundaries

Isaac Elias Lagaris, Aristidis C. Likas, Member, IEEE, and Dimitrios G. Papageorgiou

Abstract—Partial differential equations (PDEs) with boundary
conditions (Dirichlet or Neumann) defined on boundaries with
simple geometry have been successfully treated using sigmoidal
multilayer perceptrons in previous works. This article deals with
the case of complex boundary geometry, where the boundary is
determined by a number of points that belong to it and are closely
located, so as to offer a reasonable representation. Two networks
are employed: a multilayer perceptron and a radial basis function
network. The later is used to account for the exact satisfaction of
the boundary conditions. The method has been successfully tested
on two-dimensional and three-dimensional PDEs and has yielded
accurate results.

Index Terms—Boundary value problems, engineering problems,
irregular boundaries, neural networks, partial differential equa-
tions (PDEs), penalty method, multilayer perceptron, radial basis
function (RBF) networks.

I. INTRODUCTION

NEURAL networks have been employed before to solve
boundary and initial value problems [1] as well as eigen-

value problems [2]. The cases treated in the above mentioned
articles were for simpleorthogonal boxboundaries either finite
or extended to infinity. However, when one deals with realistic
problems, such as the human head-neck system [3] or the flow
and mass transfer in chemical vapor deposition reactors [4], the
boundary is highly irregular and cannot be described in terms of
simple geometrical shapes, that in turn would have allowed for
a relatively simple modeling scheme.

In this article we propose a method capable of dealing with
such kind of irregular boundaries (with either Dirichlet or Neu-
mann boundary conditions). As before [1], [2], our approach
is based on the use of feedforward artificial neural networks
(ANNs) whose approximation capabilities have been widely ac-
knowledged [7], [8]. More specifically, the proposed approach
is based on the synergy of two feedforward ANNs of different
types: a multilayer perceptron (MLP) as the basic approxima-
tion element and a radial basis function (RBF) network used to
satisfy the boundary conditions (BCs). In addition, our approach
relies on the availability of efficient multidimensional optimiza-
tion software [5], that is used for the neural network training.

The solution of differential equations in terms of ANNs pos-
sesses several attractive features:
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1) infinitely differentiable closed analytic form;
2) superior interpolation properties as compared to well-es-

tablished methods such as finite elements [1], [2];
3) small number of parameters;
4) suitability for efficient implementation on parallel com-

puters;
5) implementability on existing specialized hardware (neu-

roprocessors) a fact that will result to a significant com-
putational speedup.

In the next section we describe the proposed method and de-
rive useful formulas, while in Section III, we discuss implemen-
tation procedures and numerical techniques. In Section IV we
illustrate the method by means of examples and compare our
results to analytically known ones. Finally Section V contains
conclusions and directions for future research.

II. DESCRIPTION OF THEMETHOD

We will examine PDEs of the form

(1)

where is a differential operator and
with Dirichlet or Neumann BCs. The boundary

can be any arbitrarily complex geometrical shape. We consider
that the boundary is defined as a set of points that are chosen
so as to represent its shape with reasonable accuracy. Suppose
that points are chosen to represent the
boundary and hence the boundary conditions are given by

Dirichlet (2)

or

Neumann (3)

where is the outward unit vector, normal to the boundary at
the point .

To obtain a solution to the above differential equation, thecol-
locationmethod [9] is adopted which assumes the discretization
of the domain into a set of points (these points are denoted
by ). The problem is then transformed into the
following system of equations:

with

or (4)

Let denote a trial solution to the above problem
where stands for a set of model parameters to be adjusted.

1045–9227/00$10.00 © 2000 IEEE



1042 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000

In this way, the problem is transformed into the following con-
strained minimization problem:

(5)

subject to the constraints imposed by the BCs

Dirichlet (6)

or

Neumann (7)

The constrained optimization problem above may be tackled in
a number of ways.

1) Devise a model , such that the constraints are
exactly satisfied by construction and hence use uncon-
strained optimization techniques.

2) Use a suitable constrained optimization method for non-
linear constraints. For instance: Lagrange multipliers, ac-
tive set methods, or a penalty function approach [11].

A model suitable for the first approach is based on the synergy
of two feedforward neural networks of different type, and it can
be written as

(8)

where denotes the Euclidean norm and is a multi-
layer perceptron (MLP) with denoting the set of its weights
and biases. The sum in the above equation represents an RBF
network with hidden units that all share a common expo-
nential factor . Here is a scalar constant andis a constant
vector. The parameters and are chosen appropriately so
as to ease the numerical task.

For a given set of MLP parameters, the coefficients are
uniquely determined by requiring that the boundary conditions
are satisfied, i.e.,

Dirichlet (9)

or

Neumann (10)

for . Therefore, in order to obtain the parameters
that satisfy the BCs, one has to solve a linear system, which

for the Dirichlet case reads

(11)

while for the Neumann case

(12)

Alternatively, one may consider a penalty function method to
solve the constrained optimization problem. The model in this
case is simply . The error function to be
minimized is then given by

Dirichlet (13)

or

Neumann

(14)

where the penalty factor, takes on higher and higher positive
values depending on how accurately the BCs are to be satisfied.

ThemodelbasedontheMLP-RBFsynergysatisfiesexactly the
BCs but is computationally expensive since at every evaluation
of the model one needs to solve a linear system which may
be quite large. Moreover, since many efficient optimization
methods need the gradient of the objective function, one has
to solve an additional linear system of the same order for each
gradient component as it will be shown in the next section.
On the other hand, the penalty method is very efficient, but
does not satisfy exactly the BCs. In practice a combination
of these two methods may be used profitably: the penalty
method is used to obtain a reasonable model that satisfies
the BCs approximately and is then refined using the synergy
method for a few iterations. This is done mainly in order
to ensure that the BCs are satisfied exactly. We used the
above combination in all of our experiments and our results
are quite encouraging.

III. I MPLEMENTATION AND NUMERICAL TECHNIQUES

The MLPs we have considered contain one hidden layer with
sigmoidal hidden units and a linear output that is computed as

(15)

where is the number of input units, is the number of the
hidden units, and .

In order to minimize the error , optimization techniques
are employed that require the computation of the derivatives

and, consequently, the derivatives which are
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listed as follows:

(16)

Since for the case of Dirichlet BCs (11)

(17)

and for the case of Neumann BCs (12)

(18)

we correspondingly get

(19)

and

(20)

i.e., one has to solve as many linear systems as the
number of the parameters. Derivatives of the MLP with respect
to either the parametersor the input variables can be easily
derived and are given in [1], [2].

In order to apply the proposed method, the values ofand
must be specified. These define the linear systems (matrices
and ). In our experiments the linear systems were solved

using standard decomposition. We did not use any special
methods for sparse linear systems nor any parallel programming
techniques.

For the Dirichlet case and were adequate to pro-
duce a nonsingular well-behaved matrix. For large values of

, the Gaussian terms in the RBF are all highly localized so that
they affect the model only in the neighborhood of the boundary
points. In other words, the RBF contributes a “correction” that
accounts for the BCs. For small values of, the matrix looses
rank and becomes singular. Somust be selected with caution.
A good choice is found to be: , where is the min-
imum distance between any two points on the boundary, i.e.,

, where . Note that dif-
ferent values may also be used instead of a common one.
In that case the correspondingwould be the distance of the
closest boundary neighbor to point, i.e., ,
where . However, a common leads to a sym-
metric matrix that in turn renders the linear system easier to
solve.

For the Neumann casewas chosen again as before, but
had to be different than one and also to avoid creating a
singular matrix . We took in all cases and having
all its components equal to 0.1.

Training of the MLP network so as to minimize the error
can be accomplished using any minimization procedure such
as gradient descent (backpropagation or any of its variants),
conjugate gradient, Newton methods, etc. Many effective min-
imization techniques are provided by the Merlin/MCL multi-
dimensional optimization system [5], [6] which has been em-
ployed in our experiments. From the variety of the minimiza-

tion methods offered by the Merlin optimization environment,
the quasi-Newton BFGS method [11] seemed to have the best
performance [10].

When solving problems requiring several hundreds of
boundary points (and thousands of domain points) the method
may become relatively slow. There are several techniques that
may be applied in order to accelerate the process. The linear
systems are sparse and hence one can employ iterative sparse
solvers instead of the decomposition used here. When
computing the gradient of the error function, one has to solve
many linear systems with identical left-hand sides and hence
one may use special methods that currently are under investi-
gation and development [12]. Parallel programming techniques
for machines with many processors are also applicable. The
most efficient implementation however would be the one that
will utilize specialized hardware (neuroprocessors).

We describe now the strategy followed in detail.

1) Initially the penalty function formulation [(13) or (14)] is
used, with starting from 100 and reaching up to 10 000
in all tests, to obtain an MLP network that approximates
the solution both inside the domain and on the boundary.
Since this approach is efficient this task completes rather
quickly.

2) The MLP-RBF method is then started, employing the
MLP network that was previously obtained by the penalty
method. Therefore the MLP-RBF method starts from a
low error value and requires only a few optimization steps
in order to yield a solution which satisfies the BCs exactly.
The RBF network contributes as a correction to the MLP,
mainly around the boundary points.

The examples provided in the following section indicate that
the above “two-stage” approach is very efficient and provides
accurate solutions. Moreover, the reported accuracy can be im-
proved further, by increasing the number of hidden units in the
MLP network.

IV. EXAMPLES

We present three examples in two dimensions and one ex-
ample in three dimensions. The first two-dimensional (2-D) ex-
ample is a linear Dirichlet problem also treated in [1] by the
method presented there and by the finite-element method (FEM)
in order to compare to solutions obtained via an established
technique. The boundary is a square and its geometrical sim-
plicity allowed for the scheme used in [1]. Here we pretend that
the square is an irregular boundary, so that it is defined by set
of points that belong to it, and hence we treat it as such with
the method described in the present article, again for purposes
of comparison. Since we find that our new method retains the
qualities of its ancestor, shown to have certain advantages over
the FEM, in the subsequent examples we compare only to the
exact, analytically known solutions making no further reference
to the FEM. The second example is a highly nonlinear problem
and we solve it with Dirichlet BCs considering a star-shaped
domain. The third example treats the same PDE with Neumann
BCs inside a cardioid domain. Finally in three dimensions we
treat again a nonlinear problem in a domain that is one octant of
the space between two concentric spherical shells.
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Fig. 1. Exact solution of problem 1.

Fig. 2. Accuracy of obtained solution for problem 1 with Dirichlet BCs.

A. 2-D Problems

Problem 1: Consider the linear problem

(21)

with Dirichlet boundary conditions

(22)

The analytic solution is: . This ex-
ample has been treated in [1] by a simpler neural-network model
and by the Galerkin FEM. According to the results reported in

[1], the neural-network approach seems to have certain advan-
tages both in efficiency and in, interpolation accuracy.

For comparison purposes, the same problem is treated here
by picking points on the square boundary as if it were an ir-
regular shape. More specifically, we consider points on
the boundary, by dividing the interval [0, 1] on theaxis and
axis, respectively, using equidistant points. The total number of
points taken on the boundary is . Inside the definition
domain we pick points on a rectangular grid by subdividing the
[0, 1] interval in ten equal subintervals that correspond to nine
points in each direction. Thus a total of points are se-
lected. The analytic solution is presented in Fig. 1, while the
accuracy of the obtained solution using
an MLP with 20 hidden units is presented in Fig. 2. Comparing
this solution with the one obtained in [1] we can conclude that
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Fig. 3. The star-shaped domain and the boundary points corresponding to problem 2. Boundary points are shown as crosses.

Fig. 4. Exact solution of problem 2.

the proposed method is equally effective and retains its advan-
tages over the Galerkin FEM as well.

Problem 2: The following highly nonlinear problem is con-
sidered:

(23)

with thestar-shapeddomain displayed in Fig. 3. The analytical
solution is (displayed in Fig. 4)
and it has been used to compute the values at the boundary
points. We have considered both Dirichlet and Neumann BCs

with boundary points and grid points. An
MLP with 20 hidden units was used. The accuracy of the ob-
tained solution is displayed in Fig. 5 for the case of Dirichlet
BCs, while Fig. 6 displays the output of the RBF network, which
contributes as a correction term to satisfy the BCs exactly. Sim-
ilar results are obtained for the case of Neumann BCs.

To show the interpolative ability of our solutions, the plot
in Fig. 5 was made using points belonging to a finer grid (test
points), in addition to the collocation (training) points. We found
that the accuracy of the solution at these intermediate test points
is maintained at the level of the neighboring training ones. This



1046 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000

Fig. 5. Accuracy of obtained solution for problem 2 with Dirichlet BCs.

Fig. 6. The output of the RBF network for the domain of problem 2.

is a very desirable feature that is attributed to the MLP interpola-
tion capability (the RBF contributes only around the boundary)
and constitutes one of the assets of the proposed method.

Problem 3: We have solved the previous nonlinear PDE con-
sidering the cardioid domain displayed in Fig. 7. We have used

boundary points and grid points displayed
in Fig. 6. An MLP with 20 hidden units was used. The accuracy
of the obtained solution (with Neumann BCs) at a dense grid of
interpolation points is shown in Fig. 8. The results are similar
for the case of Dirichlet BCs.

B. Three Dimensional Problem

Problem 4: We considered the problem

(24)

The domain is most conveniently described in spherical coor-
dinates as: .

The problem, however, is solved using Cartesian coordinates
.

The analytical solution is
. We considered boundary points and

grid points and solve the nonlinear equation with
both Dirichlet and Neumann BCs. The obtained solutions using
an MLP with 40 hidden units are accurate with absolute error
value less than 10 .

C. Convergence and Stability Issues

In order to investigate the convergence properties of the
method, we conducted several numerical experiments using the
nonlinear example of problem 2 with Dirichlet BCs. Specifi-
cally we calculated the approximation error in the max norm
for several choices of the number of the hidden MLP units.

This is plotted in Fig. 9. Notice that it is very similar to earlier
findings [1], where in addition a comparison to the performance
of the finite elements method is provided. We see that the accu-
racy can be controlled efficiently by varying the number of the
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Fig. 7. The domain and the boundary points for problem 3. Boundary points are shown as crosses.

Fig. 8. Accuracy of obtained solution for problem 3 with Neumann BCs.

hidden units. We also investigated how the solution is affected
by considering different boundary point sets, while keeping all
other computational parameters unaltered. We conducted our
experiments again with problem 2 as above.

Let us denote by the total number of the points on the
boundary. The star shaped boundary has 12 vertices (and 12
sides). On each side equal number of points were considered
and care has been taken that the star vertices are always in-
cluded. We also experimented with various distributions, for in-
stance uniform and several sinusoidal forms. An extreme case
is , i.e., only the star vertices are taken as representative

boundary points. For to we observed a slight varia-
tion among the obtained solutions. For and above the
obtained solutions are identical. In Table I we list the approxi-
mation error in the max norm for several choices of, using
an MLP with 20 hidden units. In addition, we investigated the
case where a vertex is intentionally excluded from the set for the
extreme case of and also for the case . The so-
lution for the former case is eminently different only around the
omitted vertex and the pointwise approximation error is plotted
in Fig. 10. Notice that the approximation error in the area of
the missing vertex is of the order 410 . For (again
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Fig. 9. Plot of the logarithm of the approximation error in the max-norm as a function of the number of MLP hidden units.

Fig. 10. Accuracy of the obtained solution for problem 2 with Dirichlet BCs when the boundary contains only the star vertices and one of them is missing.

TABLE I
APPROXIMATION ERROR FORPROBLEM 2 WITH DIRICHLET BCS FOR

DIFFERENTCHOICES OF THEBOUNDARY SET

with one vertex ommited) this phenomenon, while still being
present, is supressed by two orders of magnitude (510 .

This is both expected since, the boundary is poorly represented
when some vertex is ommited, and at the same time desirable,
since it demonstrates that the boundary does indeed, as it should,
affect the solution. Hence we conclude that the method yields
consistent results and therefore is suitable for application to real
problems.

V. CONCLUSION

We presented a method capable of solving boundary value
problems of the Dirichlet and Neumann types, for boundaries
that due to their geometrical complexity can only be described
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via a set of participating points. The method employs the col-
location as well as optimization techniques and is based on the
synergy of MLP and RBF artificial neural networks. It provides
accurate solutions in a closed analytic form that satisfy the BCs
at the selected points exactly. The proposed method is quite gen-
eral and can be used for a wide class of linear and nonlinear
PDEs.

Future work will focus on the application of the method to
specific problems, containing real objects with arbitrarily com-
plex boundaries. Interesting problems of this kind arise in many
scientific fields. Since the method lends itself to parallel pro-
cessing, we have a strong interest in implementing the method
on both, general purpose parallel hardware and on specialized
hardware (neuroprocessors). The latter would reveal the full po-
tential of the proposed approach and may lead to the develop-
ment of specialized machines that will allow the treatment of
difficult and computationally demanding problems.
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