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Abstract

We present three new stopping rules for Multistart based methods. The first uses a device that enables the determination
of the coverage of the bounded search domain. The second is based on the comparison of asymptotic expectation values of
observable quantities to the actually measured ones. The third offers a probabilistic estimate for the number of local min-
ima inside the search domain. Their performance is tested and compared to that of other widely used rules on a host of test
problems in the framework of Multistart.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The task of locating all the local minima of a continuous function inside a box-bounded domain, is fre-
quently required in several scientific as well as practical problems. We will not dwell further on this, instead
we refer to the article by [8]. The problem we are interested in, may be described as
0096-3
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Given an objective function f ðxÞ; x 2 S � Rn; find all its local minimizers x�i 2 S: ð1Þ

S will be considered herein to be a rectangular hyperbox in N dimensions. We limit our consideration to prob-
lems with a finite number of local minima. This is a convenient hypothesis as far as the implementation is con-
cerned. We are interested in stochastic methods based on Multistart, a brief review of which follows.

The multistart algorithm

Step 0: Set i = 0 and X* = ;
Step 1: Sample x at random from S

Step 2: Apply a deterministic local search procedure (LS) starting at x and concluding at a local minimum x*.
003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Step 3: Check if a new minimum is discovered

If x* 62 X* then

increment: i i + 1
set: x�i ¼ x�

add: X �  X � [ fx�i g
Endif

Step 4: If a stopping rule applies, STOP
Step 5: Go to Step-1

It would be helpful at this point to state a few definitions and terms to be used in the rest of the article. The
‘‘region of attraction’’ of a local minimum associated with a deterministic local search procedure LS is defined as
Ai � fx : x 2 S;LSðxÞ ¼ x�i g; ð2Þ

where LS(x) is the minimizer returned when the local search procedure LS is started at point x. If S contains a
total of w local minima, from the definition above follows:
[w
i¼1Ai ¼ S: ð3Þ
Let m(A) stand for the Lebesgue measure of A � Rn. Since the regions of attraction for deterministic local
searches do not overlap, i.e. Ai \ Aj = ; for i 5 j, then from Eq. (3) one obtains:
mðSÞ ¼
Xw

i¼1

mðAiÞ: ð4Þ
If a point in S is sampled from a uniform distribution, the apriori probability pi that it is contained in Ai is
given by pi ¼ mðAiÞ

mðSÞ . If K points are sampled from S, the apriori probability that at least one point is contained
in Ai is given by
1� 1� mðAiÞ
mðSÞ

� �K

¼ 1� ð1� piÞK : ð5Þ
From the above we infer that for large enough K, this probability tends to one, i.e. it becomes ‘‘asymptotically
certain’’ that at least one sampled point will be found to belong to Ai. This holds "Ai, with m(Ai) 5 0.

Good stopping rules are important and should combine reliability and economy. A reliable rule is one that
stops only when all minima have been collected with certainty. An economical rule is one that does not waste a
large number of local searches to detect that all minima have been found. Several stopping rules have been
developed in the past, most of them based on Bayesian considerations [9,5,4,6] and they have been successfully
used in practical applications. A review analyzing the topic of stopping rules is given in the book by Törn and
Žilinskas [3]. We refer also to Hart [2] noting however that his stopping rules aim to terminate the search as
soon as possible once the global minimum is found and they are not designed for the retrieval of all the local
minima. We present three different stopping rules. In Section 2, a rule that relies on a coverage argument is
presented. In Section 3, a rule based on the comparison of asymptotic to measured values of observable quan-
tities is developed, and in Section 4, a probabilistic approach is employed to estimate the expected number of
minimizers. We report in Section 5, results of numerical experiments in conjunction with the Multistart

method.

2. The double-box stopping rule

The covered portion of the search domain is a key element in preventing waistfull applications of the local
search procedure. A relative measure for the region that has been covered is given by
C ¼
Xw

i¼1

mðAiÞ
mðSÞ ; ð6Þ
where w is the number of the local minima discovered so far. The rule would then instruct to stop further
searching when C! 1.
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The quantity mðAiÞ
mðSÞ is not known and generally cannot be calculated, however asymptotically it can be

approximated by the fraction Li
L , where Li is the number of points, started from which, the local search led

to the local minimum x�i , and L ¼
Pw

i¼1Li, is the total number of sampled points (or equivalently, the total
number of local search applications). An approximation for C may then be given by
C ’ eC ¼Xw

i¼1

Li

L
: ð7Þ
However the quantity
Pw

i¼1
Li
L is by definition equal to 1, and as a consequence the covered space can not be

estimated by the above procedure. To circumvent this, a larger box S2 is constructed that contains S and such
that m(S2) = 2 · m(S). At every iteration, 1 point in S is collected, by sampling uniformly from S2 and reject-
ing points not contained in S. Let the number of points that belong to A0 � S2 � S be denoted by L0. The total
number of sampled points is then given by L ¼ L0 þ

Pw
i¼1Li and the relative coverage may be rewritten as
C ¼
Pw

i¼1mðAiÞ
mðSÞ ¼ 2

Xw

i¼1

mðAiÞ
mðS2Þ

: ð8Þ
The quantity mðAiÞ
mðS2Þ

asymptotically is approximated by Li
L , leading to
C ’ eC ¼ 2
Xw

i¼1

Li

L
: ð9Þ
After k iterations, let the accumulated number of points sampled from S2 be Mk, k of which are contained
in S. The quantity then: dk � k

Mk
has an expectation value hdik ¼ 1

k

Pk
i¼1di that asymptotically, i.e. for large k,

tends to mðSÞ
mðS2Þ
¼ 1

2
.

The variance is given by r2
kðdÞ ¼ hd

2ik � hdi
2
k and tends to zero as k!1. This is a smoother quantity than

hdik (see Fig. 1), and hence better suited for a termination criterion. We permit iterating without finding new
minima until r2ðdÞ < pr2

lastðdÞ, where rlast(d) is the standard deviation at the iteration during which the most
recent minimum was found, and p 2 (0,1) is a parameter that controls the compromise between an exhaustive
search (p! 0) and a search optimized for speed (p! 1).

In Table 1 we list the results from the application of the double-box termination rule and the Multistart
method in a series of test problems for different values of the parameter p. As p increases the method becomes
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Fig. 1. Plots of hdik � 1
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and r2
kðdÞ versus k.



Table 1
Multistart with double-box rule for a set of p-values

FUNCTION p = 0.3 p = 0.5 p = 0.7 p = 0.9

MIN FC MIN FC MIN FC MIN FC

SHUBERT 400 1,150,243 400 577,738 400 322,447 395 139,768
GKLS(3,30) 30 961,269 29 302,583 23 41,026 15 3920
RASTRIGIN 49 50,384 49 19,593 49 13,581 49 10,034
Test2N(5) 32 78,090 32 30,607 32 20,870 32 13,462
Test2N(6) 64 85,380 64 34,840 64 22,535 64 15,393
GUILIN(20,100) 100 3,405,112 100 1,906,288 100 854,511 71 79,331
SHEKEL10 10 93,666 10 36,838 10 23,780 10 15,976
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faster, but some local minima may be missed. The suggested value for general use is p = 0.5. Hence the algo-
rithm may be stated as

1. Initially set a = 0.
2. Sample from S2 until a point falls in S as described above.
3. Calculate r2(d).
4. Apply an iteration of Multistart (i.e. steps 2 and 3).
5. If a new minimum is found, set: a = pr2(d) and repeat from step 2.
6. STOP if r2(d) < a, otherwise repeat from step 2.
3. The observables stopping rule

We have developed a scheme based on probabilistic estimates for the number of times each of the minima is
being rediscovered by the local search. Let L1,L2, . . . ,Lw be the number of local searches that ended-up to the
local minima x�1; x

�
2; . . . ; x�w (indexed in order of their appearance). Let m(A1),m(A2), . . . ,m(Aw) be the measures

of the corresponding regions of attraction, and let m(S), be the measure of the bounded domain S. x�1 is dis-
covered for the first time with one application of the local search. Let n2 be the number of the subsequent
applications of the local search procedure spent, until x�2 is discovered for the first time. Similarly denote by
n3,n4, . . . ,nw the incremental number of local search applications to discover x�3; x

�
4; . . . ; x�w, i.e., x�2 is found after

1 + n2 local searches, x�3 after 1 + n2 + n3, etc. n2,n3,. . . are counted during the execution of the algorithm, i.e.
they are observable quantities. Considering the above and taking into account that we sample points using a
uniform distribution, the expected number LðwÞJ of local search applications that have ended-up to x�J at the
time when the wth minimum is discovered for the first time, is given by
LðwÞJ ¼ Lðw�1Þ
J þ ðnw � 1ÞmðAJ Þ

mðSÞ : ð10Þ
The apriori probability that a local search procedure starting from a point sampled at random, concludes to the
local minimum x�J is given by the ratio m(AJ)/m(S), while the posteriori probability (observed frequency) is cor-
respondingly given by LJ=

Pw
i¼1Li. On the asymptotic limit the posteriori reaches the apriori probability, which

implies m(Ai)/m(Aj) = Li/Lj, which in turn permits substituting in Eq. (10) Li in place of m(Ai) leading to
LðwÞJ ¼ Lðw�1Þ
J þ ðnw � 1Þ LJPw

i¼1Li
¼ Lðw�1Þ

J þ ðnw � 1Þ LJPw
i¼1ni

ð11Þ
with n1 = 1, J 6 w � 1 and LðwÞw ¼ 1. Now consider that after having found w minima, an additional number of
K local searches are performed without discovering any new minima. We denote by L

ðwÞ
J ðKÞ the expected

number of times the Jth minimum is found at that moment. One readily obtains
L
ðwÞ
J ðKÞ ¼L

ðwÞ
J ðK � 1Þ þ LJ

K þ
Pw

i¼1ni
ð12Þ
with L
ðwÞ
J ð0Þ ¼ LðwÞJ .



626 I.E. Lagaris, I.G. Tsoulos / Applied Mathematics and Computation 197 (2008) 622–632
The quantity
E2ðw;KÞ �
1

w

Xw

J¼1

L
ðwÞ
J ðKÞ � LJPw

l¼1Ll

 !2

ð13Þ
tends to zero asymptotically, hence a criterion based on the variance r2(E2) may be stated as
Stop if r2ðE Þ < pr2 ðE Þ;
2 last 2

where r2
lastðE2Þ is the variance of E2 calculated at the time when the last minimum was retrieved. The value of

the parameter p has the same justification as in the Double-Box rule and the suggested value is again p = 0.5,
although the user may choose to modify it according to his needs.

4. The expected minimizers stopping rule

This technique is based on estimating the expected number of existing minima of the objective function in
the specified domain. The search stops when the number of recovered minima, matches this estimate. Note
that the estimate is updated iteratively as the algorithm proceeds. Let P l

m denote the probability that after
m draws, l minima have been discovered. Here by ‘‘draw’’ we mean the application of a local search, initiated
from a point sampled from the uniform distribution. Let also pk denote the probability that with a single draw
the minimum located at x�k is found. This probability is apriori equal to pk ¼ mðAkÞ

mðSÞ . The P l
m probability can be

recursively calculated by
P l
m ¼ 1�

Xl�1

i¼1

pi

 !
P l�1

m�1 þ
Xl

i¼1

pi

 !
P l

m�1: ð14Þ
Note that P 0
1 ¼ 0, and P 1

1 ¼ 1. Also P l
m ¼ 0 if l m, P 0

m ¼ 08m P 1. The rational for the derivation of Eq. (14) is
as follows. The probability that at the mth draw l minima are recovered, is connected with the probabilities at
the level of the (m � 1)th draw, that either l � 1 minima are found (and the lth is found at the next, i.e. the
mth, draw) or l minima are found (and no new minimum is found at the mth draw). The quantity

Pl
i¼1pi

is the probability that one of the l minima is found in a single draw, likewise the quantity 1�
Pl�1

i¼1pi is the
probability that none of the l � 1 minima is found in a single draw. Combining these observations the recur-
sion above is readily verified. Since P l

m denote probabilities they ought obey the closure:
Xm

l¼1

P l
m ¼ 1: ð15Þ
To prove the above let us define the quantity sl ¼
Pl

i¼1pi. Perform a summation over l on both sides of Eq.
(14) and obtain:
Xm

l¼1

P l
m ¼

Xm

l¼1

P l�1
m�1 �

Xm

l¼1

sl�1P l�1
m�1 þ

Xm

l¼1

slP l
m�1: ð16Þ
Note that since P 0
m�1 ¼ 0 and P m

m�1 ¼ 0 the last two sums in Eq. (16) cancel, and hence we get:Pm
l¼1P l

m ¼
Pm�1

l¼1 P l
m�1. This step can be repeated to show that
Xm

l¼1

P l
m ¼

Xm�1

l¼1

P l
m�1 ¼ � � � ¼

Xm�k

l¼1

P l
m�k ¼

X1

l¼1

P l
1 ¼ P 1

1 ¼ 1:
The expected number of minima after m draws is then given by
hLim �
Xm

l¼1

lP l
m

and its variance by
r2ðLÞm ¼
Xm

l¼1

l2P l
m �

Xm

l¼1

lP l
m

 !2

: ð17Þ
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The quantities pi are unknown apriori and need to be estimated. Naturally the estimation will improve as the
number of draws grows. A plausible estimate pðmÞi for approximating pi after m draws, may be given by
pðmÞi � LðmÞi

m
! mðAiÞ

mðSÞ ¼ pi; ð18Þ
where LðmÞi is the number of times the minimizer x�i is found after m draws. Hence Eq. (14) is modified and
reads:
P l
m ¼ 1�

Xl�1

i¼1

pðm�1Þ
i

 !
P l�1

m�1 þ
Xl

i¼1

pðm�1Þ
i

 !
P l

m�1: ð19Þ
The expectation hLim tends to w asymptotically. Hence a criterion based on the variance r2(L)m, that asymp-
totically tends to zero, may be proper. Consequently, the rule may be stated as: Stop if r2(L)m < pr2(L)last,
where again r2(L)last is the variance at the time when the last minimum was found and the parameter p is used
in the same manner as before. The suggested value for p is again p = 0.5.

5. Computational experiments

We compare the new stopping rules proposed in the present article to three established rules that have been
successfully used in a host of applications. If by w we denote the number of recovered local minima after hav-
ing performed t local search procedures, then the estimate of the fraction of the uncovered space is given by [9]
P ðwÞ ¼ wðwþ 1Þ
tðt � 1Þ : ð20Þ
The corresponding rule is then
Stop when P ðwÞ 6 �; ð21Þ
� being a small positive number. In our experiments we used � = 0.001. Ref. [5] showed that the estimated
number of local minima is given by
west ¼
wðt � 1Þ
t � w� 2

ð22Þ
and the associated rule becomes
Stop when west � w 6
1

2
: ð23Þ
In another rule [6] the probability that all local minima have been observed is given by
Yw

i¼1

t � 1� i
t � 1þ i

� �
ð24Þ
leading to the rule:
Stop when
Yw

i¼1

t � 1� i
t � 1þ i

� �
> s; ð25Þ
s tends to 1 from below.
Every experiment represents 100 runs, each with different seed for the random number generator. The local

search procedure used is a BFGS version due to Powell [1]. We report the average number of the local minima
recovered, as well as the mean number of functional evaluations. In Table 3 results are presented Multistart.
We used a set of 21 test functions that cover a wide spectrum of cases, i.e. lower and higher dimensionality,
small and large number of local minima, with narrow and wide basins of attraction, etc. These test functions
are described in Appendix in an effort to make the article as self contained as possible.



Table 2
Multistart with Eq. (25) rule

FUNCTION s = 0.7 s = 0.8 s = 0.9

MIN FC MIN FC MIN FC

RASTRIGIN 49 168,103 49 268,721 49 568,843
SHUBERT 400 11,248,711 400 17,983,401 400 38,083,156
GKLS(3,30) 18 10,615 24 27,910 28 77,326
GUILIN(10,200) 200 6,627,109 200 10,589,110 200 22,429,999

Table 3
Multistart

FUNCTION PCOV KAN DOUBLE OBS EXPM

MIN FC MIN FC MIN FC MIN FC MIN FC

CAMEL 6 5642 6 2549 6 5503 6 2720 6 2916
RASTRIGIN 49 38,104 49 121,182 49 19,593 49 13,342 49 9007
SHUBERT 400 316,640 400 8,034,563 400 577,738 400 369,958 400 212,353
Hansen 527 426,056 527 1,422,0225 527 612,015 527 391,597 527 240,092
GRIEWANK2 528 565932 529 18,941,546 529 1,765,175 528 996,188 527 449,090
GKLS(3,30) 16 5286 13 4249 29 302,853 23 84,291 25 96,260
GKLS(3,100) 34 11,464 61 97,124 97 7,492,103 94 5,658,721 92 3,416,276
GKLS(4,100) 20 6010 12 7816 95 8,629,052 73 5,290,564 93 6,358,587
GUILIN(10,200) 191 354,650 200 4,736,609 200 3,351,391 200 2,178,890 199 1,136,783
GUILIN(20,100) 96 263,869 100 1,760,826 100 1,906,288 100 973,307 99 655,374
Test2N(4) 16 17,373 16 18,716 16 19,424 16 5296 16 3970
Test2N(5) 32 37,639 32 78,931 32 30,607 32 10,700 32 7707
Test2n(6) 64 81,893 64 336,353 64 34,840 64 27,679 64 18,367
Test2n(7) 128 175,850 128 1,435,579 128 117,953 128 70,370 128 41,981
GOLDSTEIN 4 5906 4 3812 4 5391 4 3842 4 3850
BRANIN 3 2173 3 1782 3 1856 3 1782 3 1782
HARTMAN3 3 3348 3 2750 3 3509 3 2778 3 2772
HARTMAN6 2 3919 2 3851 2 3903 2 3907 2 3851
SHEKEL5 5 8720 5 4733 5 22,128 5 6430 5 8850
SHEKEL7 7 11,742 6 5485 7 30,702 7 7581 7 10,914
SHEKEL10 10 16,020 10 10,611 10 36,838 9 9812 10 12,751
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Columns labeled as FUNCTION, MIN, FC list the function name, the number of recovered minimizers
and the number of function calls. The labels PCOV and KAN refer to the stopping rules given in Eqs. (21)
and (23), while the labels DOUBLE, OBS and EXPM to the proposed rules in an obvious correspondence.

Experiments have indicated that the rule in Eq. (25) is rather impractical, as can be readily verified by
inspecting Table 2. Note the excessive number of function calls even for s = 0.7 (a value that is too low).
Hence this rule is not included in Table 3, where the complete set of the test functions is used. As we can
observe from Table 3 the new rules in most cases perform better, requiring fewer functional evaluations. How-
ever in the case of functions such as CAMEL, GOLDSTEIN, SHEKEL, HARTMAN, where only a few min-
ima exist, the rules PCOV and KAN have a small advantage. Among the new rules there is not a clear winner,
although EXPM seems to perform marginally better than the other two in terms of function evaluations. The
rule DOUBLE seems to be more exhaustive and retrieves a greater number of minimizers.

6. Conclusions

We presented three new stopping rules for use in conjunction with Multistart for global optimization. These
rules, although quite different in nature, perform similarly and significantly better than other rules that have
been widely used in practice. The comparison does not render a clear winner among them, hence the one that
is more conveniently integrated with the global optimization method of choice may be used. Efficient stopping
rules are important especially for problems where the number of minima is large and the objective function
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expensive. Such problems occur frequently in molecular physics, chemistry and biology where the interest is in
collecting stable molecular conformations that correspond to local minimizers of the steric energy function
[10–12]. Devising new rules and adapting the present ones to other stochastic global optimization methods
is within our interests and currently under investigation.
Appendix A. Test functions

We list the test functions used in our experiments, the associated search domains and the number of the
existing local minima

1. Rastrigin

f ðxÞ ¼ x2

1 þ x2
2 � cosð18x1Þ � cosð18x2Þ,

x 2 [�1,1]2 with 49 local minima.
2. Shubert P P
f ðxÞ ¼ � 2
i¼1

5
j¼1jfsin½ðjþ 1Þxi� þ 1g,

x 2 [�10,10]2 with 400 local minima.
3. GKLS
f(x) = GKLS(x,n,w), is a function with w local minima, described in [7].
x 2 [�1,1]n,n 2 [2, 100]. In our experiments we considered the following cases:
(a) n = 3, w = 30.
(b) n = 3, w = 100.
(c) n = 4, w = 100.
4. Guilin HillsP

f ðxÞ ¼ 3þ n

i¼1ci
xiþ9

xiþ10
sinð p

1�xiþ1=ð2kiÞÞ,
x 2 [0, 1]n, ci > 0, and ki are positive integers. This function has

Qn
i¼1ki minima. In our experiments we

chose n = 10 and n = 20 and arranged ki so that the number of minima is 200 and 100, respectively.
5. Griewank #2P Q
f ðxÞ ¼ 1þ 1
200

2
i¼1x2

i �
2
i¼1

cosðxiÞffiffi
ð
p

iÞ
,

x 2 [�100,100]2 with 529 minima.
6. HansenP P
f ðxÞ ¼ 5
i¼1i cos½ði� 1Þx1 þ i� 5

j¼1j cos½ðjþ 1Þx2 þ j�,
x 2 [�10,10]2 with 527 minima.

7. Camel

f ðxÞ ¼ 4x2

1 � 2:1x4
1 þ 1

3
x6

1 þ x1x2 � 4x2
2 þ 4x4

2,
x 2 [�5,5]2 with six minima.

8. Test2N
f ðxÞ ¼ 1

2

Xn

i¼1

x4
i � 16x2

i þ 5xi
with x 2 [�5,5]n. The function has 2n local minima in the specified range. In our experiments we have
used the values n = 4,5,6,7. These cases are denoted by Test2N(4), Test2N(5), Test2N(6) and Test2N(7),
respectively.

9. Branin � � � �

f ðxÞ ¼ x2 � 5:1

4p2 x2
1 þ 5

p x1 � 6
2 þ 10 1� 1

8p cosðx1Þ þ 10 with �5 6 x1 6 10, 0 6 x2 6 15. The function
has three minima in the specified range.

10. Goldstein and Price
f ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2Þ�½30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x2
1

þ 48x2 � 36x1x2 þ 27x2
2Þ�

The function has four local minima in the range [�2,2]2.
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11. Hartman3
f ðxÞ ¼ �
X4

i¼1

ci exp �
X3

j¼1

aijðxj � pijÞ
2

 !
with x 2 [0,1]3 and

a ¼

3 10 30

0:1 10 35

3 10 30

0:1 10 35

0BBB@
1CCCA

and

c ¼

1

1:2

3

3:2

0BBB@
1CCCA

and

p ¼

0:3689 0:117 0:2673

0:4699 0:4387 0:747

0:1091 0:8732 0:5547

0:03815 0:5743 0:8828

0BBB@
1CCCA:

The function has three minima in the specified range.

12. Hartman6
f ðxÞ ¼ �
X4

i¼1

ci exp �
X6

j¼1

aijðxj � pijÞ
2

 !
with x 2 [0,1]6 and

a ¼

10 3 17 3:5 1:7 8

0:05 10 17 0:1 8 14

3 3:5 1:7 10 17 8

17 8 0:05 10 0:1 14

0BBBB@
1CCCCA

and

c ¼

1

1:2

3

3:2

0BBB@
1CCCA

and

p ¼

0:1312 0:1696 0:5569 0:0124 0:8283 0:5886

0:2329 0:4135 0:8307 0:3736 0:1004 0:9991

0:2348 0:1451 0:3522 0:2883 0:3047 0:6650

0:4047 0:8828 0:8732 0:5743 0:1091 0:0381

0BBB@
1CCCA:

The function has two local minima in the specified range.
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13. Shekel-5
f ðxÞ ¼ �
X5

i¼1

1

ðx� aiÞðx� aiÞT þ ci

with x 2 [0, 10]4 and

a ¼

4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

0BBBBBBB@

1CCCCCCCA
and

c ¼

0:1

0:2

0:2

0:4

0:4

0BBBBBB@

1CCCCCCA:

The function has five local minima in the specified range.

14. Shekel-7
f ðxÞ ¼ �
X7

i¼1

1

ðx� aiÞðx� aiÞT þ ci

with x 2 [0, 10]4 and

a ¼

4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 3 5 3

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
and

c ¼

0:1

0:2

0:2

0:4

0:4

0:6

0:3

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

The function has seven local minima in the specified range.
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15. Shekel-10
f ðxÞ ¼ �
Xm

i¼1

1

ðx� AiÞðx� AiÞT þ ci

 !
;

where m ¼ 10;A ¼

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3:6 7 3:6

2666666666666664

3777777777777775
, c ¼

0:1
2
2

0:4
0:4
0:6
0:3
0:7
0:5
0:5

2666666666666664

3777777777777775
x 2 [0, 10]4 with 10 minima.
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