
Genetically Controlled Random Search: A global

optimization method for continuous

multidimensional functions

Ioannis G. Tsoulos, Isaac E. Lagaris∗

Department of Computer Science, University of Ioannina,
P.O. Box 1186, Ioannina 45110 - GREECE

Abstract

A new stochastic method for locating the global minimum of a multi-

dimensional function inside a rectangular hyperbox is presented. A sam-

pling technique is employed that makes use of the procedure known as

grammatical evolution. The method can be considered as a “genetic”

modification of the Controlled Random Search procedure due to Price.

The user may code the objective function either in C++ or in Fortran77.

We offer a comparison of the new method with others of similar struc-

ture, by presenting results of computational experiments on a set of test

functions.

PACS::02.60.-x ; 02.60.Pn ; 07.05.Kf; 02.70.Lq; 07.05.Mh

PROGRAM SUMMARY

Title of program: GenPrice

Catalogue identifier :

Program available from: CPC Program Library, Queen’s University of Belfast,
N. Ireland.

Computer for which the program is designed and others on which it has been

tested : The tool is designed to be portable in all systems running the GNU
C++ compiler.

Installation: University of Ioannina, Greece.

Programming language used : GNU-C++, GNU-C, GNU Fortran - 77.

∗Corresponding author. Email: lagaris@cs.uoi.gr

1

Memory required to execute with typical data: 200KB.

No. of bits in a word : 32

No. of processors used : 1

Has the code been vectorised or parallelized? : No.

No. of bytes in distributed program,including test data etc.: 100 Kbytes.

Distribution format : gzipped tar file.

Keywords : Global optimization, stochastic methods, genetic programming,
grammatical evolution.

Nature of physical problem: A multitude of problems in science and
engineering are often reduced to minimizing a function of many variables.
There are instances that a local optimum does not correspond to the desired
physical solution and hence the search for a better solution is required. Local
optimization techniques are frequently trapped in local minima. Global
optimization is hence the appropriate tool. For example, solving a non - linear
system of equations via optimization, employing a “least squares” type of
objective, one may encounter many local minima that do not correspond to
solutions, i.e. minima with values far from zero.

Typical running time: Depending on the objective function.

LONG WRITE UP

1 Introduction

A recurring problem in many applications is that of finding the global minimum
of a function. This problem may be stated as: Determine

x∗ = argmin
x∈S

f(x)

The non empty set S ⊂ Rn considered here, is a hyper box defined as:

S = [a1, b1] ⊗ [a2, b2] ⊗ . . . [an, bn]

Recently several methods have been proposed for the solution of the global
optimization problem. These methods can be divided in two main categories,
deterministic and stochastic. Random search methods are widely used in the
field of global optimization, because they are easy to implement and also since
they do not depend critically on apriori information about the objective func-
tion. Various random search methods have been proposed, such as the Random
Line Search [1], Adaptive Random Search [2], Competitive Evolution [3], Con-
trolled Random Search [4], Simulated Annealing [5, 6, 7, 8], Genetic Algorithms

2

[9, 10], Differential Evolution [11, 12], methods based on Tabu Search [26] etc.
This article introduces a new sampling technique for use with conjunction with
Controlled Random Search. The method is based on the genetic programming
procedure known as Grammatical Evolution. Performance comparison to other
methods is quite favorable as might be verified by inspecting the reported re-
sults of our computational experiments in Table 1i, section 3.2. The suggested
approach uses a population of randomly created moves, that guide the under-
lying stochastic search towards the global minimum. These random moves are
produced by applying the method of grammatical evolution. Grammatical evo-
lution is an evolutionary process that can produce code in an arbitrary language.
The production is performed using a mapping process governed by a grammar
expressed in Backus Naur Form. Grammatical evolution has been applied suc-
cessfully to problems such as symbolic regression [14], discovery of trigonometric
identities [15], robot control [16], caching algorithms [17], financial prediction
[18] etc. The rest of this article is organized as follows: in section 2 we give
a brief presentation of the grammatical evolution and of the suggested algo-
rithms. In section 3 we list some experimental results from the application of
the proposed method and a comparison is made against traditional global opti-
mization methods and in section 4 we present the installation and the execution
procedures of the GenPrice.

2 Description of the algorithm

2.1 Grammatical evolution

Grammatical evolution is an evolutionary algorithm that can produce code in
any programming language. The algorithm requires the grammar of the tar-
get language in BNF syntax and the proper fitness function. Chromosomes in
grammatical evolution, in contrast to classical genetic programming [23], are
not expressed as parse trees, but as vectors of integers. Each integer denotes a
production rule from the BNF grammar. The algorithm starts from the start
symbol of the grammar and gradually creates the program string, by replacing
non terminal symbols with the right hand of the selected production rule. The
selection is performed in two steps:

• Read an element from the chromosome (with value V).

• Select the rule according to the scheme

Rule = V mod R (1)

where R is the number of rules for the specific non-terminal symbol. The
process of replacing non terminal symbols with the right hand of production
rules is continued until either a full program has been generated or the end
of chromosome has been reached. In the latter case we can reject the entire
chromosome or we can start over (wrapping event) from the first element of the

3

chromosome. In our approach we allow at most two wrapping events to occur.
If the limit of two wrapping events is reached the chromosome is rejected. The
rejection of a chromosome means that a large fitness value is assigned to the
chromosome and as a consequence it will not be used in the crossover procedure.
Further details about the grammatical evolution procedure can be found in
[13, 14, 22].

2.2 Used grammar

The grammar of the package is a small portion of the grammar of the C pro-
gramming language. The grammar can be expressed as follows in BNF notation:

<START>::=<expr>

<expr>:=(<expr><binary op><expr>)

|<func op>(<expr>)

|<terminal>

<binary op>::=+|-|*|/

<func op>::=sin | cos | exp | log

<terminal>::=<digitlist>.<digitlist>

|x

<digitlist>::=<digit>

|<digit><digit>

|<digit><digit><digit>

<digit>::=0|1|2|3|4|5|6|7|8|9

The symbol named START denotes the starting symbol of the grammar. As
we can see the employed programming language supports four functions and at
most three digit numbers. Note that it is straightforward to extend the function
repertoire and upgrade the support to multiple digit numbers.

2.3 Description of the Genetic Random Search (GRS)
algorithm

The algorithm named GRS creates random trails that can be embedded in any
stochastic procedure to guide the search towards the global minimum. This
algorithm is essential for the method Genetically Controlled Random Search
method introduced in this article and its main steps are the following:

INPUT Data:

• A point x = (x1, x2, . . . , xn) , x ∈ S ⊂ Rn.

• ε, a small positive number. Typical values for this parameter are 10−4 to
10−5.

• k, a small positive integer, usually between 10 and 20.

4

• Set selection rate. The value of this parameter denotes the fraction of
chromosomes that will pass unchanged to the next generation, and there-
fore the fraction of new chromosomes which will be created through the
process of crossover. Typical values for this parameter is 0.1, 0.2 etc.

• Set mutation rate. The value of this parameter controls the average num-
ber of changed in a chromosome. Typical values for this parameter is
0.02, 0.05 etc.

INITIALIZATION step:

• The initialization of each element of the genetic population is performed
by selecting a random integer in the range [0,255].

LOOP Step:

• For i = 1, ..., k Do

– Set xold = x.

– Create a new generation of chromosomes in the population with the
use of the genetic operations (crossover, mutation, reproduction). At
first the chromosomes are sorted in a way such that the best of them
is placed at the beginning of the population and the worst at the end.
After that, c = (1− s)× g new chromosomes are created through the
process of crossover. The parameter s denotes the value of selection
rate and the parameter g denotes the total number of chrosomomes
in the genetic population. The new chromosomes will replace the
worst in the population at the end of the crossover procedure. For
every couple of children two chromosomes are selected from the pop-
ulation with the method of tournament selection i.e.: First a group
of K ≥ 2 randomly selected individuals is created. The individual
with the best fitness value is selected for mating while the rest are
discarded. Having selected two chromosomes, two new are created
by the process of one - point crossover. In that procedure the chro-
mosomes are cut at a randomly chosen point and the right-hand-side
subchromosomes are exchanged, as shown in figure 1. Crossover does
not respect the boundaries between the different parts of the chromo-
somes. After the crossover, mutation is applied to every chromosome
in the population; for every chromosome in the population and for
every element in the chromosome a random number in the range [0,1]
is chosen. If this number is less than or equal to the mutation rate,
the corresponding element is changed randomly, otherwise it remains
intact.

– For every chromosome Do

∗ Split the chromosome uniformly into n pieces, one for each di-
mension. Each piece corresponds to a random movement and is

5

denoted by pi, i = 1, . . . , n. On every piece pi the grammat-
ical evolution transformation is applied, which is based on the
proposed grammar. This determines a univariate function fi.

∗ Denote by d the vector (d1 = f1 (x1) , d2 = f2 (x2) , ..., dn = fn (xn)).

∗ Set x+ = x + d.

∗ If x+ /∈ S or f (x+) > y then

· Set x− = x − d.

· If x− /∈ S or f (x−) > y , then

Set the fitness value to a very large number.

· Else

Set the fitness value to f (x−).

· Endif

∗ Else

· Set the fitness value to f (x+).

∗ Endif

– Endfor

– Set x = x + dbest, where dbest the movement that corresponds to
the chromosome with the best fitness value.

– If
∣

∣x − xold
∣

∣ ≤ ε, terminate and return x as the located minimizer.

• Endfor

• Return x as the located minimizer.

2.4 Genetically Controlled Random Search (GCRS)

The Controlled Random Search is a population based optimization algorithm
and it has been applied successfully to many problems [27] and is the base of
our new procedure described below:

Initialization Step:

• Set the value for the parameter N . A commonly used value for that is
N = 25n.

• Set a small positive value for ε.

• Create the set T = {z1, z2, ..., zN}, by randomly sampling N points from
S.

Min Max Step:

• Select the points zmin ∈ T and zmax ∈ T , that yield the minimum and
maximum f -values correspondingly. Set

fmin = f(zmin) and fmax = f(zmax) (2)

6

• If
∣

∣fmax − fmin
∣

∣ < ε, then goto Local Search Step.

New Point Step:

• Select randomly the reduced set T̃ =
{

zT1
, zT2

, .., zTn+1

}

from T .

• Compute the centroid G:

G =
1

n

n
∑

i=1

zTi

• Compute a trial point z̃ = 2G − zTn+1
.

• If z̃ /∈ S or f(z̃) ≥ fmax then goto New Point step.

• Perform a call to GRS procedure using as starting point the point z̃.
This is the step that distinguishes the new method from the controlled
random search [4].

Update Step:

• T = T ∪ {z̃} − {zmax}.

• Goto Min Max Step.

Local Search Step:

• z∗ = localSearch(z), where localSearch is a deterministic local search pro-
cedure such as BFGS, DFP etc. The local search procedure used in the
GenPrice tool is the BFGS variant due to Powell [24].

• Return the point z∗ as the discovered global minimum.

The Local Search step is applied only at the end of the algorithm to ensure
that the algorithm will find a true local minimum and not just an approximation
of it.

3 Experimental results

The Genetically Controlled Random Search (GCRS) was tested against

1. The original Controlled Random Search (CRS).

2. The modified Controlled Random Search (PCRS) as described in [29].

We list also results from the Simulated Annealing (SA) as modified by Goffe
et al [8] not for immediate comparison since the methods are quite different,
but only as a reference point (Their code simann.f is available from the URL:
http://www.netlib.org).

7

The comparison is made using a suite of well known test problems. Each
method was run 30 times on every problem using different random seeds. We
have measured the ability of the method to discover the global minimum and the
number of function evaluations it required. In all cases the selection rate was set
to 90% and the mutation rate to 5%. The length of each chromosome was set to
10×d, where d is the dimensionality of the objective function and the maximum
number of iterations allowed in the GRS method (parameter K) was set to 10.
We used the suggested (ref. [4]) value of N = 25n, for the initial population
in the methods CRS, PCRS and GCRS. Similarly we employed the parameters
suggested in the documentation of the Simulated Annealing software, available
from the URL http://www.netlib.org, namely: NS = 20, NT = 5, T = 5.0, a =
0.5, TLAST = 4 for SA. All the experiments were conducted on an AMD
ATHLON 2400+ equipped with 256 MB RAM. The hosting operating system
was Debian Linux and the used programming language was the GNU C++.
The trial steps produced by the grammatical evolution were evaluated using the
FunctionParser programming library [25].

3.1 Test functions

Camel

f(x) = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2, x ∈ [−5, 5]2 with 6 local minima
and global minimum f∗ = −1.031628453.

Rastrigin

f(x) = x2
1 + x2

2 − cos(18x1) − cos(18x2), x ∈ [−1, 1]2 with 49 local minima and
global minimum f∗ = −2.0.

Griewank2

f(x) = 1 + 1
200

∑2
i=1 x2

i −
∏2

i=1
cos(xi)√

(i)
, x ∈ [−100, 100]2 with 529 loca minima

and global minimum f∗ = 0.0

Gkls

f(x) = Gkls(x, n, w), is a function with w local minima, described in [28],
x ∈ [−1, 1]n, n ∈ [2, 100]. In our experiments we use n = 2, 3 and w = 50.

GoldStein & Price

f(x) = [1 + (x1 + x2 + 1)2

(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)] ×
[30 + (2x1 − 3x2)

2

(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

8

The function has 4 local minima in the range [−2, 2]2 and global minimum
f∗ = 3.0.

Test2N

f(x) =
1

2

n
∑

i=1

x4
i − 16x2

i + 5xi

with x ∈ [−5, 5]n. The function has 2n local minima in the specified range. In
our experiments we used the cases of n = 4, 5, 6, 7.

Test30N

f(x) =
1

10
sin2 (3πx1)

n−1
∑

i=2

(

(xi − 1)2
(

1 + sin2 (3πxi+1)
)

)

+(xn − 1)2
(

1 + sin2 (2πxn)
)

with x ∈ [−10, 10]n. The function has 30n local minima in the specified range.
In our experiments we used the cases of n = 3, 4.

Potential

The molecular conformation corresponding to the global minimum of the energy
of N atoms interacting via the Lennard-Jones potential is determined for two
cases: with N = 3 atoms and with N = 5 atoms. We refer to the first case as
Potential(3) (a problem with 9 variables) and to the second as Potential(5)
(a problem with 15 variables). The global minimum for the first cases is f ∗ = 3
and f∗ = −9.103852416

Neural

A neural network (sigmoidal perceptron) with 10 hidden nodes (30 variables)
was used for the approximation of the function g(x) = x sin

(

x2
)

, x ∈ [−2, 2].
The global minimum of the training error is f∗ = 0.0

3.2 Results

In table 1 we list the results for the Simulated Annealing in the column labeled
SA, the Controlled Random Search in the column labeled CRS, the modified
Controlled Random Search in the column denoted by PCRS and the results from
the proposed Genetically Controlled Random Search in the column denoted by
GCRS. The numbers in the cells represent the average number of function eval-
uations required by each method. The figures in parentheses denote the fraction
of runs that located the global minimum and were not trapped in one of the
local minima. Absence of this number denotes that the global minimum has
been recovered in every single run. The proposed GCRS has shown superior

9

Table 1: Experimental results obtained by the methods of SA, CRS, PCRS and
GCRS applied on several global optimization benchmarks

FUNCTION SA CRS PCRS GCRS

CAMEL 4820 1852 1409 1504
RASTRIGIN 4843 1903 1982 428
GRIEWANK2 4832(0.27) 2105 2004 977
GKLS(2,50) 4820 1627 1495 1220
GKLS(3,50) 7228 3349 3059 2056

GOLDSTEIN 4842 1923 1456 961
TEST2N(4) 9631 6835(0.97) 4831 4280(0.97)
TEST2N(5) 12034(0.87) 25270(0.97) 12342 7958
TEST2N(6) 14438(0.66) 32801(0.70) 8840(0.87) 9914
TEST2N(7) 16840(0.37) 38057(0.40) 11751(0.63) 9740
TEST30N(3) 7930(0.23) 3703 2124 1519
TEST30N(4) 9858(0.23) 5135 4058 1416

POTENTIAL(3) 21404 198046 34985 9265
POTENTIAL(5) 36212 188646 39305 9096

NEURAL 76667(0.93) 122617 94016 14559

performance among its peers. This can be deduced from the significantly lower
number of the required function evaluations, and the fraction of runs that suc-
ceeded in finding the global minimum. The new ingredient in the algorithm
is the GRS procedure, which is based on Grammatical Evolution. Hence, the
observed performance enhancement is due to this new component. It remains
to be seen in practice if the performance advantage observed for the present
benchmark suite, will be maintained in other real world problems as well.

4 Software documentation

4.1 Distribution

The package is distributed in a tar.gz file named GenPrice.tar.gz and un-
der UNIX systems the user must issue the following commands to extract the
associated files:

1. gunzip GenPrice.tar.gz

2. tar xfv GenPrice.tar

These steps create a directory named GenPrice with the following contents:

1. bin: A directory which is initially empty. After compilation of the pack-
age, it will contain the executable make genprice

10

2. doc: This directory contains the documentation of the package (this file)
in different formats: A LYX file, A LATEX file and a PostScript file.

3. examples: A directory that contains the test functions used in this article,
written in ANSI C++ and the Fortran77 version of the Six Hump Camel
function.

4. include: A directory which contains the header files for all the classes of
the package.

5. src: A directory containing the source files of the package.

6. Makefile: The input file to the make utility in order to build the tool.
Usually, the user does not need to change this file.

7. Makefile.inc: The file that contains some configuration parameters, such
as the name of the C++ compiler etc. The user must edit and change this
file before installation.

4.2 Installation

The following steps are required in order to build the tool:

1. Uncompress the tool as described in the previous section.

2. cd GenPrice

3. Edit the file Makefile.inc and change (if needed) the five configuration
parameters.

4. Type make.

The five parameters in Makefile.inc are the following:

1. CXX: It is the most important parameter. It specifies the name of the
C++ compiler. In most systems running the GNU C++ compiler this
parameter must be set to g++.

2. CC: If the user written programs are in C, set this parameter to the name
of the C compiler. Usually, for the GNU compiler suite, this parameter is
set to gcc.

3. F77: If the user written programs are in Fortran 77, set this parameter
to the name of the Fortran 77 compiler. For the GNU compiler suite a
usual value for this parameter is g77.

4. F77FLAGS: The compiler GNU FORTRAN 77 (g77) appends an under-
score to the name of all subroutines and functions after the compilation
of a Fortran source file. In order to prevent this from happening we can
pass some flags to the compiler. Normally, this parameter must be set to
-fno-underscoring.

11

5. ROOTDIR: Is the location of the GenPrice directory. It is critical for
the system that this parameter is set correctly. In most systems, it is the
only parameter which must be changed.

4.3 User written subprograms

The user can write his objective function either in C, C++ or in Fortran77 in
a single file. Each file has a series of functions in an arbitrary order. However,
the C++ files must have the lines

extern ”C” {

before the functions and the line

}

after them. The meaning of the functions are the following:

1. getdimension(): It is an integer function which returns the dimension of
the objective function.

2. getleftmargin(left): It is a subroutine (or a void function in C) which
fills the double precision array left with the left margins of the objective
function.

3. getrightmargin(right): Is is a subrourine (or a void function in C) which
fills the double precision array right with the right margins of the objective
function.

4. funmin(x): It is a double precision function which returns the value of
the objective function evaluated at point x.

5. granal(x,g): It is a subroutine (or a void function in C) which returns in
a double precision array g the gradient of the objective function at point
x.

4.4 The utility make genprice

After the compilation of the package, the executable make genprice will be
placed in the subdirectory bin in the distribution directory. This program
creates the final executable and it takes the following command line parameters:

1. -h: Prints a help screen and terminates.

2. -p filename: The filename parameter specifies the name of the file con-
taining the objective function. The utility checks the suffix of the file and
it uses the appropriate compiler. If this suffix is .cc or .c++ or .CC or
.cpp, then it invokes the C++ compiler. If the suffix is .f or .F or .for then
it invokes the Fortran 77 compiler. Finally, if the suffix is .c it invokes the
C compiler.

12

3. -o filename: The filename parameter specifies the name of the final
executable. The default value for this parameter is GenPrice.

4.5 The utility GenPrice

The final executable GenPrice has the following command line parameters:

1. -h:The program prints a help and it terminates.

2. -c count: The integer parameter count specifies the number of chromo-
somes for the Genetic Random Search procedure. The default value for
this parameter is 20.

3. -s srate: The double parameter srate specifies the selection rate used
in the Genetic Random Search procedure. The default value for this pa-
rameter is 0.10 (10%).

4. -m mrate: The double parameter mrate specifies the mutation rate used
in the Genetic Random Search procedure. The default value for this pa-
rameter is 0.05 (5%).

5. -r seed: The integer parameter seed specifies the seed for the random
number generator. It can assume any integer value.

6. -o filename: The parameter filename specifies the file where the output
from the GenPrice will be placed. The default value for this parameter is
the standard output.

4.6 A working example

Consider the Six Hump Camel function given by

f(x) = 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2, x ∈ [−5, 5]2

with 6 local minima. The implementation of this function in C++ and in
Fortran77 is shown in figures 2 and 3. Let the file with the C++ code be named
camel.cc and that with the Fortran code camel.f. Let these files be located
in the examples subdirectory. Change to the examples subdirectory and create
the GenPrice executable with the make genprice command:

../bin/make genprice -p camel.cc

or for the Fortran 77 version

../bin/make genprice -p camel.f

The make genprice responds:

RUN ./GenPrice IN ORDER TO RUN THE PROBLEM

13

Run GenPrice by issuing the command:

./GenPrice -c 10 -r 1

The resulting output appears as:

FUNCTION EVALUATIONS = 1310

GRADIENT EVALUATIONS = 20

MINIMUM = 0.089842 -0.712656 -1.031628

References

[1] Bremermann H. A., A method for unconstrained global optimization,
Mathematical Biosciences 9, 1-15 (4,8) 1970.

[2] Beltrami E.J. and Indusi J.P., An adaptive random search algorithm for
constrained optimization, IEEE Trans. on Automatic Control 17, 1004-
1007(4), 1972.

[3] Jarvis R.A., Adaptive global search by the process of competitive evolution,
IEEE Trans. on Syst., Man and Cybergenetics 75, 297-311(4), 1975.

[4] Price W. L., Global Optimization by Controlled Random Search, Computer
Journal, Vol. 20, pp. 367-370, 1977.

[5] Kirkpatrick S., Gelatt C. D. and Vecchi M. P., Optimization by simulated
annealing, Science 220, 671-680 (4), 1983.

[6] P. J. M. van Laarhoven and E. H. L. Aarts, “Simulated Annealing: Theory
and Applications”, 1987, D. Riedel, Boston.

[7] Corana A., Marchesi M., Martini C. and Ridella S., Minimizing Multimodal
Functions of Continuous Variables with the “Simulated Annealing” Algo-
rithm, ACM Transactions on Mathematical Software, Vol. 13, pp. 262-280,
1987.

[8] Goffe W. L., Ferrier G. D. and Rogers J., “Global Optimization of Statis-
tical Functions with Simulated Annealing”, J. Econometrics 60(1994), pp.
65-100.

[9] Goldberg D., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Publishing Company, Reading, Massachussets,
1989.

[10] Michaelewizc Z., Genetic Algorithms + Data Structures = Evolution Pro-
grams, Springer - Verlag, 1996.

[11] Storn R. and Price K., Differential Evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces, Journal of
Global Optimization, Vol. 11, pp. 341-359, 1997.

14

[12] Ali M. M. and Törn A., Optimization of Carbon and Silicon Cluster Geom-
etry for Tersoff Potential using Differential Evolution, in ’Optimization in
Computational Chemistry and Molecular Biology’, Edited by C. A. Floudas
and P. M. Pardalos, Kluwer Acedemic Publisher, pp. 287-300, 2000.

[13] M. O’Neill, Automatic Programming in an Arbitrary Language: Evolving
programs with grammatical evolution, PhD Thesis, University of Limerick,
Ireland, August 2001.

[14] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, volume 4 of Genetic programming.
Kluwer Academic Publishers, 2003.

[15] C. Ryan, M. O’Neill, and J.J. Collins, “Grammatical Evolution: Solving
Trigonometric Identities,” In proceedings of Mendel 1998: 4th International
Mendel Conference on Genetic Algorithms, Optimization Problems, Fuzzy
Logic, Neural Networks, Rough Sets., Brno, Czech Republic, June 24-26
1998. Technical University of Brno, Faculty of Mechanical Engineering, pp.
111-119.

[16] Collins J. and Ryan C., “Automatic Generation of Robot Behaviors using
Grammatical Evolution,” In Proc. of AROB 2000, the Fifth International
Symposium on Artificial Life and Robotics.

[17] M. O’Neill and C. Ryan, “Automatic generation of caching algorithms,” In
Kaisa Miettinen, Marko M. Mkel, Pekka Neittaanmki, and Jacques Peri-
aux (eds.), Evolutionary Algorithms in Engineering and Computer Science,
Jyvskyl, Finland, 30 May - 3 June 1999, John Wiley & Sons, pp. 127-134,
1999.

[18] A. Brabazon and M. O’Neill, “A grammar model for foreign-exchange trad-
ing,” In H. R. Arabnia et al., editor, Proceedings of the International con-
ference on Artificial Intelligence, volume II, CSREA Press, 23-26 June 2003,
pp. 492-498, 2003.

[19] M. O’Neill and C. Ryan, “Genetic code degeneracy: Implications for gram-
matical evolution and beyond,” In D. Floreano, J.-D. Nicoud, and F. Mon-
dada (eds.), Advances in Artificial Life, volume 1674 of LNAI, Lausanne,
13-17 September 1999, Springer Verlag, page 149, 1999.

[20] M. O’Neill and C. Ryan, “Under the hood of grammatical evolution,” In
Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon Vas-
ant Honavar, Mark Jakiela, and Robert E. Smith (eds.), Proceedings of
the Genetic and Evolutionary Computation Conference, vol. 2, Orlando,
Florida, USA, 13-17 July 1999, Morgan Kaufmann, pp. 1143-1148, 1999.

[21] M. O’Neill and C. Ryan, “Evolving Multi-Line Compilable C Programs,”
In Riccardo Poli, Peter Nordin, William B. Langdon, and Terence C. Fog-
arty (eds.), Proceedings of EuroGP’99, volume 1598 of LNCS, Goteborg,
Sweden, 26-27 May 1999. Springer-Verlag, pp. 83-92, 1999.

15

[22] M. O’Neill and C. Ryan, “Grammatical Evolution,” IEEE Trans. Evolu-
tionary Computation, Vol. 5, pp. 349-358, 2001.

[23] J. R. Koza, Genetic Programming: On the programming of Computer by
Means of Natural Selection. MIT Press: Cambridge, MA, 1992.

[24] Powell M.J.D, A Tolerant Algorithm for Linearly Constrained Optimization
Calculations, Mathematical Programming 45, pp 547.

[25] Nieminen J. and Yliluoma J., “Function Parser for C++, v2.7”, available
from http://www.students.tut.fi/̃warp/FunctionParser/.

[26] Cvijoivic D. and Klinowski J., Taboo search. An Approach to the Multiple
Minima Problems, Science 667, pp. 664-666, 1995.

[27] Ali M. M., Storey C. and Törn A., Application of some stochastic global op-
timization algorithms to practical problems, Journal of Optimization The-
ory and Applications, Vol. 95, No. 3, pp. 545-563, 1997.

[28] Gaviano M., Ksasov D. E., Lera D. and Sergeyev, Y. D. Software for gen-
eration of classes of test functions with known local and global minima for
global optimization, ACM Trans. Math. Softw. 29, pp. 469-480, 2003.

[29] Theos F.V, Lagaris I.E. and Papageorgiou D.G., PANMIN: sequential and
parallel global optimization procedures with a variety of options for the lo-
cal search strategy Computer Physics Communications Package, 159 (2004)
pp. 63-69

16

Figure 1: One - Point crossover

17

Figure 2: Implementation of Camel function in C++.
extern “C”{
int getdimension()
{

return 2;
}

void getleftmargin(double *left)
{

left[0]=-5.0;
left[1]=-5.0;

}

void getrightmargin(double *right)
{

right[0]=5.0;
right[1]=5.0;

}

double funmin(double *x)
{

double x1=x[0],x2=x[1];
return 4*x1*x1-2.1*x1*x1*x1*x1+

x1*x1*x1*x1*x1*x1/3.0+x1*x2-4*x2*x2+4*x2*x2*x2*x2;
}

void granal(double *x,double *g)
{

double x1=x[0],x2=x[1];
g[0]=8*x1-8.4*x1*x1*x1+2*x1*x1*x1*x1*x1+x2;
g[1]=x1-8*x2+16*x2*x2*x2;

}

}

18

Figure 3: Implementation of Camel function in Fortran 77.
integer function getdimension()
getdimension = 2
end

subroutine getleftmargin(left)
double precision left(2)
left(1)=-5.0
left(2)=-5.0
end

subroutine getrightmargin(right)
double precision right(2)
right(1)= 5.0
right(2)= 5.0
end

double precision function funmin(x)
double precision x(2)
double precision x1,x2
x1=x(1)
x2=x(2)
funmin=4*x1**2-2.1*x1**4+x1**6/3.0+x1*x2-4*x2**2+4*x2**4
end

subroutine granal(x,g)
double precision x(2)
double precision g(2)
double precision x1,x2
x1=x(1)
x2=x(2)
g(1)=8.0*x1-8.4*x1**3+2*x1***5+x2;
g(2)=x1-8.0*x2+16.0*x2**3;

end

19

