# MEMPSODE: Comparing Particle Swarm Optimization and Differential Evolution on a Hybrid Memetic Global Optimization Framework

Draft version <sup>\*</sup>

G.S. Piperagkas

Computer Science

C. Voglis Computer Science Department University of Ioannina Ioannina, Greece voglis@cs.uoi.gr

Department University of Ioannina gpiperag@cs.uoi.gr

D. G. Papageorgiou Department of Materials Science and Engineering University of Ioannina dpapageo@cc.uoi.gr

## ABSTRACT

In this paper we present an experimental comparison between two well known population-based schemes, namely Particle Swarm Optimization (PSO) and Differential Evolution (DE), that are incorporated in a memetic global optimization framework. We use the recently published MEMP-SODE software [16], that implements the memetic global optimization first described in [13] and incorporates Merlin optimization environment [10]. Since the original description of the algorithm in [13] involved only a PSO variant for the exploration phase, using MEMPSODE software we attempt an empirical assessment of the DE. The results based on the noiseless testbed, indicate that the usage of DE may lead to superior performance.

## **Categories and Subject Descriptors**

G.1.6 [Numerical Analysis]: Optimization—global optimization, memetic algorithms, particle swarm optimization, differential evolution, local search; G.4 [Mathematical Software]

Copyright 2012 ACM 978-1-4503-0073-5/10/07 ...\$10.00.

K. E. Parsopoulos Computer Science Department University of Ioannina kostasp@cs.uoi.gr

I. E. Lagaris Computer Science Department University of Ioannina Iagaris@cs.uoi.gr

### Keywords

Memetic global optimization, Particle swarm optimization, Differential evolution, Benchmarking, Black-box optimization, Merlin optimization environment

#### 1. INTRODUCTION

Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) approaches have been established as powerful optimization tools for solving optimization problems [2, 8, 12]. They are based on models that draw their inspiration from physical systems. Based on natural selection and evolution schemes these algorithms exhibit remarkable capability of locating global solutions for optimization problems.

The rise of EA and SI algorithms has sparked the development of a closely related category, namely the *Memetic Algorithms* (MAs). MAs constitute a class of hybrid metaheuristics that combine population-based optimization algorithms with local search procedures [9]. The rationale behind their development was the necessity for powerful algorithms where the global exploration capability of EAs and SI approaches would be complemented with the efficiency and accuracy of classical local optimization techniques.

In this work we examine the performance of a memetic optimization software that incorporates Particle Swarm Optimization (PSO) or Differential Evolution (DE) schemes for exploration in addition to powerful local optimization algorithms for exploitation. Our primary target is to determine the impact of the choice between UPSO and DE in the algorithmic framework presented in [13]. By no means we are attempting an extensive benchmark of all MEMPSODE user defined parameters. Instead we use a default set of parameters both on PSO and on DE and the same local search procedure.

## 2. ALGORITHM PRESENTATION

The tested software follows closely the PSO–based memetic approaches reported in [13] and extends them also to the DE

<sup>&</sup>lt;sup>\*</sup>Submission deadline: March 28th.

<sup>&</sup>lt;sup>†</sup>Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'12, July 7–11, 2012, Philadelphia, USA.

framework. More specifically, the Unified PSO (UPSO) approach [11], which harnesses the strengths of standard local and global PSO variants is implemented. In both cases, direct calls to LS procedures are facilitated via the established *Merlin* optimization environment [10], providing the ability to develop a variety of MAs. In order to present the algorithm implemented by MEMSPODE we provide summary for all key algorithms incorporated. A pseudo-code summarising the methodology is presented in Algorithm 1.

#### 2.1 Unified Particle Swarm Optimization

PSO was introduced by Eberhart and Kennedy [1]. The main concept of the method includes a population, also called *swarm*, of search points, also called *particles*, searching for optimal solutions within the search space, simultaneously. The particles move in the search space by assuming an adaptable position shift, called *velocity*, at each iteration.

Moreover, each particle retains in a memory the best position it has ever visited, i.e., the position with the lowest function value. To each particle is assigned a *neighborhood*, which determines the indices of its mates that will share its experience. Obviously, the neighborhood scheme affects the flow of information among the particles. Two well known neighborhood scheme have been used extensively. The local *lbest* scheme were each particle is assumed to communicate only with its mates with adjacent indices and the global *gbest* scheme were any new information (best position) is immediately communicated to every single particle in each iteration.

Putting our description in a mathematical framework, let us assume the n-dimensional continuous optimization problem:

$$\min_{x \in X \subset \mathbb{R}^n} f(x),\tag{1}$$

where the search space X is an orthogonal hyperbox in  $\smallsetminus^n$ :

$$X \equiv [l_1, r_1] \times [l_2, r_2] \times \cdots \times [l_n, r_n].$$

A swarm of N particles is a set of search points:

$$S = \{x_1, x_2, \ldots, x_N\},\$$

where the i-th particle is defined as:

$$x_i = (x_{i1}, x_{i2}, \dots, x_{in})^\top \in X, \qquad i = 1, 2, \dots, N.$$

The velocity (position shift) of  $x_i$  is denoted as:

$$v_i = (v_{i1}, v_{i2}, \dots, v_{in})^{\top}, \qquad i = 1, 2, \dots, N,$$

and its best position as:

$$p_i = (p_{i1}, p_{i2}, \dots, p_{in})^{\top} \in X, \qquad i = 1, 2, \dots, N.$$

Let  $g_i = \arg \min_{j \in \mathcal{N}_i} f(p_j)$ , and t denote the algorithm's iteration counter.

The classical PSO model can be generalized in the UPSO scheme [11]. Following this scheme and if we assume that  $G_i^{(t+1)}$  and  $L_i^{(t+1)}$  denote the velocity update of  $x_i$  in the gbest and lbest PSO model, respectively:

$$G_{ij}^{(t+1)} = \chi \left[ v_{ij}^{(t)} + c_1 r_1 \left( p_{ij}^{(t)} - x_{ij}^{(t)} \right) + c_2 r_2 \left( p_{gj}^{(t)} - x_{ij}^{(t)} \right) \right] 2,$$
  

$$L_{ij}^{(t+1)} = \chi \left[ v_{ij}^{(t)} + c_1 r_1 \left( p_{ij}^{(t)} - x_{ij}^{(t)} \right) + c_2 r_2 \left( p_{gij}^{(t)} - x_{ij}^{(t)} \right) \right] 3,$$

where g is the index of the overall best particle, i.e.:

$$g = \arg\min_{j=1,\dots,N} f(p_j),$$

then the particle is updated as follows [11]:

$$U_{ij}^{(t+1)} = u G_{ij}^{(t+1)} + (1-u) L_{ij}^{(t+1)}, \qquad (4)$$

$$x_{ij}^{(t+1)} = x_{ij}^{(t)} + U_{ij}^{(t+1)}, (5)$$

$$i = 1, 2, \dots, N, \qquad j = 1, 2, \dots, n.$$

The parameter  $u \in [0, 1]$  is called the *unification factor* and it balances the influence (trade–off) of the global and local velocity update. Obviously, the lbest PSO model is retrieved for u = 0, while for u = 1 the gbest PSO model is obtained. All intermediate values produce combinations with diverse convergence properties.

#### 2.2 Differential Evolution

The Differential Evolution (DE) algorithm was introduced by Storn and Price [14] as a population–based stochastic optimization algorithm for numerical optimization problems. DE is formulated similarly to PSO. A population:

$$P = \{x_1, x_2, \ldots, x_N\},\$$

of N individuals is utilized to probe the search space,  $X \subset \mathbb{R}^n$ . The population is randomly initialized, usually following a uniform distribution within the search space.

Each individual is an n-dimensional vector:

$$x_i = (x_{i1}, x_{i2}, \dots, x_{in})^\top \in X, \qquad i = 1, 2, \dots, N,$$

serving as a candidate solution of the problem at hand. The population is iteratively evolved by applying two operators, *mutation* and *recombination*, on each individual to produce new candidate solutions. Then, the new and the old individuals are merged and selection takes place to construct the new population consisting of the N best individuals. The procedure continues in the same manner until a termination criterion is satisfied.

The mutation operator produces a new vector,  $v_i$ , for each individual,  $x_i$ , i = 1, 2, ..., N, by combining some of the rest individuals of the population. There most common (but not the only) operator proposed to accomplish this task:

OP1: 
$$v_i^{(t+1)} = x_g^{(t)} + F\left(x_{r_1}^{(t)} - x_{r_2}^{(t)}\right),$$
 (6)

where t denotes the iteration counter;  $F \in (0, 1]$  is a fixed user-defined parameter; g denotes the index of the best individual in the population, i.e., the one with the lowest function value; and  $r_j \in \{1, 2, ..., N\}$ , j = 1, 2, ..., 5, are mutually different randomly selected indices that differ also from the index i. Thus, in order to be able to apply all mutation operators, it must hold that N > 5.

After the mutation, a recombination operator is applied producing a trial vector:

$$u_i = (u_{i1}, u_{i2}, \dots, u_{in}), \qquad i = 1, 2, \dots, N_s$$

for each individual. This vector is defined as follows:

$$u_{ij}^{(t+1)} = \begin{cases} v_{ij}^{(t+1)}, & \text{if } R_j \leq CR \text{ or } j = \text{RI}(i), \\ x_{ij}^{(t)}, & \text{if } R_j > CR \text{ and } j \neq \text{RI}(i), \end{cases}$$
(7)

where j = 1, 2, ..., n;  $R_j$  is a random variable uniformly distributed in the range [0, 1];  $CR \in [0, 1]$  is a user-defined crossover constant; and  $RI(i) \in \{1, 2, ..., n\}$ , is a randomly selected index.

Finally, each trial vector is compared against the corresponding individual and the best between them comprise the new individual in the next generation, i.e.:

$$x_i^{(t+1)} = \begin{cases} u_i^{(t+1)}, & \text{if } f\left(u_i^{(t+1)}\right) < f\left(x_i^{(t)}\right), \\ x_i^{(t)}, & \text{otherwise.} \end{cases}$$
(8)

## 2.3 Local search

A local solution to an optimization problem can be obtained by applying local optimization methods. The hybrid schemes implemented in MEMPSODE have a need for deterministic local search procedures that require a starting point,  $x_0$ , and generate a sequence of points,  $\{x_k\}_{k=0}^{\infty}$ , in order to determine a minimizer within a prescribed accuracy. The generation of a new point,  $x_{k+1}$ , in the sequence is based on information collected for the current iterate,  $x_k$ . Typically, this information includes the function value at  $x_k$ , as well as the first- and probably second-order derivatives of f(x) at  $x_k$ . In all cases, the aim is to find a new iterate with lower function value than the current one.

The *Merlin* optimization environment [10] is an efficient and robust general purpose optimization package. It is designed to solve multi-dimensional optimization problems. Merlin offers a variety of well established gradient-based and gradient-free optimization algorithms. Gradient-based algorithms include three methods from the conjugate gradient family, the method of Levenberg-Marquardt, the DFP and several variations of the BFGS algorithms (BFGS) [?]. The gradient-free algorithms include a pattern search and the nonlinear Simplex method.

### 2.4 Memetic Algorithm

The design of MPSO in [13] was based on three fundamental schemes, henceforth called the *memetic strategies*:

- Scheme 1: LS is applied only on the overall best position,  $p_g$ , of the swarm.
- Scheme 2: LS is applied on each locally best position,  $p_i, i = 1, 2, ..., N$ , with a prescribed fixed probability,  $\rho \in (0, 1]$ .
- Scheme 3: LS is applied both on the best position,  $p_g$ , as well as on some randomly selected localy best positions,  $p_i, i \in \{1, 2, ..., N\}$ .

These schemes can be applied either at each iteration or whenever a specific number of consecutive iterations has been completed.

Of course, many other memetic strategies can be considered. For instance, a simple one would be the application of LS on every particle. However, such an approach would be costly in terms of function evaluations. In practice, only a small number of particles are considered as start points for LS, as pointed out in [6]. The memetic strategies proposed in [13] were also adopted in MEMPSODE for both PSO– and DE–based MAs.

## 3. EXPERIMENTAL PROCEDURE

We used the default restart mechanism provided by the testbed for a maximum number of  $100\ 000 \times n$  function evaluations. The third memetic scheme was used with probability of local search set to  $p_i = 0.05$ . Both UPSO and DE used a swarm size N = 25 particles. In UPSO the unification factor u was set to 1 and the initial velocity vector was restraint by a factor of 0.01. For the DE experiments we applied OP1 with default values F = 0.5 and CR = 0.7.

Each local seach has an upper limit of 4 000 function evaluations. Whenever derivatives were needed (eg. BFGS) we applied an O(h) finite differences formula where h is an adaptable step size(see [15]). For the local search we applied the BFGS method implemented in Merlin.

The experiments have been conducted on an Intel I7-2600 processor on 3.4 GHz with 8GB RAM.

#### 4. **RESULTS**

Results from experiments according to [4] on the benchmark functions given in [3, 5] are presented in Figures 1, 2 and 3 and in Tables 1. The **expected running time** (ERT), used in the figures and table, depends on a given target function value,  $f_t = f_{opt} + \Delta f$ , and is computed over all relevant trials as the number of function evaluations executed during each trial while the best function value did not reach  $f_t$ , summed over all trials and divided by the number of trials that actually reached  $f_t$  [4].

A direct comparison between UPSO and DE variants of MEMPSODE memetic algorithm can be deduced by observing the scatter plots in figure 2 and the starred records in table 1. In the separable case DE variant outperforms UPSO especially as dimensionality increases. For the moderate category DE seems to outperform only on function 7 (step ellipsoid) and scores marginally better in all other cases. The same behaviour is repeated for the ill-conditioned cases where DE variant is slightly better. Finally, DE variant outperforms PSO variant in all multimodal functions but PSO variant seems to behave better for the weak structured cases.

DE variant superiority is also obvious by inspecting figure 3. In almost all cases (except the weak structured functions) the ECDF of DE variant lies higher than the corresponding ECDF of PSO variant and this pattern is repeated in all levels of accuracy.

It is also worth mentioning that the DE variant scored the best recorded ETF for some accuracy levels in the case of ill condition functions (10-14). From the corresponding lines of table 1 we can see that for relatively low levels of accuracy the achieved ERT scores are quite competitive.

As a general remark, MEMPSODE seems a very promising and competitive new algorithm that incorporates state of the art schemes of swarm intelligence algorithms with the robust and versatile Merlin optimization environment.

## 5. REFERENCES

- R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In *Proceedings Sixth* Symposium on Micro Machine and Human Science, pages 39–43, Piscataway, NJ, 1995. IEEE Service Center.
- [2] A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. Wiley, 2006.
- S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [4] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.



Figure 1: Expected running time (ERT in number of *f*-evaluations) divided by dimension for target function value  $10^{-8}$  as  $\log_{10}$  values versus dimension. Different symbols correspond to different algorithms given in the legend of  $f_1$  and  $f_{24}$ . Light symbols give the maximum number of function evaluations from the longest trial divided by dimension. Horizontal lines give linear scaling, slanted dotted lines give quadratic scaling. Black stars indicate statistically better result compared to all other algorithms with p < 0.01 and Bonferroni correction number of dimensions (six). Legend:  $\circ$ : pso-bfgs,  $\nabla$ : de-bfgs.



Figure 2: Expected running time (ERT in  $\log_{10}$  of number of function evaluations) of pso-bfgs (x-axis) versus de-bfgs (y-axis) for 46 target values  $\Delta f \in [10^{-8}, 10]$  in each dimension on functions  $f_1-f_{24}$ . Markers on the upper or right edge indicate that the target value was never reached. Markers represent dimension: 2:+,  $3:\nabla$ ,  $5:\star$ ,  $10:\circ$ ,  $20:\Box$ ,  $40:\diamond$ .



Figure 3: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations divided by dimension D (FEvals/D) to reach a target value  $f_{opt} + \Delta f$  with  $\Delta f = 10^k$ , where  $k \in \{1, -1, -4, -8\}$  is given by the first value in the legend, for pso-bfgs ( $\circ$ ) and de-bfgs ( $\nabla$ ). Light beige lines show the ECDF of FEvals for target value  $\Delta f = 10^{-8}$  of all algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of pso-bfgs divided by de-bfgs, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that were solved in at least one trial (pso-bfgs first).

| 5-D |
|-----|
|-----|

| $\Delta f$                | 1e+1                       | 1e-1                       | 1e-3                       | 1e-5                        | 1e-7                       | $\#$ succ $\Delta f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1e+1                 | 1e-1                                    | 1e-3                                    | 1e-5                                    | 1e-7                             | #succ                 |
|---------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|-----------------------|
| f <sub>1</sub>            | 11                         | 12                         | 12                         | 12                          | 12                         | 15/15 f1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43                   | 43                                      | 43                                      | 43                                      | 43                               | 15/15                 |
| 1: pso                    | 3.1(3)                     | 5.2(0.2)                   | 5.2(0.2)                   | 5.2(0.2)                    | 5.2(0.2)                   | 15/15 1. pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0(0.2)             | 2.2                                     | 2.2                                     | 2.2                                     | 2.2                              | 15/15<br>15/15        |
| 2: de_                    | 83                         | 4.9(0.2)                   | 90                         | 92                          | 94                         | $\frac{15/15}{15/15}$ <b>f</b> <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 385                  | 387                                     | 390                                     | 391                                     | 393                              | 15/15                 |
| 1: pso                    | 1.7(0.7)                   | 1.8(0.7)                   | 1.9(0.7)                   | 2.1(0.7)                    | 2.3(0.8)                   | 15/15 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2(3)               | 5.6(3)                                  | 6.7(5)                                  | 7.6(5)                                  | 12(12)                           | 15/15                 |
| 2: de_                    | 1.4(0.3)                   | 1.5(0.3)                   | 1.7(0.3)                   | 1.9(0.3)                    | 2.0(0.3)                   | $\frac{15/15}{15} \frac{2: \text{de}_{-}}{\text{fo}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5066                 | 7635                                    | 7643                                    | 7646                                    | 7651                             | $\frac{15/15}{15/15}$ |
| f3                        | 716                        | 1637                       | 1646                       | 1650                        | 1654                       | 15/15 -3<br>12/15 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\infty$             | ~                                       | ~                                       | ~                                       | $\infty 2.0e6$                   | 0/15                  |
| 1: pso<br>2: de           | 9.4(10)<br>20(1)*          | 77(5)*3                    | $76(5)^{*3}$               | <b>7</b> 6(5)* <sup>3</sup> | <b>7</b> 6(5)*3            | $\frac{15/15}{15/15}$ 2: de_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $56(24)^{\star 3}$   | $181(159)^{*3}$                         | 181(150)* <sup>3</sup>                  | $181(151)^{*3}$                         | $191(159)^{\star 3}$             | 13/15                 |
| 1 dc_                     | 809                        | 1688                       | 1817                       | 1886                        | 1903                       | $\frac{10/10}{15/15}$ , f <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4722                 | 7666                                    | 7700                                    | 7758                                    | 1.4e5                            | 9/15                  |
| 1: pso                    | 14(12)                     | 410(479)                   | 381(414)                   | 367(399)                    | 364(392)                   | $7/15^{1: pso}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\infty$             | ∞<br>•••••*3                            | ∞<br>∞                                  | $\infty$                                | $\infty 2.0e6$                   | 0/15                  |
| 2: de_                    | 3.8(2)*2                   | <b>20</b> (17)*3           | <b>19</b> (15)*3           | 18(15)*3                    | 18(15)*3                   | 15/15 2: de_<br>fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41                   | 41                                      | 41                                      | 41                                      | 212(213) -                       | $\frac{1}{15}$        |
| f5                        | 10                         | 10                         | 10                         | 10                          | 10                         | 15/15 <b>* 5</b><br>15/15 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22(16)               | 31(32)                                  | 33(36)                                  | 33(36)                                  | 33(36)                           | 15/15                 |
| 2: de_                    | 6.5(2)                     | 9.0(2)                     | 9.0(2)                     | 9.0(2)                      | 9.0(2)                     | $\frac{15}{15}$ $\frac{2: de_{-}}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14(8)                | 24(16)                                  | 24(16)                                  | 26(20)                                  | 26(20)                           | 15/15                 |
| f <sub>6</sub>            | 114                        | 281                        | 580                        | 1038                        | 1332                       | 15/15 f6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1296                 | 3413                                    | 5220<br>148(193)                        | 6728<br>198(267)                        | 8409<br>352(392)                 | 15/15                 |
| 1: pso                    | 6.4(9)                     | 3.1(4)                     | 1.9(2)                     | 1.5(2)                      | 54(98)                     | $\frac{11}{15}$ $\frac{11}{2}$ $\frac{15}{2}$ | 6.8(5)               | 17(16)                                  | 32(36)                                  | 96(152)                                 | 295(334)                         | 2/15                  |
| 2: de_                    | 24                         | 2.3(0.9)                   | 1.5(0.6)                   | 1.5(2)                      | 2.8(3)                     | $\frac{15/15}{15/15}$ <b>f<sub>7</sub></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1351                 | 9503                                    | 16524                                   | 16524                                   | 16969                            | 15/15                 |
| 1: pso                    | 589(940)                   | 930(922)                   | 2363(2591)                 | 2363(2733)                  | 2326(2372)                 | $1/15^{1: pso}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ∞<br>                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~ * 3                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\infty 2.0e6$                   | 0/15                  |
| 2: de_                    | $8.9(6)^{\star 3}$         | $10(22)^{\star 3}$         | $9.2(17)^{\star 3}$        | $9.2(17)^{\star 3}$         | $41(64)^{*3}$              | $10/15 \frac{2: \text{de}_{-}}{f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 502(747)*3           | ~*3                                     |                                         | ×3<br>                                  | <u>∞2.0e6*3</u>                  | 0/15                  |
| f8                        | 73                         | 336                        | 391                        | 410                         | 422                        | 15/15 18<br>1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6(1)               | 4.7(5)                                  | 6.0(4)                                  | 6.3(4)                                  | 9.0(12)                          | 15/15<br>15/15        |
| 1: pso                    | 3.0(2)<br>2.8(2)           | 1.6(0.8)<br>1.1(0.5)       | 1.5(0.7)<br>1.1(0.4)       | 1.5(0.7)<br>1.1(0.4)        | 1.4(0.7)<br>1.1(0.4)       | $\frac{15/15}{15/15}$ 2: de_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5(1)               | 2.8(4)                                  | 3.2(3)                                  | 3.2(3)                                  | 3.2(3)                           | 15/15                 |
| <u>fo</u>                 | 35                         | 214                        | 300                        | 335                         | 369                        | 15/15 f9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1716                 | 3277                                    | 3455                                    | 3594                                    | 3727                             | 15/15                 |
| 1: pso                    | 4.1(1)                     | 1.6(0.9)                   | 1.3(0.6)                   | 1.2(0.5)                    | 1.1(0.5)                   | $15/15 \stackrel{1: pso}{2: do}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7(0.7)             | 5.7(4)                                  | 7.1(5)<br><b>2</b> $7(1)^*$             | 6.9(5)<br><b>3</b> $7(1)^*$             | 6.9(4)                           | 15/15                 |
| 2: de_                    | 4.2(0.7)                   | 1.9(0.9)                   | 1.5(0.7)                   | 1.3(0.6)                    | 1.2(0.5)                   | $\frac{15/15}{15}$ <b>f</b> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7413                 | 10735                                   | 14920                                   | 17073                                   | 17476                            | $\frac{15/15}{15/15}$ |
| 1: pso                    | 1.3(1)                     | 574<br>0.84(0.9)           | 0.20<br>0.79(0.8)          | 0.62(0.6)                   | 1.7(0.6)                   | $15/15 \ 15/15 \ 15/15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29(15)               | 20(10)                                  | 14(7)                                   | 12(6)                                   | 12(6)                            | 14/15                 |
| 2: de_                    | $0.75(0.7)^{\downarrow}$   | $0.49(0.4)^{1/2}$          | $0.48(0.4)^{\downarrow 2}$ | $0.39(0.3)^{\downarrow 2}$  | $0.50(0.9)^{\downarrow}$   | $\frac{15}{15}$ $\frac{2: de_{-}}{2: de_{-}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.1(6)               | 4.3(4)                                  | 3.1(3)                                  | 2.7(3)                                  | 2.6(3)                           | 15/15                 |
| f <sub>11</sub>           | 143                        | 763                        | 1177                       | 1467                        | 1673                       | 15/15 f11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1002                 | 6278                                    | 9762                                    | 12285                                   | 14831                            | 15/15                 |
| 1: pso                    | $0.60(0.1)^{\downarrow 3}$ | $0.13(0.0)^{\downarrow 4}$ | $0.10(0.0)^{\downarrow 4}$ | $0.09(0.0)^{\downarrow 4}$  | $0.11(0.0)^{\downarrow 4}$ | 15/15 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.25(0.2)^{40}$     | $0.05(0.0)^{4}$                         | $0.04(0.0)^{4}$                         | $0.04(0.0)^{4}$                         | $1 0.05(0.0) \downarrow 4$       | 15/15                 |
| 2: de_                    | $0.70(0.2)^{\downarrow}$   | $0.15(0.0)^{\downarrow 4}$ | $0.11(0.0)^{\downarrow 4}$ | $0.11(0.0)^{\downarrow 4}$  | $0.12(0.1)^{\downarrow 4}$ | $\frac{15/15}{15} \frac{2: \text{de}}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1042                 | 2740                                    | 4140                                    | 12407                                   | 13827                            | $\frac{15/15}{15/15}$ |
| f12                       | 108                        | 371                        | 461                        | 1303                        | 1494                       | $\frac{15/15}{1: pso}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.2(2)               | 2.3(2)                                  | 3.7(3)                                  | 5.0(4)                                  | 21(24)                           | 13/15                 |
| 1: pso<br>2: de           | 2.8(2)<br>2.8(1)           | 1.5(1)<br>1.9(1)           | 1.7(1)<br>1.9(1)           | 0.73(0.5)<br>0.80(0.5)      | 0.86(0.9)<br>1 1(0 7)      | $\frac{15/15}{15/15}$ 2: de_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4(0.8)             | 1.6(1)                                  | 1.7(1)                                  | $1.1(0.6)^{*3}$                         | $4.6(4)^{\star 2}$               | 15/15                 |
| f13                       | 132                        | 250                        | 1310                       | 1752                        | 2255                       | 15/15 f13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 652                  | 2751                                    | 18749                                   | 24455                                   | 30201                            | 15/15                 |
| 1: pso                    | 0.99(0.1)                  | $0.84(0.1)^{\downarrow 4}$ | $0.22(0.0)^{\downarrow 4}$ | 181(286)                    | $\infty 5.0e5$             | $0/15^{1: pso}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2(0.1)             | $0.51(0.0)^{\downarrow 4}$              | $0.21(0.1)^{\downarrow 3}$              | 133(166)                                | $\infty 2.0e6$                   | 0/15                  |
| 2: de_                    | 1.0(0.2)                   | $0.87(0.1)^{\downarrow 2}$ | $0.23(0.0)^{\downarrow 4}$ | 2.6(1.0)                    | $529(597)^{\star 2}$       | $0/15 \frac{2: \text{de}_{-}}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3(0.1)             | 0.53(0.0)**                             | 0.18(0.2)**                             | 92(116)                                 | ∞2.0e6                           | 0/15                  |
| f14                       | 10                         | 58                         | 139                        | 251                         | 476                        | 15/15 <b>114</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0 6)                | 304                                     | 932                                     | 1648<br>0.57(0.1) $\downarrow$ 4        | 10001                            | 0/15                  |
| 1: pso                    | 2.3(3)                     | 1.6(0.2)<br>1.5(0.2)       | 0.98(0.1)<br>0.95(0.1)     | 0.76(0.1)<br>0.71(0.1)      | 134(203)<br>6 4(10)        | $\frac{4}{15}$ 12 / 15 2. do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7(0.0)<br>1.7(0.4) | 0.98(0.2)                               | $0.63(0.1)^{4}$                         | $0.57(0.1)^{\downarrow}$                | 4 125(151)                       | 0/15                  |
| 11 K                      | 511                        | 19369                      | 20073                      | 20769                       | 21359                      | 14/15 fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30378                | 3.1e5                                   | 3.2e5                                   | 4.5e5                                   | 4.6e5                            | $\frac{15}{15}$       |
| 1: pso                    | 10(7)                      | 39(36)                     | 37(38)                     | 36(33)                      | 35(32)                     | 8/15 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\infty$             | $\infty$                                | $\infty$                                | $\infty$                                | $\infty 2.0e6$                   | 0/15                  |
| 2: de                     | <b>3.8</b> (3)*            | $1.6(1)^{*2}$              | $1.6(1)^{*2}$              | $1.5(1)^{*2}$               | $1.5(1)^{*2}$              | 15/15 2: de.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28(15)* <sup>3</sup> | $\infty^{*3}$                           | $\infty^{\star 3}$                      | $\infty^{*3}$                           | $\infty$ 2.0e6 $^{\star 3}$      | 0/15                  |
| <sup>f</sup> 16           | 120                        | 2662                       | 10449                      | 11644                       | 12095                      | 15/15 f16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1384                 | 77015                                   | 1.9e5                                   | 2.0e5                                   | 2.2e5                            | 15/15                 |
| 1: pso<br>2: de           | 6.9(8)<br>8.0(8)           | 75(97)<br>21(9)*           | 33(48)                     | 298(323)<br>30(43)          | 593(622)<br>585(663)       | 1/15 1: pso<br>0/15 2: de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 542(550)<br>595(508) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\infty 2.0eb$<br>$\infty 2.0eb$ | 0/15<br>0/15          |
| f17                       | 5.2                        | 899                        | 3669                       | 6351                        | 7934                       | 15/15 f <sub>17</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63                   | 4005                                    | 30677                                   | 56288                                   | 80472                            | 15/15                 |
| 1: pso                    | 1.5(1.0)                   | 21(19)                     | 13(21)                     | 9.2(12)                     | 907(979)                   | 0/15 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19(15)               | $\infty$                                | $\infty$                                | $\infty$                                | $\infty 2.0e6$                   | 0/15                  |
| 2: de_                    | 3.0(3)                     | 35(110)                    | 10(27)*                    | 6.9(16)*                    | 145(160)                   | $0/15_{2: de_{-}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17(19)               | <b>327</b> (293)*3                      | 952(1028)*3                             | ~*3                                     | $\infty 2.0e6 * 3$               | 0/15                  |
| <sup>1</sup> 18<br>1: pso | 24(18)                     | 3968                       | 9280<br>38(38)             | 53(58)                      | 12469                      | $\frac{15/15}{0/15}$ <b>f18</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 621<br>210(159)      | 19561                                   | 67569                                   | 1.3e5                                   | 1.5e5                            | 15/15                 |
| 2: de_                    | 5.7(7)*                    | 28(64)                     | 19(27)                     | 20(24)                      | 587(645)                   | 0/15 2. de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>69</b> (61)*      | 1503(1689)* <sup>3</sup>                | ~                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\infty 2.0c0$<br>$\infty 2.0c6$ | 0/15                  |
| f <sub>19</sub>           | 1                          | 242                        | 1.2e5                      | 1.2e5                       | 1.2e5                      | 15/15 f19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                    | 3.4e5                                   | 6.2e6                                   | 6.7e6                                   | 6.7e6                            | 15/15                 |
| 1: pso                    | 69(94)                     | 60(51)<br>71(65)           | 3.6(3)                     | 3.6(3)                      | 19(19)                     | $\frac{1}{15}$ 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3614(6276)           | 1.4(1)*                                 | $\infty^{\star 2}$                      | $\infty^{\star 2}$                      | $\infty$ 2.0e6 $^{\star 2}$      | 0/15                  |
| 2: de_                    | 40(38)                     | 38111                      | 4.3(4)<br>54470            | 4.3(4)<br>54861             | 55313                      | $\frac{2/15}{14/15}$ 2: de_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3206(3658)           | 5.4(6)                                  | ~                                       | ~                                       | ∞2.0e6                           | 0/15                  |
| 1: pso                    | 4.9(0.9)                   | 3.5(3)                     | 2.4(2)                     | 2.4(2)                      | 2.4(2)                     | 14/15 f20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82                   | 3.1e6                                   | 5.5e6                                   | 5.6e6                                   | 5.6e6                            | 14/15                 |
| 2: de                     | 4.1(2)                     | 10(14)                     | 7.1(7)                     | 7.0(9)                      | 7.0(10)                    | $\frac{10/15}{2}$ : de_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.3(4)               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\infty 2.0e0$<br>$\infty 2.0e6$ | 0/15                  |
| f21                       | 41                         | 1674                       | 1705                       | 1729                        | 1757                       | $14/15 f_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 561                  | 14103                                   | 14643                                   | 15567                                   | 17589                            | 15/15                 |
| 1. pso<br>2: de_          | 2.2(2)                     | 2.7(3)                     | 2.7(3)                     | 2.7(3)                      | 16(15)                     | $\frac{10}{12}$ 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.7(1)               | 0.56(0.9)                               | 0.55(0.9)                               | 0.57(1)                                 | 96(119)                          | 1/15                  |
| f22                       | 71                         | 938                        | 1008                       | 1040                        | 1068                       | $\frac{14/15}{14/15} \frac{2: \text{de}}{\text{for}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10(11)               | 23/01                                   | 24948                                   | 15(24)<br>26847                         | 205(247)                         | 12/15                 |
| 1: pso                    | 1.6(2)                     | 3.4(4)                     | 3.2(4)                     | 3.3(4)                      | 170(237)                   | 5/15 <sup>1</sup> 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7(2)               | $10(13)^{*3}$                           | 9.0(13)* <sup>3</sup>                   | 8.6(12)* <sup>3</sup>                   | 209(238)                         | 0/15                  |
| Z: de_                    | 0.7(15)                    | 23(24)                     | 21(22)<br>31654            | 21(22)<br>33030             | 131(244)<br>34256          | $\frac{8/15}{15/15}$ 2: de_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7(13)              | 151(143)                                | 142(134)                                | 132(124)                                | ∞2.0e6                           | 0/15                  |
| -23<br>1: pso             | 1.4(1)                     | 3.3(4)                     | 30(34)                     | ~                           | ∞5.0e5                     | 0/15 <b>f23</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2                  | 67457                                   | 4.9e5                                   | 8.1e5                                   | 8.4e5                            | 15/15                 |
| 2: de_                    | 2.2(2)                     | 2.0(2)                     | $1.3(0.9)^{*3}$            | 1.4(0.9)* <sup>3</sup>      | $96(117)^{\star 3}$        | $0/15 \frac{1}{2} \frac{1}{2} \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6(2)<br>2.1(2)     | 66(74)<br>54(64)                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\infty 2.0e6$                   | 0/15                  |
| f24                       | 1622                       | 6.4e6                      | 9.6e6                      | 1.3e7                       | 1.3e7                      | 3/15 2. de_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3e6                | 5.2e7                                   | 5.2e7                                   | 5.2e7                                   | 5.2e7                            | 3/15                  |
| 1: pso                    | 3.2(2)<br>1.3(1)           | 0.20(0.2)                  | 0.23(0.3)                  | 0.18(0.2)<br>0.18(0.2)      | 0.18(0.2)<br>0.18(0.2)     | $\frac{3/15}{3/15}$ 1: pso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\infty$             | $\infty$                                | $\infty$                                | $\infty$                                | $\infty 2.0e6$                   | 0/15                  |
| ⊿: ae_                    | 1.3(1)                     | 0.19(0.2)                  | 0.24(0.3)                  | 0.16(0.2)                   | 0.16(0.2)                  | <sup>3/13</sup> 2: de_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.3(5)               | $\infty$                                | $\infty$                                | $\infty$                                | $\infty 2.0e6$                   | 0/15                  |

Table 1: ERT in number of function evaluations divided by the best ERT measured during BBOB-2009 given in the respective first row and the half inter-80% ile in brackets for different  $\Delta f$  values. #succ is the number of trials that reached the final target  $f_{opt}+10^{-8}$ . 1:pso is pso-bfgs and 2:de\_ is de-bfgs. Bold entries are statistically significantly better compared to the other algorithm, with p = 0.05 or  $p = 10^{-k}$  where  $k \in \{2, 3, 4, ...\}$  is the number following the  $\star$  symbol, with Bonferroni correction of 48. A  $\downarrow$  indicates the same tested against the best BBOB-2009.

- [5] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [6] W. E. Hart. Adaptive Global Optimization with Local Search. PhD thesis, University of California, San Diego, USA, 1994.
- [7] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf. Neural Networks, volume IV, pages 1942–1948, Piscataway, NJ, 1995. IEEE Service Center.
- [8] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers, 2001.
- [9] P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 219–235. McGraw-Hill, London, 1999.
- [10] D. Papageorgiou, I. Demetropoulos, and I. Lagaris. MERLIN-3.1. 1. A new version of the Merlin optimization environment. Computer Physics Communications, 159(1):70-71, 2004.
- [11] K. E. Parsopoulos and M. N. Vrahatis. UPSO: A unified particle swarm optimization scheme. In Lecture Series on Computer and Computational Sciences, Vol. 1, Proceedings of the International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2004), pages 868–873. VSP International Science Publishers, Zeist, The Netherlands, 2004.
- [12] K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization and Intelligence: Advances and Applications. Information Science Publishing (IGI Global), 2010.
- [13] Y. G. Petalas, K. E. Parsopoulos, and M. N. Vrahatis. Memetic particle swarm optimization. Annals of Operations Research, 156(1):99–127, 2007.
- [14] R. Storn and K. Price. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization, 11:341-359, 1997.
- [15] C. Voglis, P. Hadjidoukas, I. Lagaris, and D. Papageorgiou. A numerical differentiation library exploiting parallel architectures. Computer Physics Communications, 180(8):1404-1415, 2009.
- [16] C. Voglis, K. Parsopoulos, D. Papageorgiou, I. Lagaris, and M. Vrahatis. Mempsode: A global optimization software based on hybridization of population-based algorithms and local searches. Computer Physics Communications, 183(5):1139–1154, 2012.

#### Algorithm 1: Pseudocode of the implemented memetic algorithm

```
Input: Objective function, f: S \subset \mathbb{R}^n \to \mathbb{R}; algorithm
             PSO/DE: algo; swarm size: N; memetic strategy:
             memetic, maximum function evaluations: maxfev:
             unification factor: UF; use mutation: mut; probability for
             local search: \rho
    Output: Best detected solution: x^*, f(x^*).
    // Initialization
   for i = 1, 2, ..., N do
 1
 2
         Initialize position x_i and velocity u_i
 3
         Set p_i \leftarrow x_i // Initialize best position
         f_i \leftarrow f(x_i(0)) // Evaluate particle f_i^p \leftarrow f_i // Best position
 4
 5
        local_i \leftarrow 0 // Best position is minimum is set to false
 6
 7 end
    // Update Best Indices
 s Calculate global best index g_1 and local best index g_2
    // Main Iteration Loop
 9 Set t \leftarrow 0
10 while termination criterion do
         // Update Swarm
         if algo = 'pso' then
              for i = 1, 2, ..., N do
\mathbf{12}
                   Calculate local best velocity update for particle u_i^l
13
                   using q_1
                   Calculate global best velocity update for particle u^{g}
14
                  using g_2
if mut = 1 then
15
                       // Unified PSO with mutation
                        R \leftarrow N(\mu, \sigma)
16
                       if rand() \leq 0.5 then
17
                             u_i \leftarrow R \text{UF} u_i^l + (1 - \text{UF}) u_i^g // \text{Unified PSO} +
18
                             Mutate local term
                        else
19
                             u_i \leftarrow \text{UF}u_i^l + R(1 - \text{UF})u_i^g // \text{Unified PSO} +
20
                             Mutate global term
                        end
\mathbf{22}
                   else
23
                       u_i \leftarrow \mathrm{UF}u_i^l + (1 - \mathrm{UF})u_i^g // \mathrm{Unified PSO}
\mathbf{24}
                   end
\mathbf{25}
                  x_i = x_i + u_i // Update particle's position
             \mathbf{end}
\mathbf{26}
          else if algo = 'de' then
27
\mathbf{28}
             for i = 1, 2, ..., N do
                  x_i \leftarrow p_i \; / / Replicate best positions p to swarm
29
                  array x
30
              end
31
              for i = 1, 2, ..., N do
32
                   Calculate u_i using a strategy from Eqs. (6)–(??)
33
                   if rand() \leq C then
34
                      x_i \leftarrow u_i
                   else
35
36
                    | x_i \leftarrow p_i
37
                  end
38
             end
39
         \mathbf{end}
         // Evaluate Swarm
         for i = 1, 2, ..., N do
40
          f_i \leftarrow f(x_i) /  Evaluate particle
41
         end
\mathbf{42}
         // Update Best Positions
         for i = 1, 2, ..., N do
43
             if f_i < f(p_i) then
44
45
                 p_i \leftarrow x_i
                  f_i^p \leftarrow f_i
46
47
             \mathbf{end}
         \mathbf{end}
\mathbf{48}
         Calculate global best index g_1 and local best index g_2
49
         Apply one of the schemes using \rho
50
         Calculate global best index g_1 and local best index g_2
51
         // If all best positions are local minima, restart
         if \sum_{i=1}^{N} local_i = N then
52
             Keep global best particle and reinitialize the swarm
53
         end
54
55 end
```

11

21