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Abstract

We introduce the Neural Spline, that is a mathematical model built by combining

a neural network and an associated Obreshkov polynomial. The neural spline has

finite support and can be used as the basic element in constructing continuous mod-

ular neural-based models. These models are suitable for function approximation in

partitioned domains and are also amenable to efficient parallel or distributed im-

plementation. Experimental results are presented for test problems in one and two

dimensions which illustrate the effectiveness of the proposed function approximation

scheme.

Keywords:Modular neural networks, global optimization, neural splines, parallel

computation, function approximation.

1. INTRODUCTION

Piecewise continuous polynomials are well established tools for approximation

and interpolation in partitioned domains. As examples we refer to the Natural splines,

to B-splines and to Hermite splines [1]. In this article we present a new approximation

technique based on domain partitioning, where instead of polynomials we introduce

Neural Networks as the basic approximation element, obtaining so a ”Neural Spline”

approximation scheme. Other non-polynomial splines have been developed in the

past, for instance we mention the ”Tension Splines” that are based on the exponential

function [2]. Feedforward neural networks are well known for their universal approx-

imation capabilities [3, 4] and have been employed for interpolation, approximation

and modeling tasks in many cases, such as pattern recognition [5], signal processing,

control and the solution of ordinary and partial differential equations [6, 7, 8].

Partitioning a large domain into smaller ones, has the obvious advantage of the re-

duced problem size and the disadvantage of the increased number of subproblems.

However, there are more points to consider. It is not clear if partitioning is always

worthwhile, since in many cases is being accompanied by computational overhead,

border discontinuities and increased complexity. On the other hand, a serious prob-

lem with non-partitioned domains is that, usually larger models are required and,



since non-linear optimization is often the only method of choice for training, the re-

sulting objective function usually possesses a large number of local minima. This

fact corresponds to excessive computational load that diminishes the efficiency of any

method. Note also that partitioning schemes may profit dramatically from parallel

processing if formulated properly. Taking all the above into account, we developed

a spline-like method using neural networks that is based on domain partitioning and

manages to cope with the above mentioned difficulties. In addition, the proposed

method is cast in a suitable form so as to benefit when executed on parallel multi-

processor machines or on distributed systems.

In section 2 we state the problem and we provide the general idea of our approach.

In section 3 the Obreshkov polynomials are presented along with the neural-splines

and the detailed model description. In section 4 we dwell on the one-dimensional

case, and describe both the partitioning scheme and the followed algorithm. We also

present results of numerical experiments and draw some conclusions. Similarly, in

section 5 we present the relevant procedures for the two-dimensional case and report

the obtained results.

2. GENERAL DESCRIPTION OF THE APPROXIMATION MODEL

We consider the classical data fitting problem:

Given M points and associated values (xi, yi), i = 1, 2, ...,M , with xi ∈ R(N), yi ∈ R,

draw a smooth hypersurface, that is optimal in the least squares sense.

The traditional way of solving the above is to assume a parametric model Ψ(x, p) for

the solution, and adjust the parameters p, so as to minimize the least squares ”Total

Error”: ET [p] =

M
∑

i=1

[Ψ(xi, p) − yi]
2.

In this article we assume that the domain D containing the points xi, is an

N-dimensional rectangular hyperbox and we proceed by first partitioning D into a

number of non-overlapping rectangular subdomains Di. Let ∂Di denote the boundary

of subdomain Di. In each subdomain Di the solution is represented by a proper

model ψi(x, p
i, qi) (with parameters pi) that is constructed in such a way so as to

meet certain conditions on the boundary ∂Di, imposed by continuity requirements.

These boundary conditions depend on the additional parameters denoted by qi but are

independent of pi. In other words, the parameters qi are additional parameters used to

ensure that the global solution model Ψ(x), obtained from the combination of the local

models ψi, will be continuous on every subdomain boundary ∂Di. If the boundary

continuity requirements are not taken into account, then we have the straightforward

modular approach, where the individual models are independent and the resulting

global solution exhibits discontinuities on every ∂Di. Such discontinuities may not be



acceptable in several problems and, in addition, they badly influence the accuracy of

the obtained solutions, especially in the case of noisy data, as will be demonstrated

by numerical experiments.

The global solution model Ψ(x) is defined as

Ψ(x, p, q) = ψi(x, p
i, qi), ∀ x ∈ Di, i = 1, 2, · · ·

If we define the least squares ”local error”, i.e. the error for the training points

in the subdomain Di as:

EL[pi, qi] =
∑

xk∈Di

[ψi(xk, p
i, qi) − yk]

2, ∀ i = 1, 2. . . . (1)

then, the total error (for all training points) is given by:

ET [p, q] =
∑

i

EL[pi, qi] (2)

For each domain Di the parameters pi are adjusted by minimizing EL[pi, qi] for a

given set of values for qi. It is obvious that this minimization can be performed

independently for eachDi. The additional parameters qi, are then adjusted so that the

complete solution model Ψ(x, p, q) minimizes the ”total error” given by equation (2).

The above two-stage minimization is repeated until a convergence criterion prevails.

A detailed algorithmic description is deferred to section 3. We first develop the

necessary terms and notions for one-dimensional problems. Generalization to higher

dimensions follows.

3. DEFINITIONS AND TERMS

3.1 Obreshkov polynomials and related operators

Consider an one-dimensional continuously differentiable function f(x), with x ∈ [a, b],

and a polynomial P k,m
a,b (f, x) with the following properties:

dj

dxj
P k,m

a,b (f, a) =
dj

dxj
f(x)|x=a ≡ f (j)(a), ∀ j = 0, 1, . . . , k (3)

dj

dxj
P k,m

a,b (f, b) =
dj

dxj
f(x)|x=b ≡ f (j)(b), ∀ j = 0, 1, . . . , m (4)

Obreshkov [9], found that the unique polynomial of minimal degree k+m+1 satisfying

the above properties is the following:

P k,m
a,b (f, x) =

k
∑

j=0

f (j)(a)
(x− b)m+1(x− a)j

j!(a− b)m+1

k−j
∑

i=0

(

m + i

i

)

(x− a)i

(b− a)i
+

m
∑

j=0

f (j)(b)
(x− a)k+1(x− b)j

j!(b− a)k+1

m−j
∑

i=0

(

k + i

i

)

(x− b)i

(a− b)i
(5)



We may then define the ”Obreshkov operator” Lk,m
x∈[a,b] applied to function f(x)

as follows:

Lk,m
x∈[a,b]f(x) = P k,m

a,b (f, x) (6)

For x ∈ [a, b] the spline-like function is defined as:

Sk,m
a,b (f, x) ≡ f(x) − P k,m

a,b (f, x) = (1 − Lk,m
x∈[a,b])f(x) (7)

The function Sk,m
a,b (f, x) has the property that at x = a, (x = b) vanishes along with

all its derivatives up to the kth (mth) order, and hence it behaves like a spline. We

also define for x ∈ [a, b]:

Bk,m
a,b (f, x) ≡ f(x) − Sk,m

a,b (f, x) = (1 − (1 − Lk,m
x∈[a,b]))f(x)

= Lk,m
x∈[a,b]f(x) = P k,m

a,b (f, x) (8)

Note that Bk,m
a,b (f, x) resembles f on the boundary, and hence it may be called a

”Boundary Match”.

In two dimensions where the subdomain becomes [a1, b1]⊗[a2, b2] the above definitions

may generalize as:

S(f, x1, x2) ≡ (1 − Lk1,m1

x1∈[a1,b1])(1 − Lk2,m2

x2∈[a2,b2])f(x1, x2) (9)

and

B(f, x1, x2) = f(x1, x2) − S(f, x1, x2) =

= (Lk1,m1

x1∈[a1,b1]
+ Lk2,m2

x2∈[a2,b2] − Lk1,m1

x1∈[a1,b1]
Lk2,m2

x2∈[a2,b2])f(x1, x2) (10)

and similarly for higher dimensions. A corresponding generalization for polynomial

splines in two dimensions, known as ”Spline–Blended Functions” has been developed

for use in designing surfaces for technical products by [10].

3.2 Neural splines and model description

Let N(x, p) be a neural network model with one input x and weights denoted by p.

Then the spline S(N, x) defined using equation (7) is referred to as a Neural Spline

in one dimension. In each of the subdomains Di = [ai, bi] we represent our model as:

ψi(x, p
i, qi) = Bk,m

Di
(f, x) + Sl,n

Di
(N, x) (11)

where f is the unknown function to be approximated. The parameters qi represent

the unknown values of f(x) and possibly of its derivatives on the boundary ∂Di.



The model ψi(x, p
i, qi) so defined, satisfies by construction the following boundary

conditions:

dj

dxj
ψi(x, p

i, qi)|x=a = f (j)(a), j = 0, ...,min(k, l) (12)

dj

dxj
ψi(x, p

i, qi)|x=b = f (j)(b), j = 0, ...,min(m,n) (13)

where f (j)(a), f (j)(b) are parameters constituting the elements of the parameter vector

qi. As an example, in the case k = l = m = n = 0, the one-dimensional model is

written as:

ψ(x, p, q) = f(a)
x− b

a− b
+ f(b)

x− a

b− a
+

{N(x, p) − [N(a, p)
x− b

a− b
+N(b, p)

x− a

b− a
]} (14)

with q referring collectively to f(a) and f(b). As it can readily be verified, this model

satisfies ψ(a, p, q) = f(a) and ψ(b, p, q) = f(b). For the case k = l = m = n = 1, we

have the following one-dimensional model:

ψ(x, p, q) = f (0)(a)π3,0 (x, a, b) + f (1)(a)π3,1 (x, a, b)

+ f (0)(b)τ3,0 (x, a, b) + f (1)(b)τ3,1 (x, a, b)

+ {N(x, p) − [N(a, p)π3,0 (x, a, b) +N (1)(a, p)π3,1 (x, a, b)

+ N(b, p)τ3,0 (x, a, b) +N (1)(b, p)τ3,1 (x, a, b)]}

where the following notation is used:

π1,0(x, a, b) =
x− b

a− b

π3,0 (x, a, b) =
(x− b)2

(a− b)2

(

1 + 2
x− a

b− a

)

π3,1 (x, a, b) = (x− a)
(x− b)2

(a− b)2

τ2k+1,j(x, a, b) ≡ π2k+1,j(x, b, a) (15)

In two dimensions, setting k1 = k2 = m1 = m2 = 0 in equation (10) we obtain:

B(f, x1, x2) = f(a1, x2)
x1 − b1
a1 − b1

+ f(b1, x2)
x1 − a1

b1 − a1
(16)

+ f(x1, a2)
x2 − b2
a2 − b2

+ f(x1, b2)
x2 − a2

b2 − a2

− { [f(a1, a2)
x1 − b1
a1 − b1

+ f(b1, a2)
x1 − a1

b1 − a1
]
x2 − b2
a2 − b2

+ [f(a1, b2)
x1 − b1
a1 − b1

+ f(x1, b2)
x1 − a1

b1 − a1
]
x2 − a2

b2 − a2
}



and similarly we can define the two-dimensional Neural spline. The definition of

the external parameters qi in two dimensions, which determine the solution on the

boundary, is given in section 5.

4. ONE DIMENSIONAL CASE

4.1 Partitioning and procedures

In the one-dimensional case, we proceed by first defining a number of knots ti, i.e.

points that partition the domain of interest D in several non-overlapping subdomains

Di = [ti, ti+1]. Then the following procedure is applied:

1. Introduce the vector of external parameters qi with elements f
(0)
i , f

(1)
i , · · · , f

(k)
i

that represent values for the solution and for a number of its derivatives at each

knot ti.

2. For i = 1, 2, . . . use a model ψi(x, p
i, qi) for x ∈ Di that satisfies the continu-

ity conditions specified at the two bracketing knots ti and ti+1 and minimize

the local least squares error EL[pi, qi] with respect to pi, keeping the external

parameters qi fixed. Terminate if all errors are below a preset value.

3. Adjust the external parameters qi so as to minimize the total error ET [p, q] =
∑

iEL [pi, qi] keeping pi fixed.

4. Repeat from step 2.

Note that the training of each local model in step 2, can be implemented in parallel,

since the local models are being determined independently, given that the external

parameters remain fixed. This is not the case for the procedure in step 3, where a

change in the external parameters at the knot ti affects the representation in both

the Di−1 and the Di subdomains.

The initialization of the external parameters qi is extremely important. Far off values,

may decelerate the convergence dramatically. Hence, we employ a preprocessing

scheme to ensure that the initial values are close to the actual ones. This is achieved by

first fitting a single neural network around each knot (using nearby points for training)

and then use this network to generate the initial values for the external parameters.

It has been observed that only rarely these parameters need to be readjusted if the

estimation is sufficiently accurate, which is the case when the data points around the

knot are dense.

The model for x ∈ Di is taken as: ψi(x, p
i, qi) = B(f, x) + S(N, x). The neural



network model we have used is the multilayer perceptron with one hidden layer of

sigmoid hidden units:

N(x, p) =

H
∑

i=1

viσ(wix + bi), σ(z) =
1

1 + e−z
(17)

Since the local models are mutually independent, there are no propagating errors

across the subdomains and hence there is no error accumulation. Global optimization

is used for neural network training in each subdomain. This is affordable because the

partitioning, renders possible an economic representation, i.e. the employment of a

small neural network. Therefore, the adjustable model parameters in each interval

are few, hence the existence of different local minima is rather limited. In practice,

and in order to accelerate the process, we stop the global search as soon as the local

error becomes smaller than a preset threshold. The global optimization procedure

used was ”Multistart”.

We also experimented with more sophisticated methods such as the Multi-level algo-

rithm due to [11], as modified by [12] taking in account the functional topography,

without noticing substantial difference in performance. As a local search method, the

quasi-Newton BFGS method [13] was employed, as modified in [14] (supports simple

bounds and linear constraints).

4.2 Numerical experiments

Experiments were conducted with two types of data sets ”Clean” data sets, that are

created by directly evaluating some test function at several points on a grid, and

”noisy” data sets that are produced from clean data sets through the addition of

noise. We present in what follows experiments with the function f(x) = x sin(x2)

whose plot in the interval [−4, 4] is shown in Fig. 1. We first fit this function via a

single neural network, to obtain an indication of the effort required and of the difficulty

of the problem. Then we experimented with several ways of partitioning. In each

subdomain a neural network was trained independently without paying attention to

continuity. We compare this approach with the continuous solutions obtained using

our method.

Several cases were examined by varying the number of partitions and the number of

hidden units of the neural networks used in each partition. In every experiment we

used a rather sparse dataset for training and a dense dataset for testing. We conducted

experiments with both randomly chosen and with equidistant training points. When

clean data sets are used one can hardly observe any difference. However, with ’noisy’

data sets the quality of the fit with our model is clearly superior. Note that these

experiments were performed on a distributed multiprocessor system. The number of
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Figure 1: Plot of xsin(x2)

CPUs employed was the same with the number of partitions, i.e.., each partition was

treated by a different CPU and our implementation was based on message passing

programming (MPI). We compared solution times for several combinations of the

number of partitions and the number of the hidden nodes keeping their product at

comparable values to avoid overblown model complexity. A solution is taken to be

one that reaches a prescribed low value for the mean point-wise error for the training

set. For the ’clean’ data set with randomly chosen training points (RP), we present

in Table I, the outcome of the approximation with a single neural network covering

the whole domain x ∈ [−4, 4]. The first entry is the number of the hidden units of

each network, the second and third entries correspond to the mean square training

and test errors, and the last entry is the CPU time in seconds. In Table II we present

results when independent neural networks are used to approximate the function in

each interval. The first entry (NP) is the number of partitions in which the domain

[−4, 4] is split and the last entry is the real time to complete the training process. In

Table III we present results using the neural-spline approach, for the case where only

the function value is continuous at the knots, and in Table IV for the case where in

addition to the function, the first derivative is continuous as well. Similarly we present

the corresponding results using the four methods for a noisy data set created by adding

15% white noise to the clean data. For the noisy data set, the reported training error

is the mean squared difference of the approximation model from the corrupt data,

while the test–error is the mean squared difference of the approximation model from

the corresponding function values (without corruption). The corresponding tables

are: V, VI, VII and VIII. For the case of equidistant training points (EP), tables IX -

XII and XIII - XVI are the corresponding tables for the clean and for the noisy data

set respectively.



Table I - Clean Data - RP

Nodes Train Test Time

10 2.9E-5 6.5E-5 13560

15 3.2E-8 4.9E-6 20066

20 5.3E-9 5.5E-6 17200

Single Neural Network

Table II - Clean Data - RP

NP Nodes Train Test Time

2 10 2.3E-9 4.4E-7 5152

2 15 2.0E-10 9.7E-8 4679

5 5 4.5E-9 8.6E-7 1215

5 10 5.0E-11 1.2E-9 182

10 3 5.1E-8 1.5E-5 831

10 5 5.0E-11 1.9E-7 47

Piecewise Neural Networks

Table III - Clean Data - RP

NP Nodes Train Test Time

2 10 1.3E-9 1.9E-7 17176

2 15 2.0E-10 1.6E-7 20976

5 5 3.6E-9 9.3E-6 2035

5 10 5.0E-11 6.0E-6 976

10 3 1.5E-11 5.2E-8 525

10 5 5.0E-12 3.1E-8 134

Neural Splines Model, Ψ ⊂ C(0)

Table IV - Clean Data - RP

NP Nodes Train Test Time

2 10 2.4E-9 1.7E-7 33330

2 15 1.1E-9 2.1E-7 9326

5 5 3.0E-10 5.1E-7 3795

5 10 5.0E-11 4.3E-7 2330

10 3 1.0E-10 5.3E-8 756

10 5 5.0E-11 4.3E-8 202

Neural Splines Model, Ψ ⊂ C(1)

Table V - Noisy Data - RP

Nodes Train Test Time

10 6.8E-3 7.8E-3 13307

15 5.0E-3 6.1E-3 13345

20 5.6E-3 9.4E-3 15406

Single Neural Network

Table VI - Noisy Data - RP

NP Nodes Train Test Time

2 10 4.5E-3 7.8E-3 6873

2 15 4.1E-3 7.9E-2 10401

5 5 4.8E-3 74.E0 2438

5 10 3.5E-3 1.4E-1 6559

10 3 4.3E-3 9.1E-1 1254

10 5 2.6E-3 5.7E0 2060

Piecewise Neural Networks.

Table VII - Noisy Data - RP

NP Nodes Train Test Time

2 10 4.6E-3 8.2E-3 18700

2 15 4.3E-3 2.5E-2 20655

5 5 5.2E-3 2.2E-2 4951

5 10 4.0E-3 5.0E-2 8302

10 3 4.5E-3 2.7E-1 2448

10 5 2.5E-3 3.7E-1 3012

Neural Splines Model, Ψ ⊂ C(0)

Table VIII - Noisy Data - RP

NP Nodes Train Test Time

2 10 1.0E-2 1.3E-2 47572

2 15 8.3E-3 1.3E-2 131208

5 5 5.3E-3 3.0E-1 16252

5 10 4.2E-3 1.1E-1 45861

10 3 4.7E-3 3.5E-2 7167

10 5 2.7E-3 2.6E-1 10357

Neural Splines Model, Ψ ⊂ C(1)



It can be observed that the time T (np) needed to perform the calculation when

there are np partitions and each partition is handled by a differnet CPU, descents

faster than n−1
p . This is expected since apart from the gain due to parallelism (a

n−1
p factor), there is an additional gain coming from the fact that the optimization

problem is simpler when the number of partitions grows. One way of looking at it is

by noting that in each partition, the time spent is proportional to the number of the

training points belonging to the partition as well as to the number of the function

evaluations Nf (np) required by the optimization algorithm to train one out of np

networks.

Namely T (np) ∝
M

np
Nf(np) where M is the total number of training points and M/np

is the number of points in each of the np partitions. Comparing T (np) with T (1) i.e.

the time needed when no partitioning is performed, we deduce:

T (np)

T (1)
=

1

np

Nf(np)

Nf (1)
<

1

np

A rough rule of thumb extracted from our experiments, when on the average the

product np × h(np) is kept essentially constant, (h(np) being the number of hidden

nodes when we have np partitions), is T (np) ∝ n
−4/3
p .

Most data sets in practice are contaminated with noise. Hence this case is im-

portant as far as applications are concerned. When noise is present the advantage of

the proposed model is evident. Observe in Fig. (2) the discontinuities in the curve

corresponding to the piecewise neural networks (PNN) case. Fig. (3) is a blow-up of

Fig. (2) around a knot where a discontinuity appears.

Note there the smoother curves produced using the proposed model corresponding

to the C(0) and to the C(1) case.

5. TWO-DIMENSIONAL CASE

5.1 Partitioning and preprocessing

In the two-dimensional case, we partition the domain in Kx ×Ky rectangular boxes

by dividing the x-range in Kx parts and the y-range in Ky segments accordingly. The

model in each box becomes

ψ(x, y, p, q) = B(f, x, y) + S(N, x, y) (18)

with S(N, x, y) and B(f, x, y) given by equations (9) and (10), with k1 = k2 = m1 =

m2 = 0. The neural network N(x, y, p) is a two-input multilayer perceptron with

sigmoid hidden nodes and parameter vector p.



Table IX - Clean Data - EP

Nodes Train Test Time

10 2.1E-5 2.1E-5 14844

15 1.1E-7 1.0E-7 21953

20 5.0E-9 5.1E-9 16724

Single Neural Network

Table X - Clean Data - EP

NP Nodes Train Test Time

2 10 1.6E-9 2.9E-8 7750

2 15 1.5E-10 5.6E-8 5537

5 5 5.7E-9 1.6E-7 3119

5 10 5.0E-11 2.7E-9 550

10 3 5.4E-8 1.6E-7 760

10 5 5.0E-11 6.0E-8 76

Piecewise Neural Networks

Table XI - Clean Data - EP

NP Nodes Train Test Time

2 10 9.5E-10 1.4E-9 13945

2 15 2.0E-10 2.6E-10 20215

5 5 4.0E-10 4.5E-10 1974

5 10 5.0E-11 7.0E-11 270

10 3 3.0E-10 4.1E-10 445

10 5 5.0E-11 1.0E-10 83

Neural Splines Model, Ψ ⊂ C(0)

Table XII - Clean Data - EP

NP Nodes Train Test Time

2 10 2.9E-9 4.3E-9 14106

2 15 1.1E-9 2.9E-9 13254

5 5 4.9E-9 1.8E-8 2590

5 10 5.0E-11 1.1E-8 3313

10 3 7.5E-10 2.1E-9 670

10 5 1.5E-10 1.3E-9 144

Neural Splines Model, Ψ ⊂ C(1)

Table XIII - Noisy Data - EP

Nodes Train Test Time

10 1.8E-1 8.3E-2 16319

15 1.6E-1 1.0E-1 17746

20 1.4E-1 1.3E-1 16425

Single Neural Network

Table XIV - Noisy Data - EP

NP Nodes Train Test Time

2 10 1.3E-1 2.1E-1 6874

2 15 1.1E-1 1.8E-1 10401

5 5 1.4E-1 7.5E+2 2438

5 10 9.2E-2 1.7E+0 6559

10 3 1.3E-1 4.5E+1 1254

10 5 6.7E-2 2.1E+0 2060

Piecewise Neural Networks.

Table XV - Noisy Data - EP

NP Nodes Train Test Time

2 10 1.3E-1 1.5E-1 18700

2 15 1.2E-1 1.7E-1 20656

5 5 1.5E-1 1.8E-1 4951

5 10 9.7E-2 2.1E-1 8302

10 3 1.4E-1 1.6E-1 2448

10 5 6.7E-2 3.0E-1 3013

Neural Splines Model, Ψ ⊂ C(0)

Table XVI - Noisy Data - EP

NP Nodes Train Test Time

2 10 1.3E-1 1.9E-1 47572

2 15 1.3E-1 1.8E-1 131208

5 5 1.5E-1 1.8E-1 16252

5 10 1.0E-1 2.1E-1 45861

10 3 1.3E-1 1.8E-1 7167

10 5 7.2E-2 2.4E-1 10358

Neural Splines Model, Ψ ⊂ C(1)
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Figure 2: Plots of the approximation obtained using several methods
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Figure 3: Details of the approximation around a knot



Figure 4: The boundary points of a partition and the top side estimation area

From eq. (16) it is clear that in order to construct the boundary match function

B, we need to specify an estimate of the solution along each side of the box. Namely

we need four one-dimensional functions to describe the solution at the top, bottom,

left and right side of the box. We next describe the procedure that determines the

function at the top side of the box. For the other sides one can proceed accordingly.

Consider the five boundary points on the top side of the box as displayed in Fig. (4).

• Estimate the values of the function at these points and consider them as external

parameters. The estimation is performed by fitting a two–dimensional neural

network with training set containing points around each boundary point. The

area covered by such training set is indicated by the dotted circles.

• Use a cubic fitting spline [15], to represent the solution on that segment.

Once the boundary match functions are constructed, the model in equation (18) is

trained in every box. This is the major step of the method, i.e. the most time–

consuming part. Since we keep the boundary matches unchanged, the training in

each box is independent and therefore the load can be spread to multiple CPUs,

ideally the training in each box is assigned to a different CPU.

One may vary the external parameters (i.e. the estimated function values on the box
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Figure 5: Plot of: xysin(2y2 + 3x)

sides) while keeping the neural spline parameters fixed, and then repeat this step, but

we find that in almost all cases this was unnecessary, since the proposed estimation

scheme at each side of a box is quite accurate. For k1 = k2 = m1 = m2 = 1, i.e.

when the resulting approximation guarantees the continuity of the normal derivative

as well, one needs also to define as external parameters the values of the partial

derivatives at the boundary points and the model becomes more complicated.

5.2 Numerical Experiments

We conducted experiments for a two-dimensional problem considering the case where

only the solution is guaranteed to be continuous across the boundaries, not its partial

derivatives. We considered fitting the function

f(x, y) = xysin(2y2 + 3x)

a plot of which is displayed in Fig. (5). We made a comparison between piecewise

neural networks and the proposed model using ’clean’ and ’noisy’ data. Again as in

the one-dimensional case, when there is no noise in the data the results are almost

identical. When we add noise to the data then the proposed model is to be preferred

as far as the quality of the approximation is concerned. We present experiments with

10% noise. We use 1600 equidistant training points and 10000 equidistant points for



the test set.

In Tables XVII and XVIII the results for the case of clean uniformly distributed

data are displayed for the piecewise neural network model and for the proposed model

correspondingly. Similarly in Tables XIX and XX we present the results for randomly

sampled noisy data. Column ”NP” denotes the number of partitions of the domain,

column ”Nodes” denotes the number of hidden nodes of each neural network, col-

umn ”Train” denotes the model’s average training error, column ”Test” denotes the

model’s average test error and column ”Time” denotes the needed execution time in

seconds. Similarly the results for the single neural network case are laid out in tables

XXI and XXII. A feature that can be inferred is that the neural-spline model pro-

vides generalization performance comparable to a well-trained single neural network,

despite the fact that its training is significantly faster (gaining both from the parallel

implementation and from the complexity reduction of the optimization subproblem).

On the other hand, the piecewise model can be trained in even less time, however

its generalization performance is clearly inferior, due to the discontinuities at the

boundaries of the partitions.

6. CONCLUSIONS

Modular neural networks constitute an efficient parallel approach for data fitting in

large domains. However, until now little or no attention was paid to the model dis-

continuities appearing at the boundaries of the partitions. Such discontinuities could

significantly deteriorate the quality of the solution at regions around a boundary, es-

pecially in the case of noisy data. In this work we have elaborated on this issue and

presented a methodology that effectively treats this problem and leads to the develop-

ment of modular but everywhere continuous neural network solutions. The proposed

methodology exploits the approximation capabilities of the Multilayer Perceptron and

appropriately combines an MLP with Obreshkov polynomials for the definition of a

”Neural Spline”. Neural Splines have convenient properties that enable the construc-

tion of continuous approximation models in a partitioned domain and, in addition,

allow for efficient processing in parallel or distributed computational systems. We

applied the method for data fitting in one and two dimensions with very encourag-

ing results, especially in the case of noisy data. It is clear that the imposition of

continuity constraints acts as a regularization mechanism that prevents overtraining

and leads to smooth modular approximation models. In the present work we used

non-overlapping Neural Splines. Future work could include an attempt to understand

how overlapping Neural Splines can be used for function approximation, or extend the

proposed methodology to other problems such as the solution of differential equations.



Table XVII - Clean data - EP

NP Nodes Train Test Time

4x4 6 2.6E-9 4.5E-9 262

4x4 8 4.6E-11 1.8E-10 413

5x5 6 5.0E-10 3.7E-9 159

5x5 8 2.3E-11 1.5E-9 78

2D Piecewise Neural Networks

Table XVIII - Clean data - EP

NP Nodes Train Test Time

4x4 6 2.6E-9 1.2E-8 781

4x4 8 1.3E-9 1.7E-7 1321

5x5 6 1.2E-9 1.3E-8 365

5x5 8 8.6E-10 4.5E-8 771

2D Neural Splines Model

Table XXI - Clean data - EP

NODES Train Test TIme

5 4.5E-3 4.3E-3 889

10 1.9E-4 1.7E-4 5455

15 6.6E-6 5.8E-6 13327

20 2.3E-7 2.1E-7 146514

2D Single Neural Network

Table XIX - Noisy data - EP

NP Nodes Train Test Time

4x4 6 4.6E-4 8.5E-2 79

4x4 8 3.3E-4 9.5E-2 157

5x5 6 3.7E-4 1.4E-2 92

5x5 8 2.6E-4 3.3E-1 144

2D Piecewise Neural Networks

Table XX - Noisy data - EP

NP Nodes Train Test Time

4x4 6 4.9E-4 5.6E-4 295

4x4 8 4.3E-4 6.9E-4 551

5x5 6 4.8E-4 6.1E-4 234

5x5 8 4.1E-4 3.5E-3 490

2D Neural Splines Model.

Table XXII - Noisy data - EP

NODES Train Test TIme

5 5.1E-3 4.1E-3 972

10 8.4E-4 1.1E-4 3423

15 7.3E-4 7.9E-5 8098

20 6.4E-4 1.3E-4 32880

2D Single Neural Network
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