
c

rentiable
objective
graphical

ing

riables.
n is required.
solving a
hat do not

a typical
is a BFGS

d. This is

.

Computer Physics Communications 174 (2006) 166–179

www.elsevier.com/locate/cp

MinFinder: Locating all the local minima of a function✩

Ioannis G. Tsoulosa, Isaac E. Lagarisb,∗,1

a Department of Computer Science, University of Ioannina, P.O. Box 1186, Ioannina 45110 Greece
b Physics Department, University of South Africa, P.O. Box 392, 0001 Pretoria, South Africa

Received 19 July 2005; received in revised form 22 September 2005; accepted 7 October 2005

Available online 14 November 2005

Abstract

A new stochastic clustering algorithm is introduced that aims to locate all the local minima of a multidimensional continuous and diffe
function inside a bounded domain. The accompanying software (MinFinder) is written in ANSI C++. However, the user may code his
function either in C++, C or Fortran 77. We compare the performance of this new method to the performance of Multistart and Topo
Multilevel Single Linkage Clustering on a set of benchmark problems.

Program summary

Title of program: MinFinder
Catalogue identifier: ADWU
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADWU
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer for which the program is designed and others on which is has been tested: The tool is designed to be portable in all systems runn
the GNU C++ compiler
Installation: University of Ioannina, Greece
Programming language used: GNU-C++, GNU-C, GNU Fortran 77
Memory required to execute with typical data: 200 KB
No. of bits in a word: 32
No. of processors used: 1
Has the code been vectorized or parallelized?: no
No. of lines in distributed program, including test data, etc.: 5797
No. of bytes in distributed program, including test data, etc.: 588 121
Distribution format: gzipped tar file
Nature of the physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many va
There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solutio
Local optimization techniques can be trapped in any local minimum. Global optimization is then the appropriate tool. For example,
non-linear system of equations via optimization, employing a “least squares” type of objective, one may encounter many local minima t
correspond to solutions, i.e. they are far from zero.
Method of solution: Using a uniform pdf, points are sampled from the rectangular search domain. A clustering technique, based on
distance and a gradient criterion, is used to decide from which points a local search should be started. The employed local procedure
version due to Powell. Further searching is terminated when all the local minima inside the search domain are thought to be foun
accomplished via the double-box rule.

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect
com/science/journal/00104655).
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1. Introduction

The task of locating all the local minima of a multidimensional continuous differentiable functionf (x) :S ⊂ Rn → R may be
defined as:

Find allx∗
i ∈ S ⊂ Rn that satisfy:

x∗
i = arg min

x∈Si

f (x), Si = S ∩ {
x, |x − x∗

i | < ε
}
.

HereS is a hyper box defined as:

S = [a1, b1] ⊗ [a2, b2] ⊗ · · · ⊗ [an, bn].
This problem appears frequently as a subproblem in a variety of scientific applications. Among the several methods em
treat this problem, stochastic methods seem to be the most popular, most probably due to both their effectiveness and impl
simplicity. An important subclass of stochastic methods are the so-called clustering techniques, pioneered by Becker and[1],
Törn [2], Boender et al.[3], Rinnooy Kan and Timmer[4,5]. Clustering techniques are based on the “multistart” algorithm
their goal is to limit the number of local search applications. A cluster is defined as a set of points that are believed to b
the region of attraction of the same minimum, and hence only one local search is (optimally) required to locate it. The r
attraction of a local minimumx∗ is defined as:

A(x∗) = {
x: x ∈ S ⊂ Rn, L(x) = x∗},

whereL(x) is the point where the local search procedureL terminates when started at pointx. Here L is supposed to be
deterministic local optimization method such as BFGS[8], Steepest Descent, Modified Newton, etc. The present work is a clus
technique based on the “Topographical Multilevel Single Linkage” (TMLSL) of Ali and Storey[6]. The modifications we presen
are important and render the technique significantly more efficient.

In Section2 we present the proposed algorithm and in Section3 we present the results of numerical experiments, along with
conclusions. In Section4 we present the documentation of the related software, describing its distribution, installation and
Appendix Awe list the test functions employed in our experiments for evaluating the performance of the proposed schem

2. Description of the algorithm

2.1. Steps of the algorithm

In the following byX∗ we denote the set of the local minima collected so far. InitiallyX∗ = ∅. The steps of the propose
algorithm are as:

Checking step:

• Set V = ∅.
• SetT as the set ofN points sampled from the Double Box procedure.
• Forall x ∈ T do

– Check ifx is a valid starting point (validated by a procedure described later), and if so add it toV .
• Endforall

Enrichment step:

• If |V |
N

< 1
2 then

– N = min(N + N
10,NMAX ), where NMAX is a predefined upper limit for the number of samples in each generation. Th

prevents the algorithm from performing an insufficient exploration of the search space. The typical value for this pa
is NMAX = 100.

• Endif
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Main step:

• Forall x ∈ V do
– If x is considered as start point (the validation procedure is once more performed, because a point that was consi

start point earlier may no longer be due to the presence of new local minima)then
∗ Start a local searchy = L(x).
∗ Compute the typical distancert using Eq.(1).
∗ If y /∈ X∗ then

· Set X∗ = X∗ ∪ y.
∗ Endif

– Endif
• Endforall

A point x is to be considered as start point if none of the following conditions holds:

• There is an already located minimumz that satisfies the conditions
1. (x − z)T(∇f (x) − ∇f (z)) > 0.
2. |x − z| < mini,j, i 
=j |zi − zj |, zi ∈ X∗, zj ∈ X∗.

• x is near to another pointy ∈ V that satisfies the conditions
1. |x − y| < rt .
2. (x − y)T(∇f (x) − ∇f (y)) > 0.

The proposed algorithm is based on three key elements: the typical distance, the gradient criterion and the Double Box
rule. Their description is laid out in the following subsections.

2.2. Typical distance

A clustering procedure forms clusters of points by measuring the distance of a candidate point from the estimated
the cluster. This distance is checked against a threshold and a decision is made accordingly. The algorithm uses a typic
defined by:

(1)rt ≡ 1

M

M∑
i=1

∣∣xi − L(xi)
∣∣,

wherexi are starting-points for the local search procedureL, andM is the number of the performed local searches. The main
behind Eq.(1) is that after a number of iterations and a number of local searches the quantityrt will be a reasonable approximatio
for the mean radius of the regions of attraction. To see this note that if we denote byMl the number of times that the local sear
procedure discovered the minimizerx∗

l , then a basin radius may be defined as:

(2)Rl = 1

Ml

Ml∑
j=1

∣∣x(j)
l − x∗

l

∣∣,
where{x(j)

l , j = 1, . . . ,Ml} = {xi, i = 1, . . . ,M} ∩ A(x∗
l ), i.e. L(x

(j)
l ) = x∗

l . Since by definitionM = ∑w
l=1 Ml , wherew is the

number of local minima discovered so far, a mean basin radius may be defined as:

(3)〈R〉 ≡
w∑

l=1

Ml

M
Rl = 1

M

w∑
l=1

Ml∑
j=1

∣∣x(j)
l − x∗

l

∣∣.
Comparing Eqs.(1), (2) and (3), it follows thatrt = 〈R〉.

2.3. Gradient criterion

The value of the objective functionf (x) at a pointx in the neighborhood of a local minimumx∗, can be estimated as:

(4)f (x) � f (x∗) + 1

2
(x − x∗)TB∗(x − x∗),

whereB∗ is the Hessian matrix at the minimumx∗. By applying the gradient operator in each part of Eq.(4) we obtain:

(5)∇f (x) � B∗(x − x∗).
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In the same way for any other pointy, in the neighborhood of a local minimumx∗, we have:

(6)∇f (y) � B∗(y − x∗).
By subtracting(6) from (5) and by multiplying from the left with(x − y)T we obtain:

(7)(x − y)T(∇f (x) − ∇f (y)
) � (x − y)TB∗(x − y) > 0

(sinceB∗ is positive definite).

2.4. Double Box stopping rule

The most widely used stopping rule is that developed by Rinnooy Kan and Timmer[5], where the algorithm stops iterating if

(8)
w(M − 1)

M − w − 2
< w + 1

2
.

M being the number of total sample points (we consider uniform sampling) andw the number of the located so far. The relati
(8) may be rewritten as:

(9)M > 2w2 + 3w + 2

which means that in order to stop iterating the number of sample points must be greater than the square of the located loc
This is undesirable for functions with many local minima and a more effective stopping rule must be employed. In the p
method we use a termination rule that estimates the uncovered portion of the search space. A relative measure for this ma
by:

(10)U = 1−
w∑

i=1

m(Ai)

m(S)
,

wherew is the number of the discovered so far local minima andm(S) is the Lebesgue measure ofS. The quantitym(Ai)/m(S)

may be approximated by the fractionTi/T , whereTi is the sum of local searches that have ended up at the local minimumx∗
i ,

plus the sample points that have been allocated to the cluster centred atx∗
i , andT is the total number of sample points. Hence

approximation forU may be given by:

(11)U � Ũ = 1−
w∑

i=1

Ti

T
.

Unfortunately, Eq.(11)always yieldsŨ = 0 and hence the uncovered space cannot be estimated with the above relation. H
a larger boxS2, that containsS, is constructed in a way such thatm(S2) = 2× m(S). A unique (fake) local minimum is considere
to be contained inA0 = S2 − S with measurem(A0) = m(S). The uncovered portion of the search space is now given by:

(12)U = 1−
∑w

i=0 m(Ai)

m(S2)
= 1− m(A0)

m(S2)
−

∑w
i=1 m(Ai)

m(S2)
= 1

2
−

∑w
i=1 m(Ai)

m(S2)
.

The quantitym(Ai)/m(S2) is approximated again by the fractionTi/T , T being the total number of sample points inS2 and hence

(13)U � Ũ = 1

2
−

w∑
i=1

Ti

T
.

At every iteration we sample points fromS2 until we have collectedN points belonging toS. After k iterations the total number o
sample pointsMk and the quantity

(14)δk ≡ kN

Mk

has an expectation value (assuming thatδk is i.i.d.)

(15)〈δ〉k = 1

k

k∑
i=1

δi

that asymptotically tends tom(S)/m(S2) = 1
2. The variance is given by

(16)σ 2
k (δ) = 〈δ2〉k − 〈δ〉2

k

and tends to zero ask → ∞. This is a smoother quantity than the expectation value and better suited for the following term
procedure:
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1. Initially seta = 0 andk = 0.
2. Sample fromS2 uniformly, until N points fall inS.
3. Calculate the quantityδk = kN/Mk .
4. Calculate the expectation value ofδk .
5. Calculate the deviationσ(δ).
6. Perform a step of the MinFinder algorithm (described in Section2.1).
7. If one or more new minima are found, seta = pσ 2(δ) and repeat from step 2.
8. If σ 2(δ) < a, TERMINATE, otherwise repeat from step 2.

The parameterp is in the range(0,1). For small values ofp (p → 0) the algorithm searches the area exhaustively, while forp → 1
the algorithm terminates earlier, but perhaps prematurely. As a compromise between exhaustive and speed search, we
value ofp = 0.5.

3. Experimental results

We compared the new method against Multistart (a description may be found in[10,11]) and Topographical Multilevel Singl
Linkage[6]. Other methods that one may consider, can be traced in[13,14]for Simulated Annealing and in[15,16]for Tabu Search
Simulated Annealing aims in discovering one global minimum only. The hybrid method[16] that combines Simulated Annealin
Tabu Search and a descent method is designed to discover all the global minima and some “important” local minima as
have used the Double Box stopping rule in all methods. All experiments have been repeated 50 times with different random
generator seed. The initial sample size was set to 20. In the following tables the columns “PROBLEM”, “MINIMA”, “FOU
“FEVALS”, “GEVALS” and “TIME” denote the name of the objective function, the known number of local minima, the ave
number of the discovered local minima, the average number of function evaluations performed, the average number of th
evaluations and the average CPU time. All the experiments were run on an AMD ATHLON 2400+ with 256 MB RAM ru
Slackware Linux v9.1. The local search procedure used in all methods was a BFGS implementation due to Powell[7].

In Tables 1, 2 and 3we list the experimental results from the methods Multistart, TMLSL and MinFinder correspondingl
results indicate that the proposed method is capable of finding almost all the minima of an objective function with less ef
other stochastic methods such as Multistart and TMLSL. The provided software has a very simple installation procedure
be easily installed in any UNIX operating system equipped with any ANSI C++ compiler.

4. Software documentation

4.1. Distribution

The package is distributed in a tar.gz file namedMinFinder.tar.gz and under UNIX systems the user must issue
following commands to extract the associated files:

1. gunzipMinFinder.tar.gz.
2. tar xfvMinFinder.tar.

Table 1
Multistart results

PROBLEM MINIMA FOUND FEVALS GEVALS TIME

CAMEL 6 6 11138 10741 0.04
RASTRIGIN 49 49 17714 16989 0.06
SHUBERT 400 400 557668 535368 6.44
GRIEWANK2 529 529 1697081 1646952 20.78
HANSEN 527 527 586090 563131 8.71
GKLS(3,60) 60 59 781378 691787 22.98
GUILIN(5,50) 50 50 195392 190566 1.76
GUILIN(10,50) 50 50 324645 318989 6.71
BRANIN 3 3 7488 7107 0.04
GOLDSTEIN 4 4 15951 15570 0.08
SHEKEL5 5 5 25930 25431 0.75
SHEKEL7 7 7 28946 28382 1.11
SHEKEL10 10 10 30808 30175 1.09
HARTMAN3 3 3 11467 11086 0.14
HARTMAN6 2 2 16145 15764 0.52
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Table 2
TMLSL results

PROBLEM MINIMA FOUND FEVALS GEVALS TIME

CAMEL 6 6 3486 2643 0.03
RASTRIGIN 49 49 23809 12195 0.78
SHUBERT 400 400 337476 56597 127.47
GRIEWANK2 529 528 2233048 1840673 251.57
HANSEN 527 527 838554 130642 451.38
GKLS(3,60) 60 56 880641 357247 53.31
GUILIN(5,50) 50 50 220678 201519 3.21
GUILIN(10,50) 50 50 426882 401254 10.57
BRANIN 3 3 1036 631 0.01
GOLDSTEIN 4 4 4647 3871 0.04
SHEKEL5 5 5 7554 6366 0.23
SHEKEL7 7 6 11546 9936 0.43
SHEKEL10 10 9 18649 15786 0.65
HARTMAN3 3 3 1837 1559 0.03
HARTMAN6 2 2 860 621 0.03

Table 3
MinFinder results

PROBLEM MINIMA FOUND FEVALS GEVALS TIME

CAMEL 6 6 1598 2187 0.02
RASTRIGIN 49 49 1723 2975 0.08
SHUBERT 400 400 17404 41849 7.07
GRIEWANK2 529 529 1035094 1190595 80.16
HANSEN 527 527 60916 94382 15.79
GKLS(3,60) 60 56 169280 297160 13.89
GUILIN(5,50) 50 50 84675 88111 1.21
GUILIN(10,50) 50 50 173186 179397 4.40
BRANIN 3 3 498 604 0.01
GOLDSTEIN 4 4 2197 2364 0.02
SHEKEL5 5 5 7144 7365 0.25
SHEKEL7 7 7 17125 17377 0.75
SHEKEl10 10 10 21551 21661 0.90
HARTMAN3 3 3 1581 1737 0.03
HARTMAN6 2 2 1090 1194 0.05

These steps create a directory namedMinFinder with the following contents:

1. bin: A directory which is initially empty. After compilation of the package, it will contain the executablemake_program.
2. examples: A directory that contains the test functions used in this article, written in ANSI C++ and the Fortran 77 ver

the Six Hump Camel function.
3. include: A directory which contains the header files for all the classes of the package.
4. src: A directory containing the source files of the package.
5. Makefile: The input file to themake utility in order to build the tool. Usually, the user does not need to change this file.
6. Makefile.inc: The file that contains some configuration parameters, such as the name of the C++ compiler, etc. The u

edit and change this file before installation.

4.2. Installation

The following steps are required in order to build the tool:

1. Uncompress the tool as described in the previous section.
2. cd MinFinder.
3. Edit the fileMakefile.inc and change (if needed) the five configuration parameters.
4. Typemake.

The five parameters inMakefile.inc are the following:
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1. CXX: It is the most important parameter. It specifies the name of the C++ compiler. In most systems running the GN
compiler this parameter must be set to g++.

2. CC: If the user written programs are in C, set this parameter to the name of the C compiler. Usually, for the GNU c
suite, this parameter is set to gcc.

3. F77: If the user written programs are in Fortran 77, set this parameter to the name of the Fortran 77 compiler. For t
compiler suite a usual value for this parameter is g77.

4. F77FLAGS: The compiler GNU FORTRAN 77 (g77) appends an underscore to the name of all subroutines and fu
after the compilation of a Fortran source file. In order to prevent this from happening we can pass some flags to the
Normally, this parameter must be set to -fno-underscoring.

5. ROOTDIR: Is the location of the MinFinder directory. It is critical for the system that this parameter is set correctly. In
systems, it is the only parameter which must be changed.

4.3. User written subprograms

In Example 1we see the template of the objective function in the C programming language. The same scheme is use
C++, but the code has the line

extern ‘‘C’’ {

before the functions and the line

}

after them, in order to prevent the compiler from generating symbols that will not cause problem to the linking process. The
for Fortran 77 is given inExample 2. The symbol d denotes the dimension of the objective function. The meaning of the fun
are the following:

1. getdimension(): It returns the dimension of the objective function.
2. getleftmargin(left): It fills the double precision array left with the left margins of the objective function.
3. getrightmargin(right): It fills the double precision array right with the right margins of the objective function.
4. funmin(x): It returns the value of the objective function evaluated at point x.
5. granal(x, g): It returns in a double precision array g the gradient of the objective function at point x.

4.4. The utility make_program

After the compilation of the package, the executablemake_program will be placed in the subdirectorybin in the distribution
directory. This program creates the final executable and it takes as its only argument the name of the file containing the
function. The utility checks the suffix of the file and it uses the appropriate compiler. If this suffix is .cc or .c++ or .CC o
then it invokes the C++ compiler. If the suffix is .f or .F or .for then it invokes the Fortran 77 compiler. Finally, if the suffix i
invokes the C compiler.

4.5. The utility MinFinder

After the compilation of the objective function with the toolmake_program the executableMinFinder is created. This
executable can take the following arguments in the command line:

1. -h: The program prints a help screen to the user and stops.
2. -s size: The integer parametersize is used as the size of the sample (i.e.N = size). The default value for this parameter is
3. -o filename: The string parameterfilename specifies a file where all the discovered local minima will be disposed afte

termination of the program.
4. -p level: The integer parameterlevel can take only two values: 0 or 1. If the value is 0, then no output will be sent t

standard output. If the value is 1, then after each iteration, the algorithm prints a line displaying the number of iterat
number of located minima, the total number of function calls, the total number of gradient calls, the value ofσ 2(δ) and the
value ofa used in the Double Box stopping rule. The default value for this parameter is 0.

5. -r seed: The integer parameterseed specifies the seed for the random number generator. It can assume any integer va
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4.6. A working example

Consider the Six Hump Camel function given by

f (x) = 4x2
1 − 2.1x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2, x ∈ [−5,5]2

with 6 local minima. The implementation of this function in C++ and in Fortran 77 is shown inExamples 3 and 4. Let the file
with the C++ code be namedcamel.cc and that with the Fortran codeCamel.f. Let these files be located in theexamples
subdirectory. Change to theexamples subdirectory and create theMinFinder executable with themake_program command:

../bin/make_program camel.cc

or for the Fortran 77 version

../bin/make_program camel.f

Themake_program responds:

RUN./MinFinder IN ORDER TO RUN THE PROBLEM

RunMinFinder by issuing the command:

./MinFinder -o camel.out -p 1 -r 7

The resulting output appears as:

iters= 1 minimum= 1 fevals= 24 gevals= 33 delta= 0 stopat=1.9763e-323
iters= 2 minimum= 2 fevals= 89 gevals= 106 delta= 0 stopat= 0
iters= 3 minimum= 3 fevals= 151 gevals= 178 delta=6.7063e-05 stopat=3.3531e-05
iters= 4 minimum= 4 fevals= 236 gevals= 272 delta=5.4213e-05 stopat=2.7106e-05
iters= 5 minimum= 6 fevals= 282 gevals= 331 delta=4.1245e-05 stopat=2.0622e-05
iters= 6 minimum= 6 fevals= 386 gevals= 446 delta=3.5875e-05 stopat=1.7938e-05
iters= 7 minimum= 6 fevals= 520 gevals= 591 delta=3.0131e-05 stopat=1.7938e-05
iters= 8 minimum= 6 fevals= 604 gevals= 688 delta=2.5983e-05 stopat=1.7938e-05
iters= 9 minimum= 6 fevals= 680 gevals= 778 delta=2.2972e-05 stopat=1.7938e-05
iters= 10 minimum= 6 fevals= 804 gevals= 916 delta=2.0464e-05 stopat=1.7938e-05
iters= 11 minimum= 6 fevals= 888 gevals= 1015 delta=1.8794e-05 stopat=1.7938e-05

All minima are discovered by iteration 5, however the program continued until iteration 11, becausedelta, which corresponds
to the quantityσ 2(δ), at the 5th iteration was not lower thanstopat (the quantitya in our algorithm). The discovered minima a
written to the filecamel.out, the contents of which are listed below:

2
6
-1.703606715 0.7960835687 -0.2154638244
0.0898420131 -0.712656403 -1.031628453

-0.0898420131 0.712656403 -1.031628453
-1.607104753 -0.5686514549 2.10425031
1.703606715 -0.7960835687 -0.2154638244
1.607104753 0.5686514549 2.10425031

In the first line the single entry (number 2) denotes the dimensionality of the problem. In the second line the sing
(number 6) denotes the number of the discovered local minima. In each of the following lines there are three entries. The
correspond to the parameter values of the minimizer, while the third to the corresponding value of the objective function.

Appendix A. Test functions

We list the test functions used in our experiments, the associated search domains and the number of the known loca
These functions are standard test functions in the area of global optimization and further information about them can be
[12] and at the URL:

http://www.imm.dtu.dk/~km/GlobOpt/testex/testproblems.html

http://www.imm.dtu.dk/~km/GlobOpt/testex/testproblems.html
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Camel

f (x) = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2, x ∈ [−5,5]2 with 6 local minima.

Rastrigin

f (x) = x2
1 + x2

2 − cos(18x1) − cos(18x2), x ∈ [−1,1]2 with 49 local minima.

Shubert

f (x) = −∑2
i=1

∑5
j=1 j{sin((j + 1)xi) + 1} , x ∈ [−10,10]2 with 400 local minima.

Griewank2

f (x) = 1+ 1
200

∑2
i=1 x2

i − ∏2
i=1

cos(xi )√
(i)

, x ∈ [−100,100]2 with 529 local minima.

Hansen

f (x) = ∑5
i=1 i cos[(i − 1)x1 + i]∑5

j=1 j cos[(j + 1)x2 + j ], x ∈ [−10,10]2 with 527 local minima.

Gkls

f (x) = Gkls(x,n,w), is a function withw local minima, described in[9], x ∈ [−1,1]n, n ∈ [2,100]. In our experiments we
usen = 3 andw = 60.

Guilin Hills

f (x) = 3 + ∑n
i=1 ci

xi+9
xi+10 sin( π

1−xi+1/2ki
), x ∈ [0,1]n, ci > 0 andki are positive integers. This function has

∏n
i=1 ki local

minima. In our experiments we usen = 5,10 and we have arranged the values ofki so that the number of minima was 50. The
cases are entitled as GUILIN(5, 50) and GUILIN(10, 50) in the following tables.

Branin

f (x) = (x2 − 5.1
4π2 x2

1 + 5
π
x1 − 6)2 + 10(1 − 1

8π
)cos(x1) + 10 with −5 � x1 � 10, 0� x2 � 15. The function has 3 minima i

the specified range.

GoldStein & Price

f (x) = [
1+ (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
× [

30+ (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
.

The function has 4 local minima in the range[−2,2]2.

Shekel 5

f (x) = −
5∑

i=1

1

(x − ai)(x − ai)T + ci

with x ∈ [0,10]4 and

a =




4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7




and

c =




0.1
0.2
0.2
0.4
0.4


 .

The function has 5 local minima in the specified range.

Shekel 7

f (x) = −
7∑

i=1

1

(x − ai)(x − ai)T + ci
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with x ∈ [0,10]4 and

a =




4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3




and

c =




0.1
0.2
0.2
0.4
0.4
0.6
0.3




.

The function has 7 local minima in the specified range.

Shekel 10

f (x) = −
10∑
i=1

1

(x − ai)(x − ai)T + ci

with x ∈ [0,10]4 and

a =




4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6




and

c =




0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6




.

Hartman 3

f (x) = −
4∑

i=1

ci exp

(
−

3∑
j=1

aij (xj − pij )
2

)

with x ∈ [0,1]3 and

a =



3 10 30
0.1 10 35
3 10 30

0.1 10 35






176 I.G. Tsoulos, I.E. Lagaris / Computer Physics Communications 174 (2006) 166–179
and

c =



1
1.2
3

3.2




and

p =



0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828


 .

The function has 3 minima in the specified range.

Hartman 6

f (x) = −
4∑

i=1

ci exp

(
−

6∑
j=1

aij (xj − pij )
2

)

with x ∈ [0,1]6 and

a =



10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14




and

c =



1
1.2
3

3.2




and

p =



0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


 .

The function has 2 local minima in the specified range.

Appendix B. Examples

Example 1 (Formulation in C).

int getdimension()
{
}

void getleftmargin(double *left)
{
}

void getrightmargin(double *right)
{
}

double funmin(double *x)
{
}
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void granal(double *x,double *g)
{
}

Example 2 (Formulation in Fortran 77).

integer function getdimension()
getdimension = d
end

subroutine getleftmargin(left)
double precision left(d)
end

subroutine getrightmargin(right)
double precision right(d)
end

double precision function funmin(x)
double precision x(d)
end

subroutine granal(x,g)
double precision x(d)
double precision g(d)
end

Example 3 (Implementation of Camel function in C++).

extern “C”{
int getdimension()
{

return 2;
}

void getleftmargin(double *left)
{

left[0]=-5.0;
left[1]=-5.0;

}

void getrightmargin(double *right)
{

right[0]=5.0;
right[1]=5.0;

}

double funmin(double *x)
{

double x1=x[0],x2=x[1];
return 4*x1*x1-2.1*x1*x1*x1*x1+

x1*x1*x1*x1*x1*x1/3.0+x1*x2-4*x2*x2+4*x2*x2*x2*x2;
}
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.

or global
void granal(double *x,double *g)
{

double x1=x[0],x2=x[1];
g[0]=8*x1-8.4*x1*x1*x1+2*x1*x1*x1*x1*x1+x2;
g[1]=x1-8*x2+16*x2*x2*x2;

}
}

Example 4 (Implementation of Camel function in Fortran 77).

integer function getdimension()
getdimension = 2
end

subroutine getleftmargin(left)
double precision left(2)
left(1)=-5.0
left(2)=-5.0
end

subroutine getrightmargin(right)
double precision right(2)
right(1)=5.0
right(2)=5.0
end

double precision function funmin(x)
double precision x(2)
double precision x1,x2
x1=x(1)
x2=x(2)
funmin=4*x1**2-2.1*x1**4+x1**6/3.0+x1*x2-4*x2**2+4*x2**4
end

subroutine granal(x,g)
double precision x(2)
double precision g(2)
double precision x1,x2
x1=x(1)
x2=x(2)
g(1)=8.0*x1-8.4*x1**3+2*x1***5+x2;
g(2)=x1-8.0*x2+16.0*x2**3;
end
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