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Abstract :We report results of variational calculations of models of nuclear matter in which the nuclear
interaction is approximated by a sum of central, spin, isospin and tensor forces . The models are
based on realistic potentials such as those of Reid, Bethe-Johnson, Hamada-Johnson, and
Gammel-Thaler. The correlation operator in the variational wave function contains central, spin,
isospin and tensor terms . We briefly review the Fermi-hypernetted-chain, and single-operator-
chain (SOC) methods used to calculate the energy expectation value. The energies obtained for
these simple modelsbyvarious variational and reaction matrix calculations seem to bein reasonable
agreement. Results with the SOC approximation for the v 3 model of neutron matter, in which the
interaction has only central and spin components, are also reported. These are in good agreement
with the energies obtained by summing multiple operator chains.

1. Introduction
Variational theories of nuclear matter are generally based on the Hamiltonian:
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where v"(rii) are functionsof jr, - ri l , andO° are operators. Inprinciple we must take
as many operators Oi as are required to explain the NN scattering data at
non-relativistic energies . Howeverwe will consider only the following eight opera-
tors :
Ov-1.8 = 1,

cri
.
alh ri ,

rh (ui . Q1)(Ti - ri), Sib Sil(Ti - T)), (L - S)th and (L - S)ii(Ti - ri),
(1 .2)

where Sii and (L " S),i are the tensor and spin-orbit operators. For convenience we
will occasionally use the superscripts c, o,, r, trr, t, tr, b and br instead of p =1, 8 to
denote the OP, vP etc.
At least two more operators, containing quadratic spin-orbit terms, and possibly

many more are required to describe realistic potentials in this fashion. Models of
nuclear matter based on Hamiltonians that neglect some of the operator depen-
dences of the potential are popularlycalled homework models. The simplest of these,

t Supported by NSF PHYS 76-22147.
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such as vl and v2 have only a central potential 1), while v3 has a central plus a (r1 * (r2
potential and is used for neutron matter 2) . The models v6 and vs respectively have
the operators 0'11- "6 and O -l .a in their Hamiltonians.
We hope to calculate the equation of state E(p) of nuclear matter with a

correlation operator :

and a variational wave function

~i =

	

E

	

f, (ru)Oh

	

(1.3)
P-1,n

IF. =(Y n Yt) 0.

	

(1.4)i<j

Here (P is the Fermi-gas wave function, and the product of A,; is symmetrized
because the All do not commute. Thef, fandf°'r partly simulate the 1-dependence
of the correlation due to backflow 3) and are non-zero even when vQ, v' or v' are
zero as in the vl and v2 models . The tensor and spin-orbit correlations are generated
respectively by tensor and spin-orbit forces . Thus in eq . (1 .3) n =4in models vl, v2
and v3, while n = 6,8 in models v6 and vs respectively .
The v2 model .has been studied with a more general wave function that contains

three-body and state-dependent two-body correlations . 3) In this case the three-
body correlation is found to be negligible, but the state-dependent correlation is not.
The f, f' nd f' .can simulate the correct state-dependence of correlations only at
small momenta. In the v2 model the E(p) calculated with (1.4) is found to be
=0.5 -3.0 MeVtoo high in the density range kF=1.3-2.0 fm-1 . This provides some
indication of the effect of neglecting momentum-dependent terms in the correlation
operator (1.3). Howwell the wave function (1.4) does in describing the many-body
spin, isospin, tensor etc. correlations is a very open question .

In principle the f' hould be obtained byminimizing the energyby generalizing the
methods being developed by Lantto and Siemens. 4) However, near equilibrium the
E(p) is notvery sensitive to the specific choice of f°, and so we follow an approximate
procedure . A set of A,i described by parameters d andßP,1 :

Y- iSr(4r,,)Oib
P-2,n

is used to calculate the E(p, d, RP>1). The functions f(d, r) are obtained by
minimizing the contribution of two-body clusters to the energy, under "healing"
constraints

SF(r>d)=1, VY(r=d)=0,

	

(1 .6)
meant to simulate variation of the many-body cluster contributions'") . The opti-
mum healing distance is determined variationally. Eq. (1. .6) implies J"' (r >d) = 0,
and the parameters 0P>1 simply vary the magnitudes of the J"' (r) in SF ; since
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f'(r >d) =1, there is no 6c. The f(d, r<d) satisfy coupled Schr6dinger-type
equations 7) that are easy to solve.

2. The chain summations

The numerator and the denominator of the energy expectation value:

(0*(e II ~;)IHI(s~ II sFii)o)
<j i<,

	

(2.1)
(0*(Y II 1*1+i )I(Y II 3Frr)O)

i<J i<

are expanded in powers of short-range functions F°(r j),

F'(r) =h (r) -1,

	

F°" (r) =2f(r)j'

	

°r),

	

(2.2)

andf°'i (r)f"' (r) . The resulting terms are represented diagrammatically using the
dictionary of elements shown in fig. 1. We will refer to elements 1-3 of fig . 1 as
correlation lines, and elements 6-8 as derivative lines. Element 5 is called an
interaction line, and

ÏPH°f =Î(r) (-MVZf(r)s°r+v°(r)f(r)) . (2.3)

Detailed diagram rules can be found in refs.'); the following discussion is meant',
merely to clarify the notation .

Briefly the diagrams contain two or more points representing coordinates r,. Each
point of adenominator diagram must be connected to another by a correlation line .
Numerator diagrams are divided into four classes W, U, WF and UF. The W- .
diagrams must contain one interaction line mn, while the U-diagrams have two
derivative lines mn and mo. The WF(UF) diagrams have a derivative line mn anda
derivative state line (element 9 of fig . 1) joining .mn(mo). Numerator diagrams can
have one or more points other than mn(o) each of which must be connected by a
correlation line to either m, n, (o), or another point.
Exchanges are shown by state lines (element 4 of fig. 1) which must form closed

non-touching loops. The derivative state line in WFand OFdiagrams must also be in
a closed exchange loop . On momentum summation the state line e`~ "'° becomes the
familiar Slater function 1,; :

l,, = 3 (sin (kFrf)-kFr,, cos (4r�)).

	

(2.4)(kFrj)
An exchange loop with (a +1) particles (and thus (a + 1) state lines) can be produced
by (a) pairwise exchanges . Thus there is an exchange operator :

-4(1+OZI +O,I +O,1)

	

(2.5)
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Fig . 1 . Dictionary of diagrammatic elements.

associated with all but one state lines i f in the loop . The line to be omitted can be
chosen for convenience.
Ageneral cluster exapnsion for noncommuting correlation operators, like At, has

been derived previously 8). The first term in the expansion is the sum of all
irreducible numerator diagrams. Additional terms coming from separable diagrams
contribute only through commutators of the operators contained in Pa .
The potential energy and kinetic energy terms having ('0.9.) are given by

W-diagrams, while U and (WF+ UF) respectively give the kinetic energies asso-
ciated with (V,.9;.), and (Oma~mn) ' (V,.<P) terms. The (0.0) terms give
the Fermi gas kinetic energy TF(=0.3 fiiZkF/m). We first consider the irreducible
diagrams which cannot be broken into two pieces at any articulation point. Their
contribution is given by the product ofan integral and a C-factor . The integral is over
all r, of all the functions of r f represented by the lines in the diagram, while the
C-factor takes into account the product of operators associated with the lines.
The fj Of can always be written as :

jj Oi = CGZOi)+rest,

	

(2.6)

where C([10ii) is independent of any Q, or T,, while the rest contains terms that are
linear in at least one o, or -r, and goes away on spin-isospin summation. Due to the
(9' jjr<; 9=e;) in (2.1) the operators Oii in a diagram can occur in variousorders, and in
general the C(fZO;) depends upon the order of the operators . Let the probability of
their occurring in a specific order represented by rj.0i be w�. The C- factor of the
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The

general rules for calculating C(rJOU) are given in ref

.

9)

.

Their calculation is

simpler

for the rj0°s6 and hence the E(p) of v6 models can be calculated more

91
easily .

Henceforth, unless stated explicitly, we will assume p

;96,

and restrict

ourselves

to v6 models

.

The C[10û) in v6 models is non-zero only when the

operators

O,°,=Z form closed rings

.
The

chain equation '0)

.

Gii

= BEXik, (Xki + Gki)),	

(2.8)

offers

a method to sum important diagrams in an orderly fashion

.

The G

;i

is the sum

of

all chains formed with links XIX12

. . .

X

� _l, �X,j(n

=1, oo), while 9 is an integral

operator

that couples the links

.

Thelinks and chains in nuclearmatter are denoted by

XP,.,i

and Gxx

.ii,

where p refers to the associated operator OF and xx' refer to the

exchange

pattern at the ends i andj

.

If i andj are not exchanged xx' = dd

;

xx' = de if i

is

not exchanged andj is exchanged in a closed loop contained within the link or the

chain .

The i and j are both exchanged in closed loops inside the GK,,j and X«

.ifi

While

XP

,,i and Gû,,ß have an incomplete exchange loop passing through i and j

.

This

classification

of theX and G with exchange pattern was first suggested by Fantoni

and

Rosati "), though our notation is somewhat different than theirs

.

It is very

convenient

because the X,u,,,k andX,,,,

..ki

cannot form a chain unless x'y = dd, de, ed

or

cc

.
The

9 operators are obained from the identity

:

E

J dYOk OkOki = J dçbk	

E

	

CîkJ'0

Î

;

	

(2.9)
o~rk

	

1-1.6

here

Ok is the azimuthal angle of r,k with respect to the axis r,i

.

The chain equations

for

dd, de and ee chains in nuclear matter are of the form

:

Y-

w

�C

(jI O+°t)	

(2.7)

Gzx~ .ii

- E_	

eyy,

(XXY

.ik,(XY~x-.ki+Gy-x' .ki)),

	

(2.10)
D.4
YY,

9yy!

= J d3rk epql

lik

	

if

	

yy'

= dd, de or ed

=

0 otherwise

.

	

(2.11)

The

C,,' are given in ref

.

e)

.
The

diagrams summed by (2

.10)

depend upon the chosen link functions Xxx,

.

In

the

FHNC/SOC approximation the links are allowed to contain hypernets of Gs,,,,
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but only single chains of Op ir.2 operators. Thus the Xdd for example become:

The FHNC/SOC approximation should be reasonable when Fp=2 ,
fp2 and Gû 2

are << 1.
The G'- sum all the FHNC diagrams due to the central correlation f plus

diagrams that have closed single operator rings (SOR) as illustrated in fig . 2.1,2 . The
GcX.- also contain diagrams with touching SOR's (2.3 for example) but their C-part is

ai
i

	

1

2.7

	

2.8

	

2.9

2.10

	

2.11

	

2.12

Fig. 2 . Examples of chain diagrams.

Xâd =V_+ Y- A P (fp+ÎG°ad)2Iexp(Gâd) -1-G'dd, (2.12)
p-2.6

Xdd =(Fp+~' Gâd) exp (G'dd)-Gd°d, (2.13)

where the AP are defined as :

C(0°t0l) = Ap8pv. (2.14)



grossly approximated . 8 ) However, when f22 and G°x 2 are « 1 these ill-treated
diagrams should be very small.
Some of the simpler diagrams summed by theFHNC/SOC G°z2, xx' = dd, de and
W are shown in fig. 2.4-6 ; these can contain any number of G'xx- dressings which are
not explicitly shown. Due to the SOC restriction diagrams of type 2.7,8 are not
included in the G 2

; the operator algebra of these diagrams is non-trivial.
However, when FPZ2 and Gû2 are both << 1 the neglected diagrams are much
smaller than those summed. It should be noted smallness of the magnitude of FPi2
does not imply that the Gdd diagram 2.4 is smaller than 2.9, when fhave a
range>ro. In general when (dlro)3> 1 the chain diagrams need to be summed. All
but one of the exchange lines in a Ga chain carry an exchange operator, thus in the
SOCapproximation the G° 2 can have at most oneFP or Gdd link, as illustrated in
diagrams 2.10-12, which merely "fills up the gap" . The detailed equations for Gâ
are given in ref. 8) .
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3. Calculation of the energy

It is convenient to define three matrices K"k, Llik andDjj to calculate the energy
from the chain functions Gû , . The K"k is defined as :

In the v6 problem it can be shown 7) that either (3.5) or (3.6) is valid if V1 and fm,�
are nonzero. The Dei is used to calculate the contribution of separable diagrams :

C(OM�,[45~1, 0,e��~0,~,1)=sù, 811, A'A'Dei.

	

(3.7)
Useful symmetry properties of the K- and L-matrices are reviewed in ref.').

0 ;��0;�� =Y_ O~.K eik. (3.1)
k

From eqs. (3 .1), (2.9) and (2.14) we obtain

J d01C(0 1��,0M��0,nr 10.'i)=
J
d~1~K1f1 ,iRA °~ (3.2)

The L`ik is defined as :

d401 C(0,1��Om10'��ORi) = d01 ELülfmin, (3.3)J J
Leie= *K1i1A1. (3.4)

The + sign applies when

C(O;��[O��� 0,~110.,I)=0, (3.5)
and the - sign when

C(0i,�{0m�, 0M 110.1) = 0. (3.6)



120

	

1. E. LAGARIS er al.

The energy given by the sum of W, U, WF and OF diagrams can be calculated
within the FHNC/SOC approximation with the help of matrices A, K, L and the
G°x , . We illustrate the method by calculating some of the contributions to W; the
complete calculation is given in ref.') .
The Wdiagrams are divided into four classes Wo, Wc, W, and Wnas illustrated in

fig. 3.1-4 . Diagrams of any class can have any number of G',, ,,�. chains, and any
exchange pattern, neither of which are shown in fig. 3. The only operators in Wo

m i,l,k n

	

m i,l,k n

Wo (3 .1)	W C (3.2)

m i,j,k n

OR

GI

m i,l,k n",~

	

m 1,l,k n

Ws (3.3)

	

Wcs (3.4)

OR OR

1,l,k n

(3.7)

Fig. 3. Classification of Wdiagrams .

diagrams are the O;�", O'��� Ok�, .associated with the 9FL� , H��, and 9i��� and
possibly the OL associated with the exchange of mn. Please avoid confusion
between operator labels i, j, k,1, m, n . . . and particle labels m, n, o . . . . We get:

Wo =2P

	

E

	

J d3rfHlfkh`KijkAk((1+Gâe)Z+G'ee)
Uk-1,6

OR

-âp

	

E

	

y

	

J d3rfHjfk h'
Ç'0
2K"i"Kjk'A',

	

(3 .8)
i,j.k~1 .6 "~1.4

nt 1,6
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where h` takes into account the hypernetted G'dd chains :

h° = exp (Gâa),

	

(3.9)

the generalized Slater function 9contains the GC, chains :

-W(r)= - l (kpr) + 4 Gâ (r),

	

(3.10)

and the K and A matrices give the C-factor.
The W, diagrams have the operators Om10P120123 : . .0â� in

	

where
1, 2, 3 . . . a are the internal points in the chain, in addition to the operators
O;"", 0

	

O;;�, and possibly O"��, . Their C-part depends upon the order of the
operators l',1". i, j, k and n (we denote O;�� by i for brevity), while the positions of
operators p, q . . . in the middle of the chain are irrelevant . The C-factor of W.
diagrams has to be calculated with eq . (2.7) . The probabilities w depend upon the
exchange pattern xx' and so the W,(xx'), which give the contribution of Gü2��, to
Wc, have to be separately evaluated .
Lèt us consider Wc(de) diagrams in which the operator l" comes from exchange

andmaybe placed at either end of the product. The l' may be associated with Wm1 or
3îm1 and so we have to consider orders : l"ijkl', l"ijl'k, l"il'jk and 1"l'ijk all occurring
with probability w =â. The C- part in these orders can be calculated in terms of the
A-, K-, L- and f-matrices, and we obtain :

Wr(de)=p

	

E

	

E

	

J d3rfHifkGâa â (2AMK''mKkIM
U.k-1,6 1-2.6

M-1.6

+KUmL kIm+KikmLum) h °(1+Gde),

	

(3.11)

all the 6-functions being contained in the Gd..
In the W, diagrams (fig. 3.3) the operator ring (OR) that can be separated at the

articulation point n can be formed either with an f'.1 f;, 1 element (l -~ 2) or with a
G.''..IF' I. The contribution of these separable diagrams is proportional to the
difference between the C-factor of the connected diagram and the product of the
C-factors of the two separated pieces . Let us consider the simplest of the W,
diagrams in which there are no central Gû. dressings or exchanges, and the OR is
J'�1)".1. The difference between C-factors is then :

;C({i,1)j{i, l})-C(ijk)C(ll)=IK"kAkA'(DII +Dit +Dkl).

	

(3.12)

In this waywe can calculate the operator parts of W, diagrams in terms ofA; K- and
D-matrices.

It is possible to treat W, diagrams (3.3) exactly as vertex corrections at vertices m
andn of Wodiagrams (3.1)')] Thediagrams of type (3.5) and (3.6) can be treated as
corrections at the vertices within G,',1 . Vertex factors can be easily inserted in the
chain eq. 2.10-11 8)] The Wa diagrams (3.4), and those of type (3.7) can also be
summed with a very reasonable accuracy of -0.2 MeV as corrections to diagrams
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(3.2) and (3.3) respectively. However, the diagrams of type (3.8) are neglected at this
stage, the magnitude of their contribution could be -5-10% of W,.

The Reid v6,8 and BJ-II v 6,8 models are obtained by expressing the 'So, 3S1 -
3D1,'P l , and 3P2 -3F2 potentials in the Reid '2) and Bethe -Johnson-11' 3) inter-
action models asy_, v'(r)O'-''8. The (L " S) potentials are neglected in the v6 models .
TheHJ v6 model is obtained by neglecting the (L - S) andquadraticspin-orbit terms
in the Hamada-Johnson '4) potential, while the Gammel-Thaler 5200'5) (GT-
5200) potential is itself of a v6 form.
The trr and tr correlations and chains are most important in nuclear matter, and

the G and Gde in the Reid v6 model are shown in fig . 4 for d =2.25 ro, and
ß,-2,6 =1. The G' Z2 are very long ranged, and particularly the Gû, are comparable
to f22. For such cases the O(X,k, Gkj ) term in Gy [eq. (2.10)] is important, and it is
necessary to solve the integral chain equations . However, thePC2 and GIL12 are'very
small in magnitude and thus the SOC approximation should be valid.

4. Results

Fig. 4. The f°', f,Gd and Gde in nuclear matter at kF=1.6 fm-1 , d - 2.25 rO, ß,s1 =1.

The energy is more sensitive to ß,r and d than to ßo� and it is very insensitive to
ßo, ß* and ßh The equilibrium value of p, is close to unity, however that of ßo., is
generally <1. The E(kF, d, ß,) for Reid (BJ-II) v6 model at its minimum is given in
table 1 (2). The f'I f' andf°' lower the energy by 2(5) MeV. There is a very large
cancellation between the two-body and many-body cluster contributions (MBCC)
due to f'Y f' andf°''. The largest contribution of f` andf' to MBCC is via the W, .
The E(p) of these models is shown in fig. 5, alongwith the "experimental" E(p) and
crude estimates of that of the vs models 7). The difference between v6 and vs is
significant and indicates the importance of (L - S) contributions to nuclear energy .
Unfortunately, the vs models are much harder to treat accurately.
The recent '8) Reid v6 model results obtained with the Brueckner-Bethe-Gold-

stone (BBG) method are also shown in fig. 5. The curve labled BBG includes two-
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TASLE 1
Reid v6 E(kF-1.6 fm-1 , d= 2.5 ru) in MeV

Wa

	

-2.97 -1.01 0.05 0
WF(MB) -1.07 -0.20 0.48 0.18

+ UF
U

	

-0.91 -0.80 -0.60 1.93
E

	

-14.45 -16.95 -15.13 25.18

TASr.E 2
BJ-II v6E(kF =1.2 fm-1 , d - 2.25 ro ) in MeV

and three-hole-line contributions, and estimates of four-hole-line contributions. It is
significantly below the LOBT curve which includes only the two-hole-line contribu-
tion . Aplausible estimate of errors in the V6 results at kF=1.6 fm-1 may be made as
follows. The error due to truncating the chain summations in the present variational
calculation is plausibly given by the magnitude of Waand is -1 MeV. However, we
expect the E(kF=1 .6 fm-r) to decrease by ---1 MeV if k-dependent terms are
included in the correlation operator 9r, which gives AE..- +0 to -2 MeV. The
error in BBG E(kF=1 .6 fm-1) is---f 2MeV 18 )]. The BBG and variational results
are certainly in agreement within these errors at kF=1.6 and 1 .8 fm-1 . At kF=
1.4 fin- ' the difference between the two calculations is marginally larger than the
estimated errors .
TheE(kF=1.3 fm-) in Reid, BJ-II, HJ andGT-5200 v6 models are compared in

table 3, and the E(p) of HJ and GT-5200 models are compared with the results of

Ol 0i =1
041*=1 .1
Ot-2.4=() .6

ß4,=1.1
ßi-2.4 = 0 ß1i2 =0

TF 17.92 17.92 17.92 17.92
2-body -39.70 -35.48 -24.17 -8.40
WO(MB) -0.82 -0.98 -0.80 -0.12
W. 3.43 1.85 -0.58 0
W, 14.68 10.73 6.79 0
Wa -1 .03 -0.56 0.25 0
WP(MB) 0.62 0.42 0.12 -0.01

+ UF
U -0.19 -0.54 -0.78 0.45
E -5.09 -6.64 -1.25 9.83

ßi ßl=1
Or.lr -1

ß1-Z4 = 0.4
P4h = 1
0i-2.4=0 Ols2-0

TF 31.95 31.85 31.85 31.85
2-body -65.76 -59.16 -52.75 -10.75
Wo(MB) -6.91 -6.30 -5.28 1.97
W. 13.02 6.46 0.77 0
W, 18.30 12.21 10.35 0



Fig. 5. A comparison of the calculated energies for Reid and BJ models with the "experiment" and the
results of calculations based on the Brueckner-Bethe-Goldstone method.

TABLE 3
E.,�(kF=1 .3 fm-') for various potentials in MeV

Benhar et al. (BCFR) 16) andKurten etal. 17) (KRC) in fig . 6. The KRCenergies are
much lower thanours, howeverthey truncate the cluster expansion at the three-body
level, and the second-order correlated basisperturbation term at the two-body level.
Probably amore accurate calculation with their approach will give higher energies .
Our results are in fair agreement with those of BCFR, whose calculation is probably
closest to ours in principle . However, there are large differences between the present
and the BCFR calculation, particularly in the treatment of We and W,. Thus the
agreement is very encouraging but not yet fully understood.

Model Reid v6 BJ-111 vb HJ vs OT-5200

d/ro 2.25 2.25 2.35 2.42
ß+-2 .4 0.4 0.6 0.5 0.75
ß,-15 .6 1.0 1,1 1.0 1 .0
TF 21.03 21 .03 21.03 21.03
2-body -42.28 -37.55 -37.04 -50.28
Wof) -0.21 -3.96 -0.15 1.77
W. 2.79 4.01 2.31 3.43
W, 6.44 11 .71 5.19 6.83
Wo -0.42 -0.87 -0.35 -0.66
WFf) 0.26 -0.17 0.23 0.69

+ UF
U -0.59 -0.76 -0.23 -0.32
E -12.98 -6.56 -9.01 -17.51



Fig. 6. Acomparison of the results of variational calculations for the Iii vb and GT5200 models .

Using a somewhat different wave function Owen 2) has calculated the E(p) of
model v3 of neutron matter which contains the v° and f'. With his choice of the
variational wave function he couldsum all hypernetted operator chain diagrams, and
thus obtain presumably reliable upperbounds for the E(p) . OurFHNC/SOC results
(table 4) are very similar to his and thus indicate that SOCis a good approximation .
Owen also does a calculation he calls "SOC" with which he fails to obtain a
variational minimum in E(d). However, we believe that his "SOC" calculation is
significantly different from ours .

TABLE 4
v3 E(p, d 18v) in unitsoffm and MeV

The v3 is a very difficult model to test the effect of non-central correlations. Thef
has a very small effect on its E(p) (table 4) due to very large cancellations: at
p=0.3 fm-3 theE(PQ= 0, .5) are 29.2 and28.8 MeV, while the Wc(0Q= 0,.5) are 0

P E.1. (d/ro).i. (ßv)~ E(d.,,,.ßo=0) E(Owen)

0.17 17 .4 1.9 0.8 17 .8 17 .0
0.3 28.8 2.3 0.5 29 .2 28 .2
0.4 39.9 2.4 0.45 40 .3 38 .8
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and7.4 MeVrespectively . The errorin the E(p) of our calculation, as estimated from
the magnitude of Wd, is -0.4 MeV at p =0.3 fm-3 ; it is much smaller than leading
terms in the energy such as W., but it is still of the same order as the net gain in energy
due to f

The authors wish to thank Dr. B. D. Day andDr. J. C. Owen for communicating
their results to us .

Note added in proof: Recent calculations of the Reid andBJ vs models by Lagaris
andPandharipande indicate that the difference between the vb andvs model energies
is much smaller than shown in fig. 5.
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