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ABSTRACT

The determination of the nuclear hamiltonian is a prerequisite for
the developﬁent of a microscopic theory that would explain the étructure
and the properties of observed nuclei and neutron étars. The mclear
hamiltonian may contain terms associated with two, three and in general
with mdany particle interactions. In principle it may be possible to
derive the nuclear hamiltonian from meson theory (or quark theory if
necessary) by eliminating all except the nucleon dégfees of.freedém.

Since even tﬁe two-nucleon interaction is not completely understoéd from
this fundamenfal point of view, the construction of ﬁhe nuclear hamiltonian
at present must be cérried out phenomenologically.. By studying the
properties of two nucleon systems, we obtain realistic models of the
two-nucleon interdction in the nuclear hamiltonian. Properties of bound
states of maﬁywnucleon systems need to be studied to obtain information
about the three and more nucleon interaction.

In this thesis we firstlreview some of the theoretical methods
designed to'ﬁan&le the nuclear matter many-body problem. The emphasis is
put on.the variational theory developed by Pandharipande and Wiringa. This
method treats the so called Ve model, in which the two-nucleon interactioq
is assumed to héVe only central, spin, isospin and tensor components, and
thefe are'qo many nucleon interactions. This model is not realistic; it
does not.fit most of the experimental data. Howeve£ the solution of the
Ve problem isrthe basis on which a more complete theor&, capable of
handling the realistic two-nucleon potential models ¢an be built.

A realistic 14 model of the two-nucleon interactibnlié obtained by

fitting the avaiiable two~body data in §, P, D and F waves. This inter-



action has terms that are linear and quadratic in spin orbit and
quadratic‘in'tﬁé relative orbital angular momentum. Tﬁe variational
theory is extended to treat this realistic interaction model and nuclear
matter properties are calculated with it neglecting many-nucleon inter—
. actions.

The results of these calculations show that the empirically known
properties'bf nﬁclear”matter, such as its ground sfaée energy, equilibrium
density and compressibility, cannot be explained byrthis nuclear
hamiltonian thét incorporates only two~body interactions. Results obtained
with other‘fealistic two~nucleon interactions also fail to reproduce the
empirical nuclear matter properties. Hence we postulate a form for a
threewnucieon'interactién (TNI), inspired from the meéon theory of nuclear
interactions. Instead of attempting to develop a variational théory'to
treat TNI miéroscopically in nuclear matter, we parametrize'the.effect of
TNI on the energy of nuclear matter with three parameters. These are
varied to oﬁtain the empirical energy, density and compressiblity Qf nuclear
matter. The results of our calculatioms show that the TNI contribution to
the energy is much smaller than that of the two-body Vi4 interaction, as
expeqted, and tﬁus it may be reasonable to neglect four and more nucleon
interactions in the nuclear hamiltonian.

The effective nuclear ﬁamiltonian obtained in this work may be used
to study the eqﬁation of state of hot and cold nucleon matter, the structure
of neutron stars, and the volume part of the nuclednunucleus optical
potential. In the last section, the variational method is extended to

study, with this hamiltonian, the equation of state of asymmetric matter.



The calculated symmetry energy 1s in reasonable agreement with the

. e >4
empirical data, and it is shown that the (ﬂﬂ-%)n‘ terms in the expansion

of the energy of asymmetric matter are small.
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I. INTRODUCTION

A. Nuclear Matﬁer

In the course of attempting to develop a theory of observed nuclei,
as a first step one considers nuclear matter (NM). ‘WM is a fictitious
infinite and gniform system of neutrons and protons interacting in the
absence of the Coulomb field.‘ It is thought to approximate the conditions
in the interior of heavy nuclei. TIf the number of néuﬁrons equals the
number of protoms in the system, it is called symﬁetric NM, otherwise it
is referred #o as asymmetric NM, which is the more general case.

The aim of the theory is to develop a reliable method to calculate
the empirically known properties of NM, such as the ground state energy
per nucleon,'the equilibrium density, the symmetry energy, the compressioﬁ,
modulus etc., s;arting from a microscopic nuclear hamiltonian, and to |
provide a starting point for a microscopic theory 6f finite puclei. Once
a reliable many-body technique is deviced it can alsé be used to test the
various models for the nucleon-nucleon (N-X) interaction, andrto study
the properties of neutron stars, the only really extended.system known
to exist.

NM is cﬁaracterized ﬁy its energy and the equilibrium density. The

semiempirical mass formula for the energy per nucleot:

2 2
E = ~ay ¥ “2&}&;’) boa a3 g 38 g2,

1 3 < - (1.1)
)

shows that in the absence of Coulomb forces and in the limit A»« the
energy per nucleon of NM is determined by the volume and the symmetry
terms o and az} Tﬁpical valuesl) for a, are 15~16 MeV and 28-40 MeV for

Coye The equilibrium density extracted from electron scattering experiments




is about .15-.16 nucleons/fmg.
A good theory should be able to calculate the equatlon of state
= E(p,B) (B being the symmetry or polarizatlon parameter g = wa—))
from any given hamiltonian. For p=0 (symmetric NM) the occurrence of a
minimm in E = E(p,B=0) will indicate both the aquiliﬁrium density °q
and the ground state energy 0, Per nucleon.

The symﬁetry energy is obtained from:

2
e 38 B=0sp=p_ -
The compression_modulus:
2 -
k=9p " E(p28~0) (1.3)
3p p=0_ '

can alsb be calculated from the equation of state. Empiricallyz) K ia
belleved to be in the range of 210-250 MeV.

In prlnclple it should also be possible to calculate many other
. properties of interest, such as the surface energy cgeff1c1ent Cas the
effective mass m*(p) etc., from the nuclear hamiltonian. However in this

work we study only the E(p,B)-

B. Theoretical Approaches

The three primary techniques for solving many-body problems of the
nature posed by NM or liquid helium are Monte Carlos) solution of the
Schrﬁdiager equation,'Brueckner—Bathe—Goldstcne (BﬁG) perturbation

7-10) These three approaches

theory,a’s’e) and the variational methods.
differ 81gn1f1cantly in their goals, strength and limitations.
The Monte Carle method calculates the ground state energy for a

finite aumber of particles in a box with periodic boundary conditions



subject only to statistical sampling errors. To date, however, it has
only been implemented for bosons, interacting with central two-body
potentials. Hence it will not be described here.

12)

The BBG approach originated by Brueckner et al. and formulated

- by Golds tonelB)

is a low density expansion whose convérgence properties
are still not rigorously established. It may be useful at NM densities,
but its application to denser systems, like liguid helium or‘neutron star
matter appears to be very difficulr.

Variatioﬁal theories do not have the density limitations of the BBG
theery; on the‘other.hand they have the d;awback-of‘calculating an upper
bound and not the actual ground state énergy itself., It is believed,
however, that physically sensible trial wavefunctions will yield a bound
reasonably close to the true minimum. Variational theories were under

intensive development during the last few years, and by now the technical

difficulties of the calculation seem to have been overcome.

C. Brueckner-~Bethe~Goldstone Perturbation Theory

The hamiltonian is written in the following fashion:

= + .
) H HO Hl (1.4)
where: (Ti == Vi denotes the kinetic energy operator)
Hy = Z(Ti +V) o, (1.5)
i
i, = .Z, Vig T gvi . , (1.6)
i<j i

The one-body Schriidinger equation:

(T + V)¢ = (1.7)

Pk

defines the single particle energies e, and wavefunctions ¢k. Define

k

the many-body non-interacting and interacting ground states and'energies



as:

HO|¢> = E0l®> s

B> = (B + AE) |9> .

Goldstone's theorem states that:lB)

= . -
'¢> l(I)} HO“EO Hllqj> *

with

Q =1~ |o><¢|

AE = <@ |H |p> .

One consgtructs the‘tw0mbody‘réaction matrix:

<klk2|v§k'p'><k'p‘lG|plp2>

<k, k,|6]pyp,> = <k;kylv]pip,> - ]
1 2 l 2 l 2 l 2 k'>1{F Ek' "i“ E:p' - Epl - Epz

p'rky
where:

* ® 3 3
5J¢kl(rl)¢k2(rz)v(rl,rz)¢Pl(rl)¢p2(rz)&rldrz .

<kyky[vipypy?
The usual Hartreée-Fock choice for the one-body potential is:

<k|V|k> = ) [<kk'lv|kk'> - <k'k|v]|kk">]
k'<

(1.8)

(1.9

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

12 R . ; . .
Brueckner ) replaced v with the reaction matrix G in the matrix elements

of (1.15) to obtain the one-body potential in equation (1.5). TIf one

defines the two-body "uncorrelated" function
1T, = -
| mglygky)ery,
4107 ®

and a two-body correlated function as:

V¥yp = G4y

(1.16)

(1.17)



then tﬁe "wound integral' «:
2 3 ‘
K “’Il“’lz“‘*”lzl dry, | (1.18)

estimates the probability that there Is am unoccupied state below the

Férmi surface. At NM density, with the Reid potential,la)

15)

K o= .15,
Brandow has given arguments indicating that the contributions of BBG
diagrams may be classified in powers of k by the number of independent

hole lines. The ground state energy up to two-body level is given by:

E=T, + %— T [<kk'|G]kk'> - <k'k|c|kk'>] (1.19)

; k(kF
k' <kF
where T, is the Fermi gas kinetic energy.
The contribution of three-body clusters is much more difficult to
calculate,‘sinqe in this case one obtains the required G-matrices by

16,17) Daylg) and otherslg)

solving three—bod? Fadeev equations. have
also approximatély egstimated the contribution of four~b0§y clusters,
without solving the necessary four-body equations, Their results indicate
that thaAhole—line exﬁausion converges roughly in powersof ¥, However K

increases as one considers three and four hole~line diagrams as well as

+it increases with p, a fact that limits the method to low densities.

7)

D. The Variational Theory of Jastrow
The variational wavefunction in this theory ¢J is taken to be of the
form:

by = 'H.fj(rij)@(p) . C(1.20)
i<j

The fJ is simply a function of the interparticla distance r and is usually

parametrized in some way. The parameters are then varied to minimize the



variatiocnal energy EJ,

<ijH|¢J>

EJ WW - ) (1.21)

The minimum of EJ gives an upper bound for E. E. can be evaluated exactly

J
with a Monte-Carlo integration. It can also be expanded in Mayer—cluster-
diagrams which can be summed with chain sumﬁation techniques. The most
popular technigue uses the method of hypermetted chains (HNC). This methodl
was de#eloped by van Leeuwen et al.ze) for Bose syétems and was extended

21)

by Fantoni and Rosati for Fermi systems (FHNC). HNC calculations in a

wide variety pf simple Bose systems by V. R. Pandharipande and K. E.

Schmidts) Shbw excellent agreement with the exact Monte~Carlo integrations.
The basic shortcomings of the choice (1.20) for ¢J are that it does

not allow for momentum dependence appropriate to interaaﬁing systems, the

complicated operator dependence indicated by the N~N interactioms, and

does it allow for three or more body correlations. However, the simple

Jastrow studies have been useful in providing a starting point for other

more sophisticated many-body techniques one of which is described below.

E. The Correlation Operator Methodg)

In this method the trial wavefunction hasz the form:
y=[si® F.,Je. (1.22)
i<j 4]

The presence of the symmetrizer S, is required because in general the

two-body correlation operators Fi and ij do not commute. The form of

3
the correlation operator is dictated by the interaction Hamiltonian.

The N-N interaction has strong central, spin, isospin, temsor and spin

orbit components, and hence one expects that the correlation operator,



appropriate for NM calculations, should also display a similar structure.

It is taken to be:

8
F.. = ) £, )oP, (1.23)
i3 o a0
p=1,8
where the operators 012 are:
p=1,8 -
%12 1:919,712,%12%12, 512, 512712, P12, P12 712 (1.24)
> e
Upp = 010, , Tig = T1°Ty » (1.25)
3G, *T, 0. °F
C2%12% M1 e
t12 = rz - 0y°0, s (1.26)
12
b, =% (3.4 i (1.27
12 =3 (o719, 12 ° - .27)

Here G and ?:are Pauli matrices for spin and isospin respectively and le
is the relative orbital angular momentum between particles 1 and.Z.

In principle the £P's should be determined by minimizing the energy
expectation valﬁe:

<h|H| >
E = ST (1.28)

However, in practice the P15 are described by a few variational parameters,
such as d, dt, o, which vary the range and the strength of the correlations
and the energy expectation value is minimized with respect to variatioms in
d, dt;u. |
Bethezz) suggested in 1977 that the many-body theory of NM should

be developed in a series of steps by considering homework potentials that



successively incorporate more and more sophistication. Pandharipande

and Wiringa in a series of paper323-26) carried out the calculation for

the so called 66 problem. This is a homework problem in which the N-N

p=1,6
012

of (1:24). 1In their work, the correlation operator is chosen to have

interaction is truncated to include only the first six operators

the same operatorial structure with the potential, i.e.:

6
F,. = ) £P(r, 0P, . (1.29)
S 137713 ‘ ,

An overview of the operator correlation method as applied to Ve models

is given in Section 3. 1In the present work, the correlation operator

method is generalized to treat the Vg homework problem. In this problem

p=1,8
012

does the correlation operator, which is then given by (1.23). Additional

the potential has the eight operator components of (1.34) and so
techniques necessary to treat the spin-orbit operators have been developed
and they afe presented in Section 3, along with the details of the many-
body calculation. Realistic potential models have additional operator
components and they are treated semiperturbativély as presented in Section
3.

The maﬁyubody theory as formulated by Pandhafipandé and Wiringa is
capable of‘treating'symmetric NM, and neutron matter. This theory is
extended to handle the more general problem of asymetric NM. This is
considered in‘Section 5, where the equation of staté;for asymetric NM

is obtained and the symmetry energy is calculated.

F. Comparison of Results Obtained with Ve Models

At this point it is appropriate to compare the results that different

many-body approaches yield for the Ve homework problem. The equations of



state calculated with 1) the Brueckner—Bethe~Goldstone (BBG), perturbation
theory, that includes two, three and estimates of four body cluster
contributions to the energy, {i) the correlation operator method with

the symmetrized product prescription (sp), and iii) the theory developed
by Owen,27) denoted by (IP), are shown in Fig. 1. Owen's theory uses,

the so-called independent pair wavefunction (wIP) which is given by:

.
pooo= £, 01+ Jou,, + 1 vt +...10 (1.30)
P 1<j ij i< i3 i<3,k i k2
k<2
where:
P cr yioP
w.. = TP O/E (0105, (1.31)
i3 p>1 ij ij ij
The SP wavefunction contains terms guch as‘i- z {u,.,u, ] which are
2 15k 13’ ik

absent from‘QIPf The lack of these terms in wIP makes the evaluation of
the Hamiltonlan expegfation value a lot easier.

Figure 1 sbows that the IP curve lays above the BBG and the P curves.
This is to be expected since the @IP is physiéally less plausible. It
has been shown by variational calculations for the ground state energy
of the 3H nﬁcleuszg) thaf the use of the independent pair wavefunction
yields energieé'nlS% higher than those obtained using the symmetrized
ﬁroduct wavefun;tion. it seems that BBG theory and-the.SP variational
theory for fc:he'_'v6 pfoblem are in excellent agreement. _ The error in the
BBG calculation is & 1.5 MeV at kF = 1.6 fmﬁl. The error in the 5P
calculation has two origins. The error in the calculation of the emnergy
is + 1 MeV at‘k,F = 1.7 fm-l. lﬁowever wSP i{s not general enough, for
example, it does not contain many-body correlations, so it only yields

21)

our upper bound, which could be about 1 MeV above the true minimum.
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G. The Nucleon—Nucleon (N-N) Interaction

To our present understanding the N-N interaction has a long range
part which is quite well described by the one pion exchange (OPE) process,
an.intermediate range part that is argued to result from the two-pion
exchange (TPE) process Witﬁ nucleon resonances as intermediate states,
and a short raﬁge part about thch very little is known. In most cases
it is treated ﬁhenomenologically. Meson theories tend to attribute this
part to the éxchanges of heavier mesons (p,w); also it is conceivable
that this short range part is influenced by the quark‘structure of the
nucleons. ﬁowever neither meson theory nor the theory of quantum chromo-
dynamics haéjbeéﬁ sﬁccéésful-iﬂ.modeliﬁg the N-N énteraction, 80 at présent
one must resort to phenomenological potentials that fit the experimental
data and are consistent with our fundamental knowledge of strong inter-
actions.

A gimple apprbach to construct potential models has been followed

by Reid.lA)

He decomposes his potential in J, T and S channels, where
J, T and S are the total angular momentum, the isospsin'and gpin of the

interacting pair of particles. For S$=0 his potential is simply a function

of the interparticle distance r for every J and T.

vlz(J=L,T,Sm0) = VJ’T(rlz) . (1.32)
In $=1 channels his potential assumes the form:
v (J,1,8=1) = vS _(r,) +vE (e )t +vD (r )b (1.33)
iz J, T 712 J, T 127 712 J, T 127712 '

The varjous v's are parameterized and these parameters are determined by
fitting the available experimental data channel by channel.

Alternatively the potential may be written as an operator:
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8 2 z2 2
V., = Z Vp(r )0p + ... other terms {(L°,(L*S)",V ,...) . (1.34)
127 LY e

The existence of the first eight operator components is uniquely.
indicated by the two-body scattering data, while the "other terms" are
not. They may be chosen in many different ways. In this approach one
congiders the four (T,$) channels, and the data for all possible J values
belonging to a T,S channel, are fitted simultaneoﬁsly.

Variational many-body theories, by constructiomn, need the operator
representation of the N-N interaction in order to perform calculations.
On the other hand BBG theory calculations use the N-N interaction in
J,T,S channels. The advantage of the operator representation is that it
can always be trivially decomposed in J,T,S channels and hence is employable
by both theories. The channel representation canﬁot'always be trivially,
if at all, converted to an operator form.

In Section 2 we present a Vi model obtained from the Reid potentials
in T,8,J channels. In addition to the standard eight operators of (1.34),
it includes four L2 dependent terms, denoted by:

p=92,12 _ (1.35)
019 = 939°9129192°912712°912%12712

where 495 is a shorthand notation for the L%z operator.

This model does not fit 3D2 and °F phase shifts quantitatively,

»3 J
and so it is not very realistic. A realistic model, known as the Paris
. ST . . 30)
interaction, was obtained by the Paris group. Unfortunately, as

reported in Section 2,it is very difficult to treat it with our variational
~many-body th@éry. In the course of this work we constructed a realistic
Vi potential model convenient for variational many-body calculations.

This model has in addition to the twelve operator components of the V19
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model, two quadratic spin-orbit terms:

oP=13,14 _ 2 2

12 = byyePi0Tse - (1.36)

Tt fits the scattering data in S,P,D and F waves up to 425 MeV. It is

digcussed in Section 2.

H. Three Nucleon Interaction (TNI)
The possibility that there are many-body forces between nucleons was
proposed almost as soon as the meson theory of N-N interactions became

31)

known., The subject was developed in terms of meson exchange theory

in the 1950"'s and saw a revival in the late 1960's with the realization
" that current algebra techniques could be applied to the problem.Sz)l

An N—bddy potential is a term, in the potential energy of ¥ bodies,
which is an irreducible function of the coordinates of the N-particles.
Irreducible in the sense that it cannot be written as a sum of functioms
of the coordinates of less than N particles. Naturally the case of three~
body interactions was the one that attracted the most attention and effort.
Some plausible processes that lead to a thrée—body potential are mentioned
in Section 4. Microscopic MM calculations involving thfee—body terms in
the nuclear Hamiltonian have been performed in the past, most of them in

33)

the framework éf Bruckner theory. In these calcﬁlations the THI is
treated essentially in first order perturbation theory.

The results of ¥M calculations with realistic models given in Section
3, indicate that the two-body interactions alone are incapable of repro-
ducing the empirical properties of MM, and that many-body interactions
should be included in the nuclear Hamiltonian. This indication is also

29)

supported from studies on light nuclei, where if oniy two-body
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interactions are considered, it seems to be impossible to explain their
density distribution.

Tn Section 4, we parametrize the effect of a TNI on the NM energy,
and adjust the parameters so that the ampirical eqﬁation of state is
obtaine&. Techniques required to treat the INI in a non-perturbative,

variational microscopic calculation are still under development.
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II. THE v, POTENTIAL

Recently we constructed a realistic potential to model the N-N

interaction. Our goals in constructing this poﬁentiai are!

i)} To obtain an interaction operator that fits well the data,
and that is simple enocugh for variational many-body
calculations.

ii) Since such a potential is bound to have more than the
stéﬁ&ard eight operator components, The terms associated
with 0P”% should be weak, so that they can be treated semi-
perturbatively.

iii) The tensor part of this interaction should be weaker than
‘that of the Reid potential. This is indicated from the
analysis of the deuteron photodisintegratioﬁ experimental

data.33)

This potential is written as:

14 :
P r
v.. = )} v (r,,)05. (2.1)
L B~ 137743
where vp(rij) are functions of the interparticle di$tance‘ri. and
0?;1’14 are the operators given by equations (1.24), (1.35) and (1.36).
The two nucleon interaction is written as:
: T4 P P P P
Vi = pgl (vﬂ(rij) + VI(rij) + vs(rij))oij . (2.;)
. . p 34) .
The one pion exchange potential (OPEP) vw(rij) is non~zero only for
p=gt and tT: o e“'7r _crz |
Vﬂ (I‘) = 3,488 '—'—":7‘; (1—e ) (2.3)
tT 3 3 ew°7r ;crz 2
v, (r) = 3.488 (1 + 5 + ) 5 (L - e ) (2.4a)
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= 3,448 Tﬁ(r) . (2.4b)

The 1/r and l/r3 singularities of the OPEP are removed, and the cutoff
parameter ¢ is determined by fitting the phaseshifts. Green and

. 22 .
) have recommended the (1_e—cr ) cutoff arguing that it

Haapak09k135
simulates the effect of pwexchange interaction. We have cutoff the
Yukawa shapped viT(r} purely because the quark model suggests that the
nucleon is not a point source, and so the two-nucleon interaction should
not have a 1/r behavior at small r.

The v?(r) is attributed to two-pion exchange (TPE) processes with
nugleon isoﬁafs in intermediate states. The tensor part of the OPEP is

much stronger than the ot part. So the radial dependence of the TPEP

should approximately be given by Ti(r) and we take:

) = P | - (2.5)

This choice of vy also makes it simpler to introduce effects of three
nucleon interacﬁions, as discussed in Section 4. The strengths P are
determined by fitting the phase shifts.

Traditionally the short range interaction vg<¥ij) is attributed to
w,p exchange, and taken to have a Yukawa shape. However, gince the
Believed size of nucleon is at least of the order of the Compton wave
length of w and p mesons, the Yukawa shape will be very much modified.

Hence we take the vg(rij) to be a sum of two Woods—Saxon potentials:

vB(r) = 8% w(x) + 8P W () (2.8
W) = (L + exp((r-R)/a) 7, 2.7
W) = (1 + exp((r—R')/a'))ul-.- (2.8) ‘
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Tt is possible to obtain reasonable fits to the scattering data with
S‘p‘= 0 for all p except b and br. The spin—-orbit potentiai in T=1
states has to need a smaller range than that of thé central core to fit
the scattering data. Hence we need the W'(r) terms for p=b and br. We

note that the parameterization of our interaction has gimilarities with

36) 37)

that used by Hamada and Johnston and by Brussel, Kerman and Ruben.

The values of the parameters are determined by fitting,tﬁe neutron-—

proton phase shifts obtained by Arndt, Hackman and Roper38) by energy

dependent analysis. Consideration was given to 1) phases obtained by

39) of

40)

‘energy indépendent analysis, 2) a more recent analysis by Arndt
El in 381—3D1 chanpnel, and 3) the recent analysis of Bugg et al.,
particularly in regions where energy dependent and independent analysis
give differeﬁt phases. The phase shifts up to 425 lab energy ére fitted;
not because we believe that a nonrelativistic model is adequate at such
energies, but because if one wants to correct for effégts of relativistic
kinematics4l) it may be useful to start from a nonrelativistic potential
that indeed fits the scattering data.

There is some evidence that the N~N interaction has a charge
dependence. Since nuclei generally have more neutrons than protonms,
and neutron stars have mostly neutroms, it may be better to fit the T=1
interaction to n-n data. However, n-n data is nonexistent, and so we

fit the n~p'data. The 3He-3H mage difference suggests that the n-n

) C s . . 42
interaction is a little more attractive than the p-p, ) and the n-p
scattering data also suggests that the n~p interaction i a little more
attractive than the p~p. From a practical point of view,one does not

have to compute Coulomb functions for fitting the n-p scattering.
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In the singlet channels, the Vi potential takes the form (we use

Vo g to denote potentials in states having pair isospin and spin T,8):
¥

- p s P .
vpo = L (SR NG IR 1 @NOP 4w os (2.9)
P=c,q
whereas in triplet states:
P P oy P w20 yy0P
v, . = ¥ (sP w()+s P W ()+IE [ TO(r))0F . (2.10)
T,1 p=c,t,b,q,bb T,1 T,1 Tyl m,T,1
The strengﬁhs sP s!P? and 1P _ are determiﬁed from the fits, the sP
T,8* "T,8 7,5 ? *

s'P and 1P are trivially obtained from these. The Sg S and Ig g are
3. »

given in Tables I and II, while the complete list of parameters along
with SP and 1P ié given in Table ITI.  The 1P and sP for P = ,99,47,407,bb

and bbr are much smaller than those for p = ¢,0,T and or.

We compare our phase shifts with those given by the Paris potential,BO)

Reid vy and {(Bethe Johnson)so) Bi~-1IT v

2 12

models. The Paris potential
has a theoreti&ally plausible two-pion exchange contribution, which we

have approximated by v?(r)op. The Reid and BI-II Vg models have their

1, 3 3 1, 3,3

0° 1~ Py» 1° Pz“ Fz potentials in T,S = 1,0;0,1;0,0 and 1,1 states,
whereas the V1o models have:
R & 1 1
Vl,O = v SO) + g‘(v(lDz)-v( SO))Oq s (2.11)
P R ) 1 1 1
Vo,1 = VOS;=Bp) +5 (v(TDy) -v( 50 (0% +20°) (2.12)

Voo © v(lPl) . (2.13)

L]
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Table 1

Potential strengths in singlet states (MeV).

| P P P _ P
P 51,0 51,0 $0,0 To,0
c 2000. -6.255 8700. -13.2
q 49. o  -500. .6

h Table 1Y

Potential strengths in triplet states (MeV).

1 Son B1 S s
2400, . ~6.8009 2145. 0.
0. 0. .75 0. 0.
80. 0. 0. 0.  -2200.
380. 0. | 6.  -20. 0.

“230- ’ 0. "“02 14705 Oc

20

1,1
-4.32
- .18 |

0.
0.

0.



Parameters of the V14

o1

tT

bt

qo
qrt

qot
bb

bbt

e = 2 fm

P

-5.7030
. .7628
.8992
- .2790
0525

- 2325

.0375
- .0375

.0375

.05

2

Table IIT

R=.5fm
’ R'.:‘ -36 fm

gP

2575.3
- 366.56
|~ 466.56
402.81

0

0

20.

- 20.
37.938
42.063

- 40.688

- 59.313
53.125

94.375

two-nucleon interaction model.

a®= .2 fm
a' =..17 fm

gtP
0
0
0
0
0

0

-1650.

- 550.

o o o 9«

21
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3.3
vl,l = v Pz— ?2). | (2.14)

. 1 3, 3 L 3.3
The Vg models f}t the SO, Sl— Dl’ Pl and Pz— F2 phases,; the Vi

models fit these, the lDz, and give a reasonable value for the weighted

average of 3D pﬁases:
s 3oy = 1363, + 56(°n,) + 78¢D)1/15 (2.15)
av 1 2 3 ’ *

The operator (0ci + ZOb) in Eq. (2.12) gives a zero when operating on 381

and 3D1 states, and thus the 381-3D1 interaction is unaffected by the

added term.

Figureé 2-4 show the potentials in T,S channels_and'compare it with
the Reid viz in a couple of cases. Figures 5-20 show the AHR (Arndt,
Hackman and ROper)BS) energy dependent n-p phase shifts by solid lines
and energy depenaent p~p phase shifts bf dashed lines.r The Arndt39)
energy dependent El is shown in Fig. 6 by a broken line. The phases
obtained by energy independent amalysis by AHR and by Bugg et al.AO) are
respectiveiy shown by I, and $. In T=0 ﬁhannels these are n~p phases,
while in T=1 cﬁannels they are p-p. The phases calculated with the
present, ?aris, Reid Vip and BJ-TIIL Vi potentials are shown by +,+,x
and o respectiveiy. Note that the Péris, Reid and BJ potentials are
fitted to the p-p phase shifts in T=l states, while ours are fitted to
the n~p data. fhe:e is a'véry sizable difference between the-n—p and
PP 1SO phases at high energy.

The central potentials in T,S channels (Fig. 2) have the familiar
shape. The v® in 0,0 states does not become negative like Reid's (Fig. 2).

" The Reid (lPl)‘potential gives very bad phase shifts in the 1F3 state

(Fig. 20) and thus is not a proper representative of the T,S = 0,0 inter-
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. R . c .
action. Also note from Fig. 2 that the v in 0,1 states is almost but
not quite as attractive as that in 1,0 states.
The tensor potentials are much weaker than Reid's particularly at

r ¢ 1 fm. ThéyAare given by a sum of two terms:
v =1t Tz(t) + 3 458 (41T-3)T_(r) |
T,1 J1m : 7 ’ (2.16)

and Tﬂ(r) is linear in r at small r. The two terms 6f‘v;,1 héve opposite
signs, and so the v;’l have an unreasonable peak at v .2 fm. This peak
is purely dué to our choice of cutoff and should not have any physical
significanée; neither does it have any effect on the two-nucleon inter-
action. The Reid V1o potential has a very sﬁrong tensor force as can.ba
seen from the 3D1’ 3D2 and 3D3 phase shifts shown in Figs. 7-9. The
tensor force is attractive in 3D2’ while repulsive in‘BDi and 3D3 states.
The f-g interaction (Fig. 3) in T=0 states is weak, while that in
T=1 states is comparable with Reid's. The BJ-II V19 potential has a very
strong E-§ interaction in T=1 states, and it fails to explain the
scattering data in BPO and 3P1 states (Figs. 12,13). The Reid.vg, Vi
models also do not explain 3P0 and 3Pl phases very satisfactorily. The
range of the T8 potential in T=1l states has to be shorter than the
rahge of the repulsive core in T,S = 1,1 states to i)} reproduce the 3P2

phase shift (Fig. 14) at higher energies, and ii) to prevent the SFA

phase (Fig. 17) from becoming too attractive at E " 400 MeV.

The LZ and (f-g)z potentials are shown in Fig. 4. In triplet states
the v% g and vgbs have opposite signs, and they cancel substantially in
¥ b

the J = 2+ 1 channels. The‘vg 1 and vgbl are needed primarily to
2 L]

reduce the large attractive phase shifts in 3D2 without making the 3Dl
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and 3D3 phases very repulsive. The v% 0 is well determined by the 1D2
L
phase (Fig. 19), and it is quite small. In principle the 3F phases

could determine the vo . and vbb , but the data on 3F and 3F phases is
1,1 1,1 2 3

rather poor. Fortunately the v% 1 and v?bl appear to be very weak. A
L) »

relatively substantial vg 0 is needed to fit the lFB phase (Fig. 21},
. ‘

however the data here is not too good.
The data'qﬁ El (Fig. 3) is also poor. If we had chosen an even
weaker tensor force in T=0 states, the El would have become smaller, and

- the 3D phases could be fit with weaker v®  and vbb

0,1 0,1 Thus El plays aﬁ
important role in deducing the interaction operator from the scattering
data, and a better measurement of it will be most wéléome.

In general our phases are not too different from those given by the
Paris potential. We seem to do a little better on the spin singlet

3D and 3F states 1s not

states and the 3? states, while the data on
accurate enough to choose among the two models. Howeﬁer, it must be
noted that the Paris potemtial is fitted to the scattering data itself
whereas ours is fitted only to phase shifts.

The contribution of A (33-resonances) to 1% can bé estimated in the

43)

closure approximation. It comes out to v -2, whereas the 1% in our
model is ~5.7 (Table ITI). Hence it is suggested that the A's provide
only a third or so of the intermediate range attraction. The rest of it
must be fromrother resonances, and the w—n interactions} However it
should be pointed out that 1€ is ﬁot uniquely determined by the data.

It is possible to make substantial correlated changes in the parameters

C

17, ¢, R and s¢ which leave the phases relatively unaffected. The values

of Ip%c are much smaller than IQ in accord with the isobar model.
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The calculated deuteron energy, quadrupole moment, D-state
probability, and the asymptotic D to S-state ratioéA) are given in
Table IV, along with their experimental values, and those obtained with
the faris and Reid models. Thanks to the weaker tensor force the‘D—state
percentage is small, but not quite as small as suggested by the photo-

45)

disintegration data. The quadrupole moment and the AD/AS are both

on the lower side, but within experimental limits.
In Fig. 21 we compare the calculated deuteron structure function

A(qz) with the EXpermant’46,47)

and predictions of Paris and Reid
models. The Az(q) is underestimated by ~ 10% at q2 = 6 fmuz, and by
~ 33% at q2 "~ 20, Of course there is no reason to believe our non-
relativistic calculation at q2 z 10,

The "dipole" approximation:

Fo(q) = 1/(14-aq2)2 ; a=.055 fm-g ' : (2.17)

is used for the proton form factor in the calculation of A(qz). Using

the more realistic Fo(q) of Blatnik and Zovko48)

will increase our
Az(q) in.the q2 = 20 fmm2 region by a few percent.

Instead of taking into account the nucleon isobar degrees of
freedom by an effective intermediate range attraction vg(rij)ogj if
they are explicitly included in the deuteron wave function, the A(qz)
will probably be a few percent larger in the q2 A~ 10 fmf3_region.49) It
is also likely that the meson-exchange-current (MECY contributions will
increase A(qz} somewhat.

Both Paris and Reid potentials do better on the A(qz < 20 fmuz),
probably because they have somewhat stronger tensor force than ours.

45)

However, the deuteron photodisintegration dataé4’ supports a tensor



Table IV

Deuteron Properties

Present Paris Reid
E (MeV) ~2.225 ~2.225 -2.225
Q (fm2) 0.273 0.279 Q.280
D"’State (%) 502 5-8 . 6.5
| 0.0247 0.0260 0.0262

ap/Ag

Expt.

"2.224
0.278 + .008
‘< 57

.0263 + .0013
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force that is even weaker than ours (PD < 5%). It appears to be rather

difficult to simultaneously obtain i) the correct 3DJ phases with weak
q bb - 2 -2 o g

v and vo-,, ii) the correct A(q” < 10 fm °) and iii) a P < 5%. In
0,1 0,1 D

our model we have compromised a little on both PD and A(qz) hoping that
igobar and meSohwexchange—current corrections will have some effect on

the interpretation of the electron scattering and photodisintegration

data.
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III. NUCLEAR MATTER CALCULATIONS
A. Euler-Lagrange Equations

Variational calculations of nucler matter generally begin by
defining a set of correlation functions fp(r,dp,a?...) where dp,ap...
are variational parameters. The energy expectation value E(kF,dp,aP...)
is calculated and minimized with respect to variations in dp,ap... .
This approximate procedure ie used because the variational problem
§E =0 with respect teo arbitrary variatioms in £? is too complex.

In practice the fp(r,dp,ap,...) are obtained by miﬁimizing the two-
body cluster contribution of an interaction (v-1)}.. The interaction v is
related to the bare interaction:

= o PP P
V., = ) a'v (r,)ol, , (3.1)
o op=1,14 U

the variational parameters of are meant to simulate the quenching of
the spin-isospin interactions between particles 1 and ‘2 due to flipping

of the spin and/or isospin of particle 1 or 2 by other particles in

26)

matter. The AP(r) are primarily meant to simulate the screening

effects in matter. They are determined by the healing distances a® of
_fp(rij); the dP's are treated as variational parameters.

for the sake of breVity and clarity we use letters c,o0,7, t,b and

t operators 1 S (1+3) a1, so v
q to represent operators 1, oy Oj, Ty Tj, ig° )45 an T ov ,

VOT, vt, vqr, vbb respectively'danote vl, va, v5, vll, v13, etc. In

general minimizing the two-body cluster energy with the interaction v-X

p=1,8 ’

gives eight'cdupled equations for the functions f{ . I1f, however, we

assume that the healing distances satisfy the relations:
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3¢ = d% = 4" = d7 = d, (3.2)
at = gt" = 4, (3.3)
FLIL L a (3.4)

the equations decouple into four sets, one each for pair spin and iseospin
T, = 1,0; 1,1; 0,0 and 0,1. At least in ve models 2+2 is found to be
26)

a reasonable assumption.

It is convenient to define T,5 channel functions:

xp o = X+ (45-3) x° + (41-3)x" + (45-3) (41-3) 27, (3.5)
L]
S . S T I L LY LA L - ro19 407
x% g = i + (4'1‘-—3)1:YT » ¥ = t,b and bb.
i (3.7)
In the above equations x can be v, v or £. The XT S are relevant only
in the S=1 channels, The "uncorrelated d's" are defined as:
¢ e [1ofoi TS 2 ,
q - k22 . 1/2 .
¢T,S(r) = {5k T -nTr rz(kFr)st Cepr) 37 (3.9)
aqg o 12 4 4 2 I+5 1 1/2 (3 10)
N T - kF - (-1 (r nk (kF r) }
L(x) = 3(sin{x) -x ccs(x))/x3 . ' (3.11)

They give the expectation values of operators 1, L2 and L4 with Fermi

gas wavefunctions:

1 P - . L25+1) (2141
'l 1§ij (x, )0 1519 o { ;g )jd3r:&§”s(r)(.¢$,s(r))2 C (3.12)
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Here A is the number of nucleons, and p = ¢, q or qq.
It is simple to calculate the two-body cluster energy C2 as a

sum of four terms, each coming from a T,5 channel:

¢, = E Copg - 7 (3.13)
, > 3> .
The 02 o 2re functions of Gg g and fg g3 P=c and q, and p'=c in 8=0
b -] H

states, while p = c,t,b,q and bb, and p' = c¢,t and b in S=1 states.
Minimizing the 02 T.3 gives us the Euler-Lagrange (EL) equation for- the
LRl |

£6 in singlet states:

T,0 |
2 ‘ c 2 -q c
YA ¢ -1 _.¢ -C ¢ -0,
= [y +,2(¢T’0) v¢T,0-v] Voo T AT + (¢T 9 (¢ VT,O} T,0
(3.14)
and a set of coupled FL equations for the fT 1’ ; 1 and f; 1 in triplet
states:
2 -1 o _,c ¢ \2,.0 12,08 42 PP 3¢S
I R LR R PR R RTIA R fop, 5 Tr)
i 4 t ¢ -2, 9 22 _bb ft
+H8y g - Ap ) 7 (8py) 0" 3,0 51,1
2 _b » _1:b c 2,.9 Zfb = 0
2 c =t t
2 c =l,.e _ 6 = - by 3w
- Bt e 200 )0y 1::z] *Ip1 " M1 " 2017 7,1
54 PP el 35 q 2, .t
+ 6V Vel +'9VT 1 +{¥ T 1 + e v )(¢T 1 (éT,l) }fT,l
bb c
-t t 1 ,c y=2,.4 1f
# vy Mpa 13 O Yo )? I,
2.b ' | (3.16)



g .
e B2
(== (v +2(¢ )

G

b b
- (VT,l AT,l

P
The AT s

FPor the sake of brevity we assume dtzi db >

q =2,.499 \2,-q
r,10 (5 ) (g g #
-'Zv

are chosen to satisfy

71

_V¢r R AR PERMIEE

_bb )}f

“bb . Lt _
) fT,l =0 .

T,1 L17)

the imposed constraints on the fT gt

C . - .
£r g =1, (3.18)
(Ed) =0, (3.19?
£ (rxa ) =0 (3.20)
7,874 . :

dc,‘a condition satisfied

by the equilibrium values, and obtain:

(r:’d R -5 (¢T,1)_2§¢§,1)2 > 3.2
Ag,l(r=>db) - Gg,l 2 L PPy £t )(1 £t (3.22)
Mg 1 (T2d) =y o+ (o ) 23 2R + 5 W) +8 Gy - Ap I

- %(eb;,l)'zc.ab BEE LA ca?;"l - *2,1 ER f";’l} (3.23)

or>d) = vT + (¢ (¢%,0)2 G%,o . (3.24)

The Ag’s(r<d ) are constants chosen so as to make the gradlents
f;?s'* 0 at‘r = dp

The nuclear-matter E(kF,dp,aP,;.

with respect to variatons in

L) is calculated and minimized

dp,up,... The unspecified variational

parameters cdﬁld.be the 8° used in ref. 9 or any other relevant choice.
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B. Cluster Expansion of the Energy Expectation Value

Pandharipande and Wiringag) (PW), have derived a diagrammatic

cluster expansion for the expectation value of the energy:

J;&(gqs:)ﬂa{!bibm ST ap] (10,040

(3.25)

|

* +
yﬂ(g¢a)s[angab] s[aEbFab}(g¢a)df

where for simplicity they antisymmetrize only the left hand side w*.
Since for an infinite system the exact evaluation of (3.25) is impossible,
it is approximated by expanding the HFz in the integrals in the numerator
and denominator, in powers of the short range functions:

pPL | ggP € g P21 £97L

12 = 7l Ty 12812 12 (3-26)

This expansion can be represented by generalized Mayer diagrams using
the elements shown in Fig. 22. The elements 1-3 represent "passive"
correlations;'while elements 5-9 depict the operation of H. The inter-
action line 5 includes terms in which Vi and Vi operate on the Fab' The
derivative lines 6~9 are needed to calculate kinetic contributions
having VaFab;VaFac and vaFab.an'

A typical diagram representing one of the integrals in the expansion
will have points labeled by i,j..., each one standing for the coordinates

> .. . . - > .
r.,rj,..., of particles i,j,... - An integration over all ri,rj,..., is

i
implied. The points are connected by elements ghown in Fig. 22, that
represent the functions of rij in the integrand.

* . ’
Since ¥ is antisymmetrized we need to keep track of the plane

*
wave states occupied by the particles in ¢ . For this we use solid lines
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C
Fab

a
p>l _p
ab Oab_

fqb fub Ooboab

ikg * (rg —1p)
e g @ (fub)

‘p' q ! p ~a 1
fab Hab fab  Oab CabOab
vo ng

p>l . p
vﬁ(Fob oab)

p>| >|
Vs (fap fab Ohp Ogp)
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with difectiops, which are called exchange lines (4th and ch elements

in Fig. 22). By convention the particles 1,2,...,A occupy states
~ik 1
k,,k.,...,k, in . Those terms in the Slater determinant [le a
1°72 a

A

of wk where the particles remain in the same states are called direct,
and their diagrams contain no exchange lines. An exchange line going
from a te b répresents the contribution of a term in w* where particle
b occupies state ﬁa' Since each particle must end up in a definite state,
all exchange lines must join to form closed loops, and only one exchange
line may pass. through any point. The total exchange pattern in any
exchange diagram will consist of one or more exchange loops.

The wavy lines as well as the interaction lines are labeled according

to the operators they carry. The exchange of the spin and isospin of

particles a and b can be represented by an operator e’

e =—};(1+ca + 1 ) . (3.27)

ab b ab + Gab?ab

An n-particle exchange loop is equivalent to a series of (n~1) two~body

exchanges. Thus every such loop has an associated factor of (ml/é)nﬂl,

and all but one of the exchange lines has an gperator label n to represent

ik v

ngs a ab

ab ’

- . . . e .-:» .
over ka gives the Slater function R(kFrab). The VaFac Va® terms in the

0 Every exchange line also has the e factor, which on summing

energy expectation value gives zero contributiom, unless particle a is
N ik Tob
exchanged. When this is the case, we get terms having VaFac-ikae

b4
whose contribution is given by diagrams having the derivative exchange
line. (The 9th element of Fig. 22.)

The contribution of any diagram can be separated into two factors.

>
One is the spatial integral that contains all the functioms Fc, 7P 1,
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f?>1fq>1, vq, etc., denoted by the diagrammatic elements. The other

is the ﬁroduct of the associated operators.

If a diagram contains at least one pair of points such that there
is no path, made up from elements contained in Fig. 22, joining them,
the diagram is said to be disconnected, otherwise it is said to be connected.
A connected diagram that cannot be reduced to a disconnected one by
cutting at a single point is said to be an irreducible diagram; otherwise it
is said to be ;educible,‘or separable.

A connected diagram th%t contains an interaction line or  two
derivative lines is called an interacting diagram, otherwise it is called
non-interacting. Interacting diagrams come only from the numerator of
{3.25) while non-interacting diagrams can come either from the numerator
or the denominator, There.is a countably infinite pumber of diagrams in
each class.

Let [A] be the Ath irreducible interacting diagram and [a] be the
ath irreducible non—interactiﬁg one. By [Aa] we denote the diagram
formed when [A] and [a] have no points in common. Cleérly this diagram
. is disconnected. By E;;B wé denote the diagram formed when [A] and [a]

are articulated at a single point. Clearly this is a separable diagram.

™

Diégrams'[A al, [ﬁwg], ... involving two, three or more articulation points
are not considered because they are irreducible inferac;ing diagrams which
are already contained in class {A]l. By'gggzz] we denote the product of
diagrams fA] and [a] which have all but one point labels different.

The derivation of the diagrammatic cluster expansion is given in
PW. Here we merely quote the result.

E = [A] + 832] ~ [AJ{a] + terms having three or more irreducible pieces.
(3.28)
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The first term is the sum of all irreducible interacting diagrams.
The second is the difference between the expectation value of all
P =
separable diagrams of the form [Aa],and [A][a] is the product of the
expectation values of the two associated separated diagrams. (In the
matrix element associated with a diagram, the exchange operators implied
from the exchange lines, if any, should appear to the very left, since
%
their existence is due to the antisymmetrizer that operates on ¢ .)
; . r>1l C.p . . . ,
The operators associated with £ = 2£f% in an interacting diagram
can come either from the left or the right side of the Hamiltonian with
‘ >
equal probability. The operators oF and 09 associated with £° lfq>1
cannot come from the same side of the Hamiltonian. By convention 0p>l
_ >
is taken always to come from the left and 04 1 from the right. In the
calculation of the operator of a diagram we must separately symmetrize
the product of all the operators coming from correlations to the left of

H and to the right of H.

Thus the operator part of a diagram is generally of the type:
i i
Z w It Oab
where ﬂloab'denbtes the product of Oéb in a specific order labeled by

i, and w" is the probability for that order to occur. For exampie the

operator part of diagram 23 is:

1 -
710722993309,5{019,055) =

l-0" ‘U dJ i +-£ Tnald G, 0 +
% 912923912%12%3 T 7 ©23912%12%2%3

1 1
7 912923%12923%2 ¥ 7 923%912912923%12 . (3.29)
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The Pauli identity:

31-331-§‘= KB + 131-(Kx§) (3.30)

can be used to express any operator product as:

wog = C + rest ' {3.31)

b

where C is an éperator independent of spin or isospin (such as

1,L2,L4 etc.), and the rest contains terms in which each 3; or ?é occurs
at most oﬁce. rSince the expectation value of ga or ;; is zero; the
contribution of the operator product in (3.30) is just given by C. Rules
to calculate "C—parts" of operator products are given in FW.

The C-parts depend in general upon the order of operators in the
product. Fér example the C-parts of the four terms in Eq. (3;29) are
respectively; 6/4, -18/4, 6/4, and 6/4. Thus the operator part of the
fAa] diagram .22 is zero. This differs from the product of C~parts of the
separated diagrams {K}Eg], which in this case is (~6)x3 = -18. The
radial parts of {Kg] and [gjfg} are identical, but their operator parts
may be differenf, as illustrated above. Notice that in Jastrow theory,
where the cofrelation fJ is purely central, one does not comsider
[Kg] - {KTEQ] terms; because in that case {Kg} and [KEEQ] have identical
C-parts and thﬁs cancel each other. The cluster expansion of PW then,
reduces to the well known irreducible Mayér cluster_ekpansién, where only
the irreducible interacting diagfams [A] contribute to the energy

expectation value,

It is convenient to decompose E into three parts:

E=E +E +E (3.32)

6 Q
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where E6 is the sum of all diagrams that do not carry operators 0927.
The E6 is large and is calculated carefully by methods developed by FW.

For the sake of completeness we briefly review the calculation of E6'

ELS is the sum of all diagrams having at least one f-g'line but no vgﬁl4

interactions. The calculation of ELS is discussed in Section 3D. The

. . . . 4 . . .
EQ is the sum of all diagrams carrying v interaction lines and it

is discussed ip Section 3E. E. is just an expectation value of v9"14

Q

is not a simple expectation value because we

interactions, however ELS

: N » + + *
can have diagrams with L+S operators coming from F.

€. Calculation of E

6
The set of the operators ngl 6 in (1.24) is closed under multipli-
cation, i.e.;:
i ijm m _
012012 E K . (3.3%)

The matrices Kljm, so defined are given explicitly in PW. The C-part of

a product of two operators is then:

- il - i
c(o12 12) Ktz ate, (3.34)
21716 _ 9 5.3, 96,18, and (3.35)
) o
j ok ijmoukl _ k ijk
‘0(012012 l2) _ mzl k3 Ak , etec. (3.36)

- Calculation of C-parts for any general many body diagram is quite
complicated. PW select classes of important diagramg and calculate their

C-parts, using the following two identities:

r

6 pgr
J d¢b Eabe Oae (3.37)

y J do opbog = Z
Ops Ty, r=]
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and

e [sin@bdeddqpb I olod ok - sgatam pol L )
O Th
Here Gb and @b-are the polar and azimuthal angles of the vecﬁor ?ab in a
coordinate system where the z-axis is taken to be along the gac direction.
Equation (3.37) defines the gzgz, which are functions of the angles.of
the triangle (abc), while Eq. (3.38) defines the elements aij given in
PW. |
A set of coupled integral equations is used to sum central Fermi

hypernetted chains (FHNC) and single operator chains (SOC). Before we

review them it is proper to define the two-body distribution function:

g(r) = }%p— <6(r-rnm)> , (3.39)

og(r) gives the probability of finding a particle at a distance r from a
chosen particle.

The diagrams for gy C20 be classified as-composite, no&al and
elementary. A nodal point, in a diagram comnecting the points m and n,
is a point through which all paths connecting m and n must pass. Nodal
diagrams, otherwise called chains, are those that have at ieast one nodal
point. Diagrams with no nodal points can either be composite or eleﬁentary.
Composite diagrams are those that have ét least two unconnected paths
joining m and n. Diagrams which are neither nodal nér composite are called
elementary. A link is defined to be any diagram or diagrammatic element
that jpins two éousecutive nodal points in a nodal diagram. Links then
may'be,-non—intefacting diagrammatic elements, composite diagrams and

elementary diagrams.



83

o

We denote by G;y,ik the chain, with central links, that connects
the particles i and k which respectively have an exchange nature x and y.
The labels xy may be dd, de, ed, ee or cc. The subscript d stands for a
"direct" end; e for an "exchange" end and ¢ for a "eircular exchange"
end. ‘sz,ik thus denotes the sum of all chains in which neither i nor k

is exchanged. G;e ik is the sum of‘chains in which k is exchanged with
b

. L . - c R ,
particles in the chain and i is not. Ged 1k just reverses the roles of i
. 3

and k and is numerically equal to Gze ik Chains that contribute to

Ze 1k have both i and k exchanged in independent exchange loops

contained in the chains, while chains with an incomplete exchange loop

passing through both i and k are included in et .
ce,ik

de, ee and cec chaing are given in Fig. 24, diagrams 24.1-23.4.

Examples of 4dd,

The links, which in the FHNC approximation do not contain elementary

. . . C .
diagrams, are denoted in the same convention as Xxy 1% However, since
' ’ »

a link can be composite, the X@ ik can have both i and k exchahged in
L]

the same loop, or in two independent loops within the link..

The end points labeled d, ¢, and e in chains have zero, one and two
exchange lines respectively. Since any point in a diagram contributing
to the energy expectétion value must have either zero or two exchange

s s . c . .
lines, we can join X;‘, with XC, ot G, at j, only in the

X',y ¥'Y,3k y'y.jk
_eombinations x'y' = dd, de, ed, cc, For xy = dd, de, ee the FHNC equations,

derived first by Fantoni and Rosati,ﬁz? becone:
e TooelxS L. x546S)

xy ik T b O y'y, k]

(3.40)

where the sum is over x'y' = dd, de, ed. The links X;y are gilven by:
' 2
C

- ¢C c _ _ ac _
de f exp[Gdd} 1 Gdd . (3.41)
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2 ,
¢ _ .t .c C\ _ A€
Xde = f Gdeexp(Gdd) Gde (3.42)
¢ c2 cz c 2,4 c c
Xee = f [Gde + Gee -~ L /4]exp[Gdd} - Gee {(3.4%)
where: c
L=<0+4G"
ce
The Gzc chain equation is:
g° = 0[xS . .. ;X +L/&), ] (3.44)
ce,ik ec,ij’ Yee Tk :
c c2 .
ch = {f exp[Gdd} - 1}L/& . (3.45)
‘Here © is the integral operator given by:
o[X..3%.,1 = o|dor.X. Y., . (3.46)
173k 3713 5k

For the S0C case PW exploit equation (3.37) repéatédly to treat the

operator links. They define the integral operator:

P ;P . w4 y = Pqr P o9 43
@ijk(xy,ij) E p J gijk Xij ij d Ty A (3.47)

and the direct functions:

2 .
£ 4+ £¢ ¢P _ (3.48)

b
B dd

=
|

= exp(G;d) ) (3.49)

In (3.48) ng is the dd chain associated with the operator denoted by p.

The links then are given by:

P _ P C _ P S
x0, = 0Pn® - 6, (3.50)
p P P et p e p
xf = xP. = e+ £° 6§ )n-c < (3.51)

de
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2 2
P _ (wPpC c e, L 2,p P P AC c_.p
Xee [h (Gde +'Gee) + £ (LAY /4 + Gee + ZGdeGde)]h Gee . (3.52)

The S0C equations for xy = dd, de, and ee are then:

T = Pqxr P . 4
Sy T b L O 15 Ty 50 339

where x'y! take the values dd, de, ed.

The treatment of GEC chain is somewhat more comﬁlex, and may be
found in Ref. 9. PW also improve the S0C equations by vertex corrections
at nodal points. These corrections take into account contributions of
simple sepafable diagrams such as ({KE] - [K??g]), in which the nodal
point of the 50C is an articulation point.

The energy expectation value is expressed as a sum of five terms,

E=T, +W+W, + U+D

¥ (3.54)

F

according totthe different parts of ¢ that the Hamiltonian acts upon.

When Vi ogeratgs only on ¢m we get the Fermi gas kinetic energy

TF = .3 %:-Ké. The other terms must be evaluated through the diagrammatic
cluster expansion. The W includes the potential energy and kinetic

energy terms having Vian. It is given by the sum of all diagrams having

the interaction line pqr (of Fig. 22), containing the operator H:n’

B o=-B ¢ 4 C © (3.55)
mn m mn 1303 .
4>l _ 4 ' :
B = vl (3.56)

sandwiched between fF and £ , with the VZ in HS operating only on
mn Wi mn mn

fr

> >
. The v represents the sum of kinetic energy terms V_f «Vf (ofn).
nn m mn Mo
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Kinetic energy terms Gﬁan'§§¢m are counted in WF and‘UF. They

only contribute when particle m is exchanged. If the.exchange pattern

of the diagram is such that a lemn element appears, the diagram is

included in W?, whereas those having a vmgmo element contribute to UF'
The W diagrams in the FHNG/SOC approximationlmay be further sub-

divided as:

W=W +W +W +W (3.57)
o] s C cs

Wo is the sum of all diagrams that do not have an éperator chain
connecting point m and n. Central correlation chains do not affect

the operator algebra and there may be any number of them in a W &iagram
of any class. Wc diagrams have one S50C Cénnécting n'énd m, while WS
diagrams have a separable single operator ring (SOR) attached at either
vertex m or n. The Wcs have both an SOC between m and n and a sepafable
SOR at m or n. Figure 25 illustrates the diagrammatic topology of'WO,
WS, Wé and WCS. |

PW calculate exactly the Wo, WS and Wc and they estimate the small
WCS diagrams.. The expressions for the five terms of (3.57) can be
found in PW, and hence they are not quoted here.

A glance at Table V reveals that the dominant repdisive term is the
Fermi gas kinetic energy TF’ whereas the dominant attréction comnes from
the EG two~body terms. The second important repulsive ﬁerm seems to come
from the separaﬁle (WS) diagrams, and its magnitude, for the Vi model
is roughly 10% of the E6 two~bo§y contribution. WB {MB}, which includes
the tWOnbody'diagrams "dressed" with centrél chains in the FHNC approxi-
matién, is the second important attractive term, and its magnitude

rises rapidly with the density. At ¥M density its magnitude is comparable
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Contributions to Nuclear Matter Energy in MeV/A.

Potential vl4 vlh vl& Reidwv12
ke 1.13 1.33 1.6 1.6
d, (fm) 4.04 3.44 2.86 2.86
s 0.8 0.8 0.8 0.8
Ty 15.89 22.01 31.85 31.85
Eg: 2-body -30.91 -40.06 -53.42 -51.67
E6= WO(MB) _OUAS _3.14 _7047 ' ""7 085
E: W 2.33 3.12 3.30 ~0.64
6 ' .
E,: W 3.51 4. b4 5.74 8.33
6 g
Ec: W ~0.31 -0.30 -0.13 ' 0.40
_ cs
Eg: U 0.14 0.14 1.09 1.13
Eg: Total ' -9.56 ~13.56  ~18.58 - -17.57
E gt 2-body ~1.24 ~2.34 ~4,75 -3.67
E gt MB 0.13 0.07 -0.40 -0.24
Eqi 2-body 0.22 1.10 3.55 2.19
Byt 1B 0.72 1.35 3.00 2.19
E: Total -9,71 ~13.40 -17.19 ~17.11
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to that of WS; For the Vi4 model , WC is repulsive and increases slowly
with the density; however it is small and attractive in the Reid Vg
model. Wcs is very small and reduces Wc by v10Z in the Vi4 model. The
combined contribution of WF(MB), Vo and v is repulsive and at NM density
it is just 107 of the WS contribution.

Farlier calculations, reviewed by Betheé) indicated that the NM
" energy is sensitive to the strength of the tensor force. These calculations
were mostly done at the two-body cluster level. However, our calculations,
with the V14 an§ Reid Vi models, which differ significantly in the
strengths'of their tenmsor potentials, show that this may not be true.

The stronger tensor force generates larger repulsive Wé contributions but
it also gives more attractive Wc contributions so that the net effect on
the NM energy is very small.

There aﬁe two major approximations involved in the FHNC/SOC scheme.
First is the assumption that the major contribution of passive non~central
correlations can be taken into account with single operator chains.
~ Second is that separable diagrams having many operator fings at a common
articulation point are smaller than those having only two. These two
approximatiéns have been‘recently studiedAby WiringaZS)lby calculating
the leading corrections. The corrections are found‘to be quite small
(v~ 10%) compared to the leading terms. Moreover they tend to cancel out,
and the net change in the E(p) of the Reid Ve model due to these corrections

is estimated to be <.5 MeV at kF < 1.6 fmf1.26)

D. The Calculation of ELS

Before we go on to calculate the contribution to the energy of the

relevant diagrams, let us first dwell on the operator algebra necessary
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to carry out ﬁhis calculation. If is convenient to use the following
géneralization of the tensor and spin-orbit operators to calculate the
various C-parts, encountered in the Vg problem. Let K,E,... be the

Y e
vector operators r,V and L. Then define:

>

—>+._§~—>.—>—>.—> —>.->m>.w:u_ .
alz(A,B) = 2[61 Adz B + S, Acl B] AR Iyp {(3.58)
- 1.~ - > ‘
Byy(8) = 5lo) + 0,1 + 4 . (3.59)
. : _ e _ 1 > >
Note that bIQ = Blz(L) and t12 = ;§H~a12(r12,r12). (3.60)
12

» & > > >
It can be verified that alz(A,B) = ulz(B,A) in gpite of the fact that the

operators K,§ do not commute. It may also be verified that the operators:
l,U,T,OT,B(K),B(Z)T,G(A,B), and o(A,B)t do form a closed set under
multiplication., Some of the useful products of these operators are

given below:

> > -+

R - -
UlzalZ(A,B) = alz(A,B)U12 alz(A,B) {3.62)

2 _1.2 |1 2 1 1 =
byp =3 L1p ¥ § O1obis ~ 7 Pip T E 0o (3.63)

’ e > .
b12t12 --b12 3t12 + ulz(r,v) - tlzr-v (3.64}
T i

tIZblZ = »blz-alz(r,v) 4 tlzr-v . | (3.65)

Since the operators alz(K) have two terms, one linear in 31 and the other

linear in 32, while alzci,ﬁ) is linear in both 3 and gz, only products

1
> > T g : L.
of the form 812(A)812(B) and alz(A,B)ulz(C,D) can have a non—vanishing

C~part. Some useful C-parts are quoted below:
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C{tbt) = ~18, C(bbb) = “'% Lz and: (3.66)

C(bb) = ~C(tbb) = -C(btb) = = L% . ‘ (3.67)

P [

All other required C-parts are trivially obtained from the above with the
help of the identities (3.61)~(3.65) and the rules given in Sectiom 3C.

The direct and exchange WO two~body contributioms to the energy are then

given by:
1 (.3 i1 .3 .3 .k k '
1 he 2 de ry9<ClE15099819070F 120127 a1r (3.68)
and
_ 1 3 n i i .1 A7k k
~ L1 -3 de r19°C107,£7707 587507 5% 1207517k (3.69)
n=1,4 i,j,k ‘
where:
3.2 (.3 3%
Kyp%air - C03) Jdkldk2¢21xlz¢12 (3.70)
41rkF
3 2 3.3 %
e = 3 Jdkldk2¢21X12¢12 (.71
ka
with
¢12 = exp(ikl-r1 + ikz-rz) _ (3.72)
and
¢21 = exp(:i,kl-r2 + ikz-rl) . | (3.7

The contribution to E . energy comes from terms in which at least one of

LS
the indices i,j,k is associated with a spin-orbit operator. C-parts of
products involving at most three b operators are either numerical constants
or the L2 opera£or multiplied with a numerical factor. The direct and
exchange expectation values of L2 needed to carry out the calculation

.

described above, are given in Table VI. The Hamiltonian component Hiz
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<L >dir.

<L >
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gt

1, .0\%,2
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can be written as:

Ioood 52
le Vs 8§, v12 . (3.74)

We can separate the Vz term in Hc, and by commuting it out we obtain

the following useful relations that eases the calcuiation of (3.68) and

(3.69).
i _
C(f12012H12012f12 12)
K w4 i
(£, 1210(012 12019 - 8iom (2 C07, (T f 12 (73,01
£k i 2 k ,
+ flz 12C[012 120123} . . (3.75)
. k t
2 - _ 12
VigPyp = 0> and (Vy,f 12) (V42P19) T, byy - (3.76)

The WF contribution comes from terms (vlFlz) -V1¢l. WF contributes

only when partidle 1 is exchanged, since $1¢1 is proportional to El which

in the direct case vanishes upon angular integration. The two-body WF

contribution to can be shown, after some operator algebra to be:
g p

2
gl bt " ' 2 v o143
8m D[[(f12+3f )f ]{ Lo A0 4T N A I s

)f T12*127127 712 12 12712

+ 3(f

12 12 12 12°

(3.77)

Here primes denote derivatives with respect to r Two-body contri-

12°

butions to ELS are much smaller than those in Eg, as shown in Table VIL.
This may appear surprising in view of the large magnitudes of vb and fb

(Fig. 28). However the important ELS

%% Lz which gives a factor ofﬁwa kgrz.' At r<l fm where fp and vb are

contributions have a C~part of



Table VIT
Reid V-8 kF = 1,77
E

TF 38.98

WO - 2 body -56.10

WF - 2 body - 3.69

W 11.54
s

W - MB - 9.69
o

W o+ W - 2.78

¢ cs

NF - MB - 1.32

(3 2.94

U 2.84

Total -17.28

LS

-3.47

-0.17

-0.22

-(. 29

0.29

- N.C.

- N.C.

- N.C.

-3.86

97
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appreciable it cute down all LS contributions. At high densities
though, (kf z 5 fmul) the ELS contributions may be comparable to those
of E6. .

Since the two-body is in general an order of magnitude bigger than

the many~body contribution, we expect the E

LgMB to be quite small. So

we estimate it by calculating only the leading three-body corrections.
The geheral expression for the direct three-body contribution of

W corresponding to the diagram 26.1 is given by:

2t .30 43, AL L 1 2P AP vnd o R oK 29 44
R ‘Z P { d rnmd Tl <4 C[{fmnomn’fmloml}ﬁmnomn{fmnomn’fmloml}}
i,3,k,psq ,
- cret of md ol X oF joreP 0P £8 09 3> (3.78)
TN M mn mN WD I nl mi ml ml’ dir :
where,
. 3.3[3 .3 .3 .*
<Xml>dir = ( 3) Jd kmd knd kl¢mnlxmnl¢mnl (3.79)
4ﬁkF

with

¢mn1 = exp(lkm'rm + iknorn + 1kl-rl) . (3.80)

The exchange diagrams 26.2 and 26.3 will have apart from the relevant

spin—~isospin exchange operators the expectation values: <X

mn1>ex,m1 and

* *
anfex,mﬂ which imvolve the functions ¢lnm and q)nml respectively.
¢lnm = E}{p(ikm-rl b ]_kn-rn -+ 1kl.rm) . (3-81)
and
¢nm1 = EXp(lkm-rn 3 lkno'rm + 1}_{_1.-{1), . (3.82)

The "f-part" of our ELS diagram contains terms in which a ¥ coming

> >
from an L+S operator acts on correlations F, while the "k-part” includes
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terms in which the ¥ acts upon &. Thﬁ f- and k-parts of ELS are
generally comparable in magnitude singe the kinetic energy due to
.correlations‘is comparable to the Fermi kinetic energy. For example in
Reid V8 model at;kF = 1.77 fm“l the f- and k-parts of three-body f-g WS
diagrams are -1.54 and 1.32 MeV respectively.

In the present calcﬁlation, terms having both bmn and bml operators
have been ignored, since their estimated 6rder of magnitude is very small.
Also negleétéd is the contribution coming from four and more body separable
terms, since they should be a small fraction of the caleulated thrée»body
WS contribution to ELS' The Ws terms contribute veryjlittle to the ELS’
This is due to cancellations that occur between the f- and the k-parts.

In Ve models the magnitude of the contribution of chain diagrams is
typically a tenth of the two-body energy. Accordingly we may expect the
contribution of chain diagrams to ELS to be of the order of 0.5 MeV and
thus not too important. The k-part of the chain diagrams is calculated
but their f-part is not. However, we may expect that the neglected f-part
of chain diagrams to be comparable to the calculated k-part., In this
sense the present calculation of the contribution of chain diagrams to
‘ELS is just an order of magnitude estimate. The ELS diagrams with central
chains (WO—Mﬁj are illustrated in Figs. 27;lw4. The k4part of diagrams
of the type 37.1;3 having one or more sz chains are calculated by
inserting eGdd ~ 1 in the integrands of the two-body Wo diagrams.

Similarly the terms of diagrams é7.2,4 containing only in are
obtained bylrespéctively inserting Gze and Gzc in the two-body integrals.

The terms having im give derivatives of le,,and they have to be calculated

explicitly as three-body integrals. The k-part of many WéAMB diagrams is
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summed by dressing diagrams 27.2 and 27.4 by sz chains. The total

estimated WO-MB contribution to E _ is quite small and it is given in

1.5
Table VII.

The contribution of W-diagrams having operator chains is called
Wc. 0f these we first comsider those that have bmn operators and a

G§:2’6 chain. We may generate the leading terms of such diagrams by

replacing an fp=2’6

in the two-body fiijk integrals by £°6P. The
£°cP are in general much smaller than fp, and so thelwc is typically
v 104 of the two~body Wo' Two-body calculations indicate that we only
need to consider the ijk = (tT)b(tr) terms and replace ftT with £etT,
However since GtT are much smaller than the ftT, the éontribution of
these diagrams would be negligible.

Diagrams having b links in the chains can also contribute t6 WC.
-0f these we only estimate 27.5 and 27.6, which are the leading three-
body terms in‘Gp£7’8. Two~body calculations show that the important
diagrams to dress with GP=7’8 are those with interactioﬁ'line.indices
ijk = bee, c¢be, ccb.

The contribution of the k-part of diagram 27.5 with p=b and

ijk = cbe is for example:

1 .22
%0 “¢°

2
b o c. b 3 3 '
J(v f )mn(Zf £ )mlrmnrmlcosemé rmnd g . (3.83)
The diagrams 27;S~6 can also be dressed by sz chains, the contribution
of their k-parts is given in Table VII, as the order of magnitude estimate
of the ELS part of WC. The WF two-body contribution is in general much
bigger than the many-body kinetic terms, W ~-MB, U and U. Since the

F F

WF contribution to ELS is tiny (Table VII) we have totally neglected
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contributions of WFwMB, UF and U to ELS'

E. The Célcuiation of EQ

The EQ is given by:

Bl

14 .
‘ P P
B, ° L) I L vPeegpoglv /vl

i<j p=q

‘This at first'éight is first order perturbatiom theofy. However the
p=9,14

- potentials v have been considered through .the Euler-Lagrange

equations_iﬁ determining the wave function w,'and so the treatment is
semi~perturbative. The contribution of two-body &ireot.diagraﬁs (Fig. 29.1)
" to E ié givah by:

Q

1 [ .3 1 SRR T R R
2°P ] d7r < C{£1,075 vi2012 £12° 12” dir. ’ (3.84)

- T L W Ot S
*12%a5r T 5,3 .Jd ky Jd ky 012 ¥yp 412 0 (3.85)
7T 4k - o
‘ I @ - ' ) .
¢12 = exp (i(kl.r1 + kz-rz)) . a ‘ N (3.86)

The prart-df the product in Eq. (3.84) can be wriﬁteu as a sum of

three terms:.

S o £k ok - e
C(flz 12 12012f12 127 5 o(F1ps43k) + 25 2 2’1jk)le+z (rlzale?le

(3.87)

It is relatjvely easy to calculate the Zi, Zg and Zi. First, we peéali

that the C-part of a product of operatoré can be triviélly factored

into two parté, one each for spin and isospin operators. Secondly

products. such as 07 t O?.O?, etc. can be reduced to sums of terms
iJ i3’ "i3743 . '
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29.1 29,2
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having operators 1, OG, ot and Ob. Hence, relatively few new C-—parts

1
are needed to calculate the Zd s, and these are given below:

m,n=¢, 0, tand b , (3.88)
m_2 . n. _ 2 1 &
G(O},LT,075) = 85 (368, + (=8, )80, + 3 8, L00) (3.89)
. m o> x 2 0L 2 1 4
C(0}, (L8300 ) =54 8, 8.0 + Quplyy + 5 Sup’mnli2

: (3.90)

Q= 1/2 1/2 -1/2 ~1/4

1/2 1/2 -1/2 -1/4

-1/2 -1/2 5 1
-1/4 ~-1/4 1 0 . {3.91)

The values of <ﬁn>dir~are given in Table VI.

The contribution of two-body exchange diagrams (29,2) is given by:

) ) ) ] -1, JdBr (™.t ol w3 ol £X ok ys
Cp= - . R 12512012712°12512%127 7 ex. 2
a=l4 11,8 3=9,14 k=1,8 - (3.92)
<X .> = (=3 )2 3. |k, oF %
X2 . Awkg a7ky 2 %21 %12 %12 ° ‘ (3.93)
- > > >
¢21 = axp (i(klorz o+ kz.rl)) . (3.94)

The C-part of the product in Eq. (3.88) can also be expressed in the form
(3.87); the'Z:(rlz,ijk)‘are calculated using equations (3.88-91), and
<Ln>ex are given in Table VI.

Contributions of two-body clusters to WQ in the Va4 model of nuclear
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matter at kF‘m 1.6 fm-l are given in TableVIII. They are not too large;
the total two-body contribution at kF = 1.6 fmul is " -54 MeV/A. The
main many~body diagram contributing to EQ is expected to be the separable
diagram 29.3 of Fig. 29. We calculate only the main term of this

diagram in which i and k = ¢. 1Its contribution is given by:

1 2 ¢, 2,9 .1 13,2 .3
5 ° J(flz) (12 ¥ 3 V12)T12 47T
2 P [P o2cP by 43
%3 ] A Jle (-77f14 + (aps + 5p6) 7 £) dry ..
r (3.95)
13
We neglect the rather small contribution of terms having p = b,b to

diagram 29.3. The contribution of 29.3 calculated with‘these'approxi~

mations is given in Table VIII.

One can understand the magnitude of the contribution of 293 as followé:
The interactioﬁ energy of vgml4 interactions is roughly proportiongl to
the average Qaide'of kz; k is the momentum of the pa;ticle. It is thus
proportional to the expectation value of the kinetic energy. The total
kinetic energy in the liquid is made up of two terms, the Fermi gas
kinetic energy TF’ and the kinetic energy due to correlations TC. At
kF = 1.6 fm—1 these terms are respectively 31.85 Mev/A and 25.54 MeV/A.
The two—bodj diagrams get their contributions from TF’ and the
t,tr)zlrz

6(f term of Tc, while the three-body diagrams get their contri-

butions only from Tc.

The contributions of separable exchange diagrams 29.4 and 29.5 are
calculated only for VJ=9’12. These are quite small (Table VIII). The

contribution of chain diagrams to W, is neglected; it could be v .5 MeV

Q

in magnitude, and that is approximately the accuracy of our W, calculation.

Q
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Table VIII

Contributions (in MeV/A) of diagrams shown in fig. 1 to v,, model

14
of nuclear matter at kF = 1.6 fm
Diagram  ‘ Interaction Contribution
1.1 p = 9-12 | 5.28
1.1 p = 13-14 ' -1.11
1.2 p = 9-12 . -1.88
1.3 P=9613 . h2.70
10“ p = 9"""12 . 0-26

1.5 | p=9 S 0.05
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The estimated errors in the calculation of E6 and ELS are also ~ .5 MeV,
éﬁd so a crude estimate of the accuracy of the energy expectation vaiue
igs 1 MeV. On the other hand the variational wavefﬁnction we use may not
be general enough. First we minimize E by making limited variétions in
fp(r), second we do not.include any f9_14 correlations that V9_14 may

induce, and third we have no three-body correlation operators in our WV.
Improvements in Wv could lower the energy by, and this is a possibly

unreliable guess based on calculations done with oversimplified models,Zl)

about 1 MeV. Sb'we feel that our results give reliable upper bounds,

but the true energy may be up to 2 MeV below our results.

F. Results of Reid and Vi Models

Most of the calculations use only three variational parvameters

d, dt and o. We assume:
= d =4 =d =4, (3.96)
d" =4 =4d_ . (3.97)

At some test ?oints we let db and de differ from d, but this did not
produce an appreciable (> .1 MeV) lowering of emergy. Since v© and v%

do not have spin and isospin operators we take:

o = o = 1, (3.98)
o) =o' = o’ = at = mtT = ab = abT = 037 = %7 = aqGT==a . {3.99)
L Ty . t tT b bt ..
Again it was verified that taking o and o , or o and o different

from o does not have significant effect on E(kF), and the abb and abbT

were simply set to unity in all calculations. The vbb has a significant

LZ part which éhould not be quenched anyway.
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At the equilibrium point of the Vi4 model a bigger set of variational

parameters (d, dt, Oy Bg, st’ Bb) wgs used:

P (r,0dd ,6%) = PEF (r,0,d,d)) (3.100)
g% =8 =8"" =8, : (3.101)
8" = 8" =5, » | (3.102)
A (3.103)

fortunately the equilibrium values of Bp came out to be ~v 1, suggesting
that it is adequdte to minimize E(d, dt’ a).

The calculated E(kF) are shown in Fig. 30. The Reid Ve results are
from ref. 26 and 51, while the Reid-Day results are from ref. 52. The
lReid Vs E(kF < 1.5 fm"l) is almost identical (within .2 MeV) of the
7 E(kF), though it saturates a little faster at kF > 1.6 fmnl. The
breakdown of the E(kF) is given in Table V. The Reid v,, variational
results are in fair agreement with Day's Brueckner-Bethe results with
the Reid-Day médel. We may expect some differences between Reid-Day and
Reid le models because they have different interactidns in 3PO, 3P13 3D2,
3D3 and‘higher waves, however, a fraction of the difference may be in the
method used to caléulate\E(kF). |

The v9~14 give a repulsive contribution which helps reduce the over-
binding of nuclear matter significantly. It also seems to reduce the

equilibrium kF by ~ .1 fm"l. But the calculated equilibrium kF is much

larger than the 1.33 fmml suggested by liquid drop fits. The curve labelled
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Vis + TNI (three-nucleon interactions) in Fig. 30 has the éorrect
‘equilibrium density (kF = 1,33 fmfl), enérgy (-16 MeV), and compressi— .
bility (240 MeV) alz) i | |
There does not seem to be a big differencé between the Reid Vi
and the Vi models. Earlier, larger differences were founé in the'E(kF)
given by Reid Vg and various BJ—v8 (BethemjohnSOﬂ) models. However, vg
3 3

models based on BJ Pz - F2 potentials give very repulsive phases in 3PO

and 3Pl states.(Figs. 12, 13), and so are'glmbst unrealistic. Reid vlé
I‘model is reééonably realistic, but still somewhatipedagogidal, and ips
results should be taken accordingly. For example, thgré‘coﬁid be some
effect of_the_strgnger tensor foréé in the Reid Vi moéel, bﬁt it gets

cancelled by that of the slightly weaker repulsion in 3P0 and 3p. states, |

1
and does not éhqw up in the comparison oflthe E{kF) of Reid V1g agd Vig
models. | | -

Déy's recént calculationéB) with the Paris potentiél yvields similar
results with thé Vi model. The Paris-potential fits quite accurately
the scattering data and gives - phase shifts and deuEeﬁon'properties‘

that are similar to those given by the V14 models (Figs. 2-21). Day’'s.

results with the Paris potential are also shown in Fig. 30.
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1V. THREE-NUCLEON INTERACTION CONTRIBUTIONS

Realistic two-nucleon interactions seem to overbind nuclear matter
very significantly at kF > 1.5 fm“%, whereas at low kF(<l.3 fmml) they
give an underbinding. The overbinding at kF > 1.5 is certainly beyond
any possible errors in the many-body calculations, while the under-
binding at kF < 1.3 f:'mm1 is not that overwhelming. Howeﬁer, we know
that the realistic two-nucleon interactions leave light nuclei like

53) 54)

triton underbound, and this strongly suggests the need for

and 4He
more attraction at low densities. In this Section we take a very
phenomenological point of view, and add contributions of three nucleon

interactions (TNI) to the Va4 model to get the "correct" E(kF) around

Ky = 1.33 f .

To begin with let us ignore the spin-isospin dependence of the TNI;
we will put in effect of its isospin dependence rather crudely. We hope

that the TNI can be expanded as:

Vi23 = E cgcui g (ryp) uy{r ) Pyleos 61) 4.1

where U2 is a strength parameter, ui(r) are functions of interparticle

-
distance, 6, are the inner angles of the triangle ?1, ?2, L and Z
' cye

represents a sum of three terms obtained by cyclic rotation of indices

i

1, 2 and 3. At very high densities only the =0 compdnent of V123 will_
contribute. It must be repulsive and so we refer to it as TNR. The L0
components will‘give negative contributions to E(RF) through correlations,
but these will saturate as density increases, and we refer to them
collectively as TNA,

If one takes very seriously the indication of a_"hole" in the BHe

55) 29)

nucleus,

which two-nucleon interactions fail to give, a three-nucleon
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PZ interaction appears to be én attractive proposal to try out. A
nucleon can be at the center of mass of the BHe nucleus only when the
three nucleons are in a line. The =2 term of V123 can be very repulsive
in this configuration, and attractive when the nucleons are at the

corners of an equilateral triangle leaving a hole in the middle.

The two pidn exchange TNI corresponding to field theoretical diagram

55-58)

has been studied, and it does contain terms of type 4.1 with =2

and uz(r) = T(r), where T(r) is the radial shape of the one pion exchange

tensor force:

| 3 3 e’ 22
10 = Ay Sp G eeteT, e
-1
L=0.7 fn L, .
¢ =2 fm 2. (4.4)

The cutoff in (4.2) is that in the Vig model; different authors generally
use differént cu£off's. The 2=2 terms of (4.1) may possibly dominate THA.
As a model for the =0 TNR we consider separable diagrams involving
isobar states.sg) Their field theory analogs are very schematically
illustrated in. Figs. 31.2 and 31.3. This interaction requires the

exchange of two pions between nucleons 1 and 2, and of other two pions

between 1 and 3.  We may thus take un(r) = Tz(r).

Let us recall that the vlh interaction model has three terms:

vl&,ij = vﬂ + VI + VS ] {(4.5)

which respectively correspond to the one pion exchange, two pion exchange
jsobar box (illustrated in Fig. 31.2), and the short range core. The

: 2 : . :
radial shape of VI is taken to be T“(x) in accord with its assumed nature:
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Pl P
Ve = z T (r, .00 ¥
p=1,14 137743 (4.6)
and IP are constants obtained by fitting the phase shifts. 1% is large
and negative, and the rest Ip%c are much smaller. The main effect .of a
THR of type:
2 2
YU T(r,,) T(x,,)
cye o 12 13 (4.7)

will be to weaken this attractive Vis and we include 1t in the many-body

calculation by making the two-nucleon interaction density—dependent:

vy MR = v vy exp(-y;p) + Vg . o (4.8)

We have chosen_to use exp(wylp), instead of (l—Ylp) the TNR gives, with
the hope that it would take intd account four and more body separable
diagrams at very high densities. However, Y0 is very small (< .03) in
the region of nuclear demsities, and whether one uses exp(mylp) or (1~yip)
hardly makes any difference.

The contribution of TNA will have the following chéracteristics.
At low densities it will be praportional to 92, and -it will saturate as
p increases. The interaction 31.1, which we use as a model for TNA, has
zero C-part because it leaves free Ty Tgs Oy and Oge .. It will contribute
only when there are spin isospin correlations between 2 and 3 that close

the ring. Thus, its contribution will be proportional to the expectation

2
value of (Tl'TZ) :

oo N2 N-z, 2
<(Tl T,) 5= 3-2 (—Efﬁ s (4.9}

where N and 2 is the mumber of neutrons and protons. The C-parts of spin
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operators do not depend upon N and Z, so we will ignore them. A

reasonable parametrization of the TNA contribution is then given by:

7 2
TNA = 7292 exp(~y ) (3-2 (Eigo ) BN (4.10)

We calculate E(kF,v14+TNR) with the interaction (4.8) by the
variational method, and add the TNA contribution (4.10) to obtain the
nuclear matter energy. The parameters Yy_5 8re varied to obtain equili-
brium kF = 1.33 fmhl, EO = -16. MeV, and X = 240 MeV. Their values are:

3

¥, = 0.15 fm” , (4.1
6 .

Yo = ~700 fm~ MeV, (4.12)
3 : :

Yy ® 13.6 fm” , {4.13)

and the E(kF) obtained with these is shown by the curve labelled v14'+ TNI
in Fig. 30,
Table IX gives the contributions of various interactions to the

nuclear-matter energy. The interaction energies are defined as follows:

vlawinteraction energy = E(kF’vlé) - TF y (&.14)
TNI energy = E(kF,v14+TNR) - E(kF’vlé) + TNA. (4.15)

They are not expectation values, because the wavefunction changes when
the interaction is changed.

All the expectation values given in Table X are calculated with the
v14+TNR wavefﬁnction. However, since YqP is so very small there is
little difference between Vi and v14+T§R wavefunction at nuclear matter
density. WNote that the TNA given by Eq. (4.10) is not an expectation

value. There should be some kinetic energy of three~nucleon correlations,
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kF(fm )
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14
NI

kg (Fa )
<T>

<y >
<y_>

<YL >
<TNR>.

TNA

Table IX

"Interaction Energiles” in Nuclear Matter (MeV)

1.13
.0975
15.89
-25.60
~3.89

""13 . 60

1.23
.1257
18.82
~30.36
-3.76

-15.30

Table X

1.33
.1589
22.01
-35.41
~2.59

1.43

.1957

- 25.44

.=0.18

-15.31

"gxpectation Values” in Nuclear Matter (MeV)

1.13
27.54
- =20.69
~94.31
77.75
1.41

1.23
32.79
-23.92
-118.8
98.39
2.24

"'6 000

1.33
38.72
-27.26
~148.9
124.1
3.52

-6.11

1.43

45.33
-30.63

155.8
5.40

-5,58

124

1.53
.2419
29.12
~45.66
3.57

-12.97

1.53
52.62
~33.94
-230.0
194.7
8.15

"'4058
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and a correction to <v14> buried in it. Thus the expectation value of
<T> could be a few MeV higher than listed in Table V; ZTé is suggested
as a reasonable estimate of <T> by the present work. The <T> isin fact
measurable, and its measurement would be of great help in arriving at a
correct theory of nuclear matter.

The TNA and TNR give much smaller contributions than the two-nucleon
58) -

Vi . Microgcopic calculations

1 of THA due to two pion exchange three-

nucleon intera;tion of Fig.311 give ~ -2 to -3 MeV at equilibrium
denmsity, against our -6 MeV. These calculations‘ceftainly do not rule
out larger TNA contribution. But it should be poin;ed out that we do
not calculate E(kF,v14+TNR) exactly. As mentioned in Section IIlthe
+TNR) could be 0-2 MeV too high, and

V14

the phenomenological TNA may in part be correcting for the differences

variationally calculated E(kF

between the variational Wv and the exact ¥,

The sum of separable diagrams involving isobar states should give
some idea of the TNR contribution in matter. It is difficult to calculate
it microscopically, for the required isobar-nucleon interactions are
experimentally hard to study. Of the allowed NN = NN, NN = NA, N = AA,

NA = NA, NA = AN, NA = AA, and AA = AA only the NN -+ NN, NN == N4 and
NN = AA contribute significantl§ to the nucleon-nucleon scattering, but

59)

all are required to calculate TNR. Wiringa has attempted to calculate

the sum of separable diagrams involving isobar states using the model of

60)

Niephaus, Gari and Sommer of transition potentials. Very pteliminary

results, which neglect vp>6 NN + NN interactions, suggest that the sum
of "isobar separable" diagrams is 1.42, 3.7, 7.9 MeV at kF = ,9, 1.1 and

1.3 fmm1 respectively. Our TNR contribution is smaller by approximately
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a factor of two than these estimates. Recently Horikawa et al.64)

have estimated the real part of A-nucleus optical potential UA to be

v -25 MeV, while the average nucleon~nucleus optical potential U_ for

occupied states is v~ ~60 MeV. The A-percentage P, in NM is estimateésg)

A
to be vo6~7%. Thus the dispersion correction PA(UA—ﬁN) ~ 2.3 MeV

may account for the most of TNR.
The expectation values Wy and <vS> are both quite large, but their

sum is much smaller. The V> and‘¢v8>‘individually will be‘very dependent

on the two nucleon interaction model, and so their values should be

regarded with some caution. In relativistic-mean~field theories, such

61)

as Walecka's, ““the attraction <v_> is attributed to a scalar field, and

I
the kinetic energies are calculated with an effectiye mass m)‘c = My + <VI>.
The m* is smaller than my s and so generates larger kinetic energies which
help to saturate nuclear matter. Any such relativistic effect that may
exist in nuclear matter is also buried in the phenomenological TNR.

The present_aﬁproach to TNI contributions in matter is very pheno-
menological aﬁd not aesthetically satisfactory. A better appreoach will
be to assume a nuclear Hamiltonian:

%2

H = --Vi + § TP, ) OF, + )

= - (4.16)
nucl 2m 1< p i3i” ij <)<k

Vijk 0

and determing the important components of vijk by fitting the binding
energies and form factors of light nuclei such as 3H, 4He. Some of the
very neutron rich isotopes of hélium (6He, 8He, etc.) may provide
information on the three~neutron interaction. Techgiqueé to obtain

reasonable wavefunctions and calculate energies of few body systems with

Hamiltonians such as (4.16), are being developed. In the meanwhile,
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‘equations (4.8) and (4.10) define an effective Hamiltonian that fits
the two-nucleon scattering data and nuclear matter properties, and it
seems to haﬁe reasonaﬁle TNT contributions. We hope that it may be of
use in studies of the equation of state of hot and cold nucleon matter,

and the structure of nuclei and neutron stars.
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V. ASYMMETRIC NUCLEAR MATTER

A. Statement of the Problem

In this Section we present our studies on the equaéion of state
of cold asymmetric nuclear matter (ANM) cﬁaracterizedlby tﬂe polarizétion
parameter B = (N—Z)/A Here N and Z respectively denote the number 6f
neutton and protons, and A = N+Z. Neutron and symmetric nuclear matter
are the limi;ing cases‘having =1 and 0O respectively.

Following the notétion of equations (3.54) and (3.57) WQ break

down the energy E(p,8) of ANM into the fellowing terms:
‘E(pgﬁ) % TF + EZB + Wq(MB) + WC + WS + U,+ Vg ='WF(ME) + TNA. (5.1

Here E2B is thé contribution oftwo~body:c1usters andrTNA ié the.céntri;
,bution of the attractive part of the TNI. The éontribufion of the

' repu151ve part of TNI, is included in the terms EZB'thfough W (MB); The
-values of these contrlbutlon in symmetric NM and pure neutron matter are
given in‘?able XI at o= .159 (the assumed equilibrium den31ty of symmetrlc
'NM) and .35 nugleons/fm .

"It is %elatively simple to calculate tﬁe-contribution of many- -
particlelisbspiﬁ'correlatious in the symmetric nuclear métﬁer. One oniy
needs to know, in this case, the C-part of thé produCt_of isospiﬁ operators.
A further significant simplification occurs because only closed rings of
isospin operators have a norzero C-part, and. if these rings ére ma@é.ﬁp
of éingle operator links, the order of dperators isrimméterial. All
thése éimplifiéations are loét when we consider‘theﬁi%‘o asymmetric
métter. Cglculations of Bml‘neutron matter are simple because the iso¥

spin correlations can be completely eliminated in this case,
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Table XI

.159

34.93

-19.48
- 2.05
'1.99
1.53
0.046

- 2,04

14.94

the sum of Ws’ Wes’ ELS(MB) and EQ(MB).

.35

37.23

~ 8,18

1.81

9,51

3.95

- 2,21

- 1,99

59.

~-21.

39.

.35

11

29

.32

.28

.28

.32

.74

64
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With the hope of using the available 8=0 and 1 resultsé7)

in the
caleulation of E(p,R) we studied the B dependence of EZB(Q,S) and
WO(MB,Q,B) mmerically by calculating these at 82 = 0,+1,+2,...+*9 and

1. To a surprisingly high accuracy the B-dependence of these terms is’

given by:
N 2 0
Eyp(s8) = Byp(0,0) + B7(Bpp(p,1) = Epg(6,00) (5.2)
W (MB,0,8) = W_(M8,0,0) + B°(W (MB,p,1) - W (48,0,0)) .  (5.3)

The calculated E R) is given by Eq. (1.2) within .3% (.4%) at

ZB(D E]
.159 (.35 ), while the calculated WO(MB,Q,B) is reproduced by Eq.

i

p
(1.3) withih 0.4% and 16% at these densities. However WO(MB,p,B) is
smaller than EzB(Q,B) by an ordgr of magnitude and so the EzB(p,B)
+ WO(MB,p,S)‘Ean be approximated by a sum of Bo and 82 terms to an
accuracy of .4% and 1,7% at p= .159 and .35 3 respectively.
Calculatioﬁs of the WC and WS in asymmetric nuclear matter are
difficult. .Ih gymmetric nuclear matter the Wc and‘ws are calculated with
the help of chain equations that sum single operator chains having
arbitrary lengths. These chain equations become véry megay in asymmetric
matter. However we can analyze the B-dependence of selected and hope-
fully important, three and four-body diagrams. Such an analysis suggests
that WC and WS also do not have large 54 or higher terms. The TNA has by
dgfinition oﬁly BO and 82 terms, while the U, UF and WF(MB) are small and
it may be reasonable to approximate their contribution Ey a sum of BO
and 82 terms.
3

Thus the main result of this study is that, at least at p < *35 fm

the energy of asymmetric nuclear matter may be well approximated’ by:

?
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E(o,8) = T,(p,8) + EI_(o) + B'EL, (o) . (5.4)

67)

The constants EIQ(p) and Elz(p) can be obtained from eﬁisting results
on the E(p) of symmetric nuclear and neutron matter.

The EIO(p), Elz(p) and the symmetry energy Esym(p) are reported
in Section 5B. Section 5C reports the two-body Euler-Lagrange equations
for asymmetric ﬁatter, and the calculation of EZB(D’B)' The generalization
of FHNC equations to the case of asymmetric matter and the calculation of
WO(MB,D,B) is reported in Section 5D. Section 5E analyzes the é dependence

of simple W, and W, diagrams.

B. Results

The interaction energy of nuclear matter is defined as:

EX(p,B) = E(p,B) - T (n,B) . (5.5)

Assuming'validity of approximation (5.4) we have:
BT () = EL(p,0) , (5.6)
EL,(p) = EI(0,1) - EI(p,0). | (5.7)

The EIO(p) and EIz(p) are calculated using the E(p,0) and E(p,1) tabulated
in vef. 67. TFive point interpolations were used to obtain E(p,B=0,1) at

the desired values of p. The Esym(p) is defined as:

2
E (p) = 1 37E(e,B)

o ; ‘ (5.8)
sym 2 382

=0
and it is given by:

S5 o
Eom(®) =3 Tp(e,0) + EL, () . (5.9)

The EIO(p), EIZ(Q) and Esym(p) are tabulated in Table XII.



0492
.0676
.0975
.1257
.1589
.1975
.2234
L2515
L2767

.3034

. 3497

of nucleon matter, and the symmetry energy of nucleon matter.

EI

~18.

-38,
-40.
-4l
~42
~41.
~41.

-39.

The coefficients EIO(p) and EIz(p) of the interaction energy

37

.04
.49

.12

01

76

75

17

99
42

74

Table XII

EI

9.

i1.

14,

16,

17

18.

i8.

19,

13

17.

17

2
54

59

39

30

.73

59

76

01

.66

94

.34

sym

15.
18.
2.
26.
29.

32,
34.
35.
36.
36.

38.

13

51
22
76
96
72
11
62
36
75

02
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The calculated symmetry energy at the equilibrium density

(p = .16 fm“S) is 30 MeV. Empirically the symmetry energy is not very

accurately determined. Its values range from 28-40 Mevl)

in mass formulae.
Qur results for Esym are in fair agreement with the results obtained by

Fantoni and Rosati67) (31.1 MeV atp= .17 fmf3) with the semi-realistic
-1

OMY potential, and Siemens and Sjﬁberg66) {25~30 MeV at kF = 1.35 fm )
with the Reid potential and lowest order Brueckner theory.
C. Calculation of EZB(p,B)
The variational calcula;ions use a variational wavefunction:
v (.8 =1st [ 1 f£P(r,,,d,d_,0)00,32(0,8) . (5.10)
V - ij’ - t’ :i.j ]

i<j p=1,8

The variationa; parameters 4, dt and o should be varied in principle to
minimize the E(p,B). However, the equilibrium values of d, dtland o are
not too different in nuclear and neutron matter. For example at
p = .159 fm—S the equilibrium values of d, dt and o in nuclear and neutron
matter are respectively 2.15, 3.44 fm, .8 and 2.79, 3.44 fm, .8, and the neutron
matter energy obtained with these two sets of d, d and o is 14.9 and
14.6 MeV respgctu’rely. In the following sections we neglect the B dependeqce
of d, dt and o and take their values from symmetric nuclear matter calcu-
lations. The results presented in Section 5B tacitly assume that the small
effect of the B dependence of d, dt and o on E(p,R) is linear in Bz.

The fp(d,ét,a) are calculated from two—body Euler-Lagrange equations
3.14 to 3.24 which depend upon the ¢. Thus even for fixed values of
4, dt and ¢ the £? can depend upon B and p. The B and p dependence of

the £P equations is contained in the functions ¢§ S(r,p,B) given by
' *
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, 2 4
equations 3.8-3.11. Here x = c¢,q or qq (for central L™ and L ), and
T,8 are the pair isospin and spin. In asymmetric matter we have two
Fermi momenta kF and kF for neutrons and protons, and it is convenient

to define functions W (T S,r):

Ve (T,8,7) =—~1—2- I 1 &R - R EDOpEED,
< k <
S (5.11)
wikyk ) = exp(i(k,ory + K ) (5.12)

‘ where A and | can be n or p for neutrons and protons. The $§ S(r,p,B)
' E

are given by:

(¢¥’S(r,p,5))2 = (‘é’zp(T,S,r))z + T{ (\}!};n(-r,s’r))z + (‘?};P(T,S,r))z}.

The explicit forms of T (T S,r) are given below:

(¥, (1,8, )’ =30, o, {1-(= ™y, (5.13)
9 (1,8,00)% == p {l’i< (- T8 LT g0 ) (5.14)
RGIES ALPGRETIRG T kF > TR .
99 ¢r y2 o1 4,1 4 & 1.2 .2
(5, (1,8,50)7 = 7 py0 (x5l 4 ) + 55 Ky Ky
) |

r 2 2 T8 1 > o 2

+'??(kFx+kFu) 5 (V) zlzu}. (5.15)

Here EA is the familiar Slater function z(kylr)

The fp(p, ) are obtained by solving the Eq. 3. 14-3, 24 with the above

X

@T g They do not exhibit significant B dependence. The important
»

correlations, such as £¢ or ftT change by < 2% in going from §=0 to 1.
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Nevertheless this f~dependence is taken-into account in the following
calculations.
In symmetric nuclear matter only the C-parts of operator products
contribute. 1In asymmetric matter terms linear in Ozj also contribute.
We define this term as the Tijwpart of the HOP,
moP = c(moP) + § T, (Mool + ... . (5.16)
145 ij ij

The Tijmparts, like the C-parts do not contain any‘a or T operators, and
Py - L co?. moP |
Tij(HO ) =3 c(oij nov) . (5717>
With these definitions EZB(p,B) is given by:

_ - o (3 i 4.3 .3k k i35 3 .k Kk
Bp = Lo ) jd £<C£7,07 57 907 5F 15075040 (£15079%1 2012512012 dsr
> 1,%=1,8 §=1,14

T
12712

e

3 oa.id.j .k .k
Jd‘r<C(°12f12°12H12°12512012)+°

noi i .d . .k Kk
(01557507587 507 55790190 7 ax

o

- )

T
T
neilb 12712

2
+ Z%p%gdg’mc(o

n i 4ok k.. T n
12512072VE19079) ¥ + 03571500155,

i i+k k.o
035YE12072) V7 oy

(5.18)

The three iﬁtégrals above correspond to the contributions of Wb diagrams
33.1and 33.2 and Wf diagram 33.3 of Fig. 33 respectively. The C- and lew
parts can be expressed as sum over terms containing l,LZ,L&r-V and

Lzr-v operato;g. The required expectation values < >dir and < ? ox of
these oparatofs in asymmetric matter are given in Table XIII, where 0;2

is abbreviated by T.

The calculated EzB(p,B) atp= .1589 fmf3 is given in Table XIV. It

. 1 s a2 i e .
is almost exactly linear in 8 . The absence of significant 34 terms in
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EZB can be understood as follows. The fp's have little 8 dependence, so

the g dependence of E_ ., must come from the expectation values in Table

2B

XI1T. <1»,, and <1> do not have 84 terms, while the 84 terms in
dir dir .

<Lz>dir and <L2T>dir are very small as can be seen by expanding these in

powers of R:

2 5 2 5 1 _4
<1, >dirm1+§s +—§~w~273 $+ ... {5.19)
2 2 1 &
<L T>dir « B - E¥i B+ ... . (5.20)

The contribution of <L4> terms is very small and it does not give signifi-
cant 84 terms. So it is understandable that the direct part of EZB has no
significant 8“24 dependence.

The exchange part of EZB

expanded in powers of B as follows. Let kF denote the Fermi momentum of

involves EC and RT functions which may be

nuclear matter at density p, and X = kFr. We get

b ) = T 3 B 3(12 L7 w) (5.21)
n=0,» "3

L6 = T oy 2i+1 2P G D . .22
n=0,® ' x

The above can be rewritten as:

i

2 () = 8 (x) + Ez(x)sz + 24(;:)54 oo, (5.23)

LG = 8L () + B3ﬂ3(x) + o, (5.24)

where ﬁi(x) are functions independent of B. Since the Lc and QT are
multiplied by short ranged functions with a typical range of ~ 1.5 fm

their main contribution comes from small distances. However ﬂ.> () are

-

quite small at small r as can be seen from Fig. 32, and hence the exchange

o . . o al
part of E is also quite linear in B .

2B
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Table XTIT
Yy, = pn/p R Yp = pﬁlo
20 = ynin + ypﬁp s RT f ynlnnyplp
<]> = 1 <r> “82
dir ? dir
2 2 2 2 % 2 2
<L >dir - 7;(ynkF +yka ) ? <L ?éir - jgis.(ynkF *yka
_ n p n 2]
4 2 4 2
= : + = -
<L ﬁir 2<1 éir + AHB . <1, T>dir_ 2<L r>dir + A-B
_12 4. 2.4 2,4
A 175 T {ynkF + kF }
n P
Y S 2 .2
B =335 T ynyp{S(k_F +kF ) + 141cF kF o
0. P n p
<l> =L , > = g2
ex c ex T
<7z 0= <§-§> =~£ ;.322 ’ <L7T> = <r-%t> = é¥~V£2
ex ex 2 c 2 T
<L4> = 2<L2?-V> = l—(?-g)zzz s <L T> = 2<TL2?°$> = i{r'ﬁjzzz
ex 2 ¢ e ex. 2

e n .
The expectation values of 1 and 1L operators.

)
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Table XIV
WO(MB)
~-3.08
~3.02

~2.95

- =2.88

-2.81
274
~2.67
~2.60
~2.53
~2.46

~2.39

and WO(MB) at p

3 E2p
0 ~36.88
1 | ~35.14
2 ' -33.40
.3 31,65
b -29.90
.5  -28:13
6 ~26.36
.7 " =24.57
.8 . ~22.77
.9 . -20.96
99 ~19.29
The calculaﬁed E
of B?.
E,_+W (MB) at 82 = ) and .9.
2B o 77 T

E

27,

2B

-39.
-38.

~36.

~30.

~29,

-25.
-23.

~21.

.159 fm

+wo (MB)

97

17

36

.54

.71

88

03

18

31

41

68
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-30.77

~28.93

~27.09

~25.25
%

~21.76

at various values

The coefficients A and B of the last column are determined from
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33,

33.6

33
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D. Calculation of Central Correlation Chains and WOGﬁB)

The central correlation chains are treated in the FHNC approxi-
mation. In asymmetric matter we must keep track of neutron and proton
exchange loqps separately. This is done by classifying the chains as:
Gdd"Gze’ Gge, ng, Gzz, ng, Gzc and GEC. The subscripts, d for direct,
e for closed exchange loop and c¢ for incomplete chain of exchanges,
specify the ekéhange patterns at the ends of the chain.‘ The superscripts,
n for neutron and p for proton, specify the type of‘exchange loops at the

n o)
de has a neutron exchange loop at one end;'Gaz has a neutron

ends. The G
1909 at one end and a proton loop at the other, and Gic has incomplete
protﬁn exchange chain etc,

The derivation of the equations for the G's is quite straightforward,
and hence we mefely give the results. 1In the following equation A, u

- can be n or p.

We definé the generalized Slater functions:
= - [ . '
Lu ﬁu + ZGCC ; (5.25)

and partial distriburion functions:

gyq = ) exp ) | (5.26)

gge - gddcge * | (5.27)

giiNm gdd(Gzegge 22 - %.Liaku) 4  (5.28)
gh. = 7 gadly 3 R (5.29)

and the link functions:

X — -
ad " Bgq " CGqa ~ 1> (5.30)
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»d
=
i
2
™
J
2]
=

de “de de °* (5.31)
vo_ 1 ~ : :
Ao_ AW A |
Xee = Bee ™ Cee (5.33)

The integral operators that join links at neutron or proton vertices

are given by:-

0, (X(ry )iV, ) = o derkX(rik)Y(rkj) . (5.34)

The chain equations are obtained as:

- v
Saa = L 16,0gqtoi8aqmD) + 0, Bgizg )l (5.35)
v=n,p
oo Vi
Gh. = L [ (Kyghxyeh) +e (a0 (5.36)
.'\)zn’p
¢t - 7 le, (X +XA“ sgh )+ 0 (x T-300 I8 (5.37)
ee L 1Y d’ .
Y
oo u oV '
GCC = @ {X cc) . (5.38)

These chain functions are used to calculate the FHNC contribution
to WO(MB) represented by diagrams of type (33.4, 33.5) of Fig. 33. The
main contriﬁdtion of these diagrams is thought to come from terms having
i,j and k 576. The terms having i,j or k>6 give relativeiy smaller
contributioﬁ;to WZB’ and we neglect their contribution to WO(MB) in‘the
present work.

With the & , &, v. and yv_ of Table XIII we define:
e Tt Up n

n n
Gc,de =Vl T yp de ’ (5.39)



[p
I

G
T,ee

-
It

()
i

T Yok

4!

2 nn

n ee

2 nn
n ee

+

—
Tpp

_ c
h™ = exp(Gdd) .

2
p ee

2.pP
D ee

4
Vol * Yk

3

pn

zypynsea

n
v°6*P + 2y y G°F

ee

np

b3
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(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

The contribution of WOGMB) diagrams 33.4 and 33.5 of Fig. 33 is given by:

W (MBlan , = o y
o 33.4 2 i,9,k=1,6

« {hS[1+26
c

+ T(flolﬂjojfkok)[h0{82+2GT 4

: __ B
W (MBMg 5= ~ g

i,3,k=1,8 n=1,4

+ T(onflolﬂ303fkok)(h Li-

,de

Jd3r{c(floiﬂj0jfk0k)

!

+ G

c,ee

c. 2

b

+G

,de

2
ET)

2
+ (Gc de) ] -1

2 2
1,e€ r,dc) 1-8

jéBr{C(Onf101H303kak)(hCszﬂ

1}
(5.46)

2y

C

(5.47)

The calculated WO(MB) atp= ,159 fm“3 is given in Table XIV, it is quite

linear in'ﬁz.

Mote that the Wo(MB) in Table XI differs from that in Table XIV at

67)

8 =0 and 1. In the calculation of nuclear and neutronm matter we

include i) some of the terms having one or more of 1,j and k = 7,8, and

ii) single operator rings in the links of FHNC.

effects are neglected here.

9

Both these small
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E. PB-Dependence of WC and WS

The. three-body diagrams give the largest comntribution to Wc‘and
WS, and hence we first discuss their B~dependence. Any product I of
any number of 012, 023 and 031 operators can be reduced by repeated use

of the Pauli identity to the form:

= C(m) + . Z Tij(ﬁ}firj + Bfl°12x13
i<j<3 :

+ terms having o, =1,3 operators. ' (5.48)
In direct diagrams the <JI> is simply
s = (D> + g% T <, (> (5.49)
i<jg3 '
the T gives zero contribution. Hence, to the extent the 8

1"'2% 3

dependence of the £P can be neglected, the contributions of all three-
body direct Wc and WS diagrams have only BO and 82 terms.

Exchange.three body diagrams involve the functions ﬁc and 21’ and
in principle tﬁeir contribution can have 8“34 termé. However they appear
to be small.: For example the contribution of the important Wc exchange

diagram 33.6 of Fig. 33, is given by (j,p =oor t)

L ZAJ £ ? v TpPt GP3(31 -5y ad ae : (5.50)
-y 12V12F23%132 713 T12% T13 ¢ '

To extract the B dependence we expand 322 - li in powers of 82:

2

2,2 _
32 =27 = 385

+ (62y8,t )s + (322 2292 +6zoz4)s4 . (5.51)

The function multiplying Ba is much smaller than that multiplying
82 in the abdve expansion, and so we may expect these contributions to

have only Bo and 62 terms. At kF = 1.33 fm—l and r<2 fm the coefficient
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of 64 in (5.51) is < 5% of that of the 82 term.

It can be shown that in three-body Wc or WS diagrams with exchanges,
the 84 terms can come only.through the li 5 2 functions. The contribution
of such diagrams has a product of operators Il that can be reduced to the
form 5.48. It is convenient to include in this product the spin exchange
operétdrs %j(1+bi-cj), but treat the isospin exchange explicitly.  One
then has to consider the eight different possibilities in which the
particles 1, 2 and 3 in the right hand ¥ are nnn, nnp, npn, pnn, ppp, Pph,
pnp and npp.r The contribution for any given possibility can be written as
an integral éontaining the B-dependence via the Y, yp, Qn and zp. The
sum of the contributions of all the eight possibilities can be expressed,
as is done to obtain Eq. (5.50), with an integral coritaining QC, % and

T

B. To the extent all but 20 and ll can be neglected the contribution
has only Bo and 82 terms,

Four~body Wc and WS diagrams can give 34 terms. However, their
contribution is small (v 1 MeV), and so their 64 terms should also be
gmall. The B~dependence of four-body spin-~isospin and tensor-isospin
direct singie operatorlchain diagrams is easy to calcﬁlate with the
following method. The 8-dependence comes from the product Il of the four
Ti'Tj operaﬁors in the chain. The contribution depends upon the order of
the four Ti'fj operators in Ji, and the total contribution is the sum of
their contributions in all possible orders. Let us consider the simple

order:

Tl‘Tzfz'T3T3'T4T4’€l

= Ty3T10 T21729735 T3k 4k 4L - (5.52)
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In asymmetric matter the <t

iTj> is given by the matrix Qij

<Ti'{j> B QiJ = ] ig )
~ig i 0
0 0 i, (5.53)
%
=<TjTi> = Qij R (5.54)
%
and the contribution of term (5.52) is given by Tr{(Q QQQ).
. .
Both Q and,Qc can be diagonalized simultaneously to the form:
1 0 0 1 0 0
0 1-8 0 and 0 1+g 0 s
0 0 148 0 0 1~
' %
and so the Tr of a (n-s) Q matrices and s Q matrices is given by:
s % - . -
Tr @5 (QH%) = ) - + a-m )T . (5.55)

The expectation value of a product of n T T operators forming an SOR
in any order has the form (5.55) with a value of s, in range 1 to n~1
determined by the order. Thus the expectation value of the symmetrized

product is given by:

<s(T1-12r2-~;'3--—an1)> = Sgl . P2(1+(1+B)S(1-s)n“s+(1mg)s(1-+-s)““s),
“1,n-

(5.56)

where Pz gives the probability of all orders whose expectation value

. F . n R . ;
contains s ¢ matrices. The PS can be obtained from the recursion relation:

s _ 1 n~1 _apil ‘
Pn =7 {SPS + (n S)Ps—11 ) (5.57)
and
2 52 2 _ '
PO = P2 =0 , Pl =1, {(5.58)
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Equation (5.56) gives the B-dependence of four-body spin-isospin
and tensor-isospin direct single operator rings as:
<S(Ty*TaTn*TaTa*T,T,*T4)> = 3 ~ §-82 + 3-84 . {5.59) .
1 °2°2 "33 474 °1 3 3
The coefficient of 84 is non zero, but it is reasonably small. Hence
we may expect that the order of magnitude of the 84 term is probably
smaller than the contribution of four-body termg (which isfhl MeV

65,66)

at kF = 1.33 fmfl). Farlier calculations also find that the

8" term in nuclear matter energy at kf = 1.33 fm"l is less than 1 MeV.
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