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We present a software library for numerically estimating first and second order partial derivatives of
a function by finite differencing. Various truncation schemes are offered resulting in corresponding
formulas that are accurate to order O (h), O (h2), and O (h4), h being the differencing step. The derivatives
are calculated via forward, backward and central differences. Care has been taken that only feasible
points are used in the case where bound constraints are imposed on the variables. The Hessian may
be approximated either from function or from gradient values. There are three versions of the software:
a sequential version, an OpenMP version for shared memory architectures and an MPI version for
distributed systems (clusters). The parallel versions exploit the multiprocessing capability offered by
computer clusters, as well as modern multi-core systems and due to the independent character of the
derivative computation, the speedup scales almost linearly with the number of available processors/cores.

Program summary

Program title: NDL (Numerical Differentiation Library)
Catalogue identifier: AEDG_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDG_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 73 030
No. of bytes in distributed program, including test data, etc.: 630 876
Distribution format: tar.gz
Programming language: ANSI FORTRAN-77, ANSI C, MPI, OPENMP
Computer: Distributed systems (clusters), shared memory systems
Operating system: Linux, Solaris
Has the code been vectorised or parallelized?: Yes
RAM: The library uses O (N) internal storage, N being the dimension of the problem
Classification: 4.9, 4.14, 6.5
Nature of problem: The numerical estimation of derivatives at several accuracy levels is a common
requirement in many computational tasks, such as optimization, solution of nonlinear systems, etc. The
parallel implementation that exploits systems with multiple CPUs is very important for large scale and
computationally expensive problems.
Solution method: Finite differencing is used with carefully chosen step that minimizes the sum of the
truncation and round-off errors. The parallel versions employ both OpenMP and MPI libraries.
Restrictions: The library uses only double precision arithmetic.
Unusual features: The software takes into account bound constraints, in the sense that only feasible points
are used to evaluate the derivatives, and given the level of the desired accuracy, the proper formula is
automatically employed.
Running time: Running time depends on the function’s complexity. The test run took 15 ms for the serial
distribution, 0.6 s for the OpenMP and 4.2 s for the MPI parallel distribution on 2 processors.
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✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
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1. Introduction

Estimating derivatives is a common subtask in many applications. For example, the majority of optimization methods employ the
gradient and/or the Hessian of the objective function [1–5], while for the solution of nonlinear systems the Jacobian matrix [4,5] is
required.

There are several methods for calculating derivatives. Methods that manipulate symbolically analytic expressions and provide the
derivative in closed form [6,7], are exact but of limited applicability. Automatic differentiation (AD) [8] is a promising alternative that has
been rather recently developed. Given the source code that implements a function, the AD software creates the code for its derivative
exploiting repeated application of the chain rule. Although this is a powerful technique, the complexity of the process is considerable and
sometimes the gains are marginal.

In a growing number of real world applications in science and engineering, the underlying functions are represented by large and
complicated computer codes and the user may find it difficult or almost impossible to follow the original program (if it is available in
source form) and develop the corresponding code for the derivative. An alternative is offered by finite differencing, where the derivatives
are approximated from function values at suitably chosen points. The corresponding formulae may be derived in a number of ways, and
a detailed classification is given in [9]. Recently Khan and Ohba [10] reported formulas based on Taylor expansion, suitable for highly
oscillating functions and Li [11] extended this method by employing equally and unequally spaced points to estimate derivatives of
arbitrary order.

Derivative estimation via finite differencing is simple but computationally expensive, since it requires a number of function evaluations.
Moreover there are several applications where the time for a single function call is substantial. For example, the determination of stable
molecular conformations via “molecular mechanics” [12,13], ab initio quantum mechanical structure calculations [13,14], construction of
potentials for the atomistic simulation of materials [15,16], the construction of nuclear forces [17], phase-shift analysis from nucleon–
nucleon scattering data [18], the solution of partial differential equations via Galerkin type of methods [19–21] and all cases where the
function’s value is a result of a simulation. In such cases parallelism could play a key role in accelerating the process. Assuming that we
have an ample number of available processors, the cost for the derivative calculation may become almost equal to that of a single function
call if parallel processing is employed.

In the literature there exist several software packages for estimating derivatives numerically. In the GSL library [22] the authors provide
a five-point rule for central differences and four-point rules for forward/backward differences using an adaptive scheme to achieve the
desired accuracy. NAG library [23] provides subroutine D04AAF that calculates derivatives up to 14th order for a univariate function using
an extended Neville’s algorithm [24,25]. In the book of Mathews [26] three subroutines are offered for differentiating univariate functions,
one of which takes in account upper and lower variable bounds. The numDeriv package [27] differentiates multivariate functions using
Richardson extrapolation and calculates the Jacobian and Hessian matrices. Package DIFF [28] differentiates univariate functions up to
the third order using Neville’s process. Mathematica [6] provides a command (ND) for differentiation up to any order, using Richardson’s
extrapolation to the limit. Package LNIDIF [29] calculates first and second order derivatives having non-uniformly spaced points, out to
three dimensions. IMSL library provides subroutine DERIV [30] for calculating up to third order derivatives of univariate functions. From
the above only [27] supports multivariate functions, while [29] is limited to three-dimensional functions. Note that the implementation of
these packages is sequential, hence they cannot exploit the advantage offered by the architecture of distributed or parallel systems. This ca-
pability is important and that is why even automatic differentiation packages, such as [31], have followed the parallel implementation path.

The software described in this article, supports multivariate functions, respects variable bounds, offers several prescribed accuracy
levels, and is implemented using state of the art parallel techniques in the framework of MPI [32] and OpenMP [33] platforms. The
rest of the paper is organized as follows. In Section 2 we provide derivative formulas. In Section 3 we briefly sketch the parallelization
strategy followed, and in Section 4 we describe the interface of the subroutines included in the library. Installation instructions are given
in Section 5. Finally in Section 6 we present and analyze numerical experiments that concern both the accuracy and the efficiency of the
software. In the software’s distribution extensive test runs are included.

2. Derivative formulae

In the following, we present derivative formulae using forward differences (FD), backward differences (BD), and central differences
(CD), for several levels of accuracy. The formulae for FD and BD are common. FD use positive while BD use negative differencing step.
The reason for this variety is to handle the bound constraints case, i.e. when xi ∈ [ai,bi]. Consider the case where the derivative at the
bound xi = ai is desired. Then the proper formula to use is from the forward difference class, since otherwise infeasible x-values will be
used, which may lead to numerical errors. (Imagine, for example, a quantity under the square root sign that becomes negative when x is
infeasible.) The software takes into account bound constraints, in the sense that only feasible points are used to evaluate the derivatives,
and given the level of the desired accuracy, the proper formula is automatically employed. In the case where there are no bounds or when
the bounds are not violated, the default selection is the FD formula for O (h) and the CD formulae for O (h2) and O (h4).

2.1. First order derivatives

The formulae of this section are used to evaluate the gradient of a scalar function and the Jacobian of a vector function. Each formula
uses a different stepsize that is determined by approximately minimizing the total (truncation and roundoff) error [3]. In what follows we
denote by η the relative error in the calculation of f , that defaults to the machine precision in absence of such information.

(1) Accurate to order O (h)

h = ±√
η max{1, |x|}.

FD/BD formula:

df (x)

dx
≈ f (x + h) − f (x)

h
. (1)
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
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(2) Accurate to order O (h2)

h = ±η1/3 max{1, |x|}.
(a) CD formula:

df (x)

dx
≈ f (x + h) − f (x − h)

2h
. (2)

(b) FD/BD formula:

df (x)

dx
≈ 4 f (x + h) − 3 f (x) − f (x + 2h)

2h
. (3)

(3) Accurate to order O (h4)

h = ±η1/5 max{1, |x|}.
(a) CD formula:

df (x)

dx
≈ 1

3

(
4

f (x + h) − f (x − h)

2h
− f (x + 2h) − f (x − 2h)

4h

)
. (4)

(b) FD/BD formula:

df (x)

dx
≈ 1

21

(
64

f (x + h) − f (x)

h
− 56

f (x + 2h) − f (x)

2h
+ 14

f (x + 4h) − f (x)

4h
− f (x + 8h) − f (x)

8h

)
. (5)

The gradient of a function f (x), x ∈ RN is calculated as:

∂ f (x)

∂xi
= df (x + αei)

dα

∣∣∣∣
α=0

, ∀i = 1,2, . . . , N,

where ei is the unit vector in the ith direction. The gradient is coded using all formulae (1) to (5).
The Jacobian of a vector function F T (x) = ( f1(x), f2(x), . . . , f M(x)) is given by:

Jti = ∂ ft(x)

∂xi
= dft(x + αei)

dα

∣∣∣∣
α=0

with t = 1,2, . . . , M and i = 1,2, . . . , N . Formulae up to O (h2) are implemented (only formulae (1), (2) and (3)).

2.2. Second order derivatives

The library offers two options for the estimation of the Hessian elements. If the gradient gi(x) = ∂ f (x)
∂xi

is available, the Hessian may be
estimated by differencing the gradient, otherwise it is estimated using function values.

2.2.1. Using the gradient
(1) Accurate to order O (hi) + O (h j)

hk = ±√
η max{1, |xk|} for k = i, j.

FD/BD formula:

∂2 f (x)

∂xi∂x j
≈ 1

2

(
gi(x + h je j) − gi(x)

h j
+ g j(x + hiei) − g j(x)

hi

)
. (6)

(2) Accurate to order O (h2
i ) + O (h2

j )

hk = ±η1/3 max{1, |xk|} for k = i, j.
(a) FD/BD formula:

∂2 f (x)

∂xi∂x j
≈ 1

2

(
4gi(x + h je j) − gi(x + 2h je j) − 3gi(x)

2h j
+ 4g j(x + hiei) − g j(x + 2hiei) − 3g j(x)

2hi

)
. (7)

(b) CD formula:

∂2 f (x)

∂xi∂x j
≈ 1

2

(
gi(x + h je j) − gi(x − h je j)

2h j
+ g j(x + hiei) − g j(x − hiei)

2hi

)
. (8)

2.2.2. Using function values
(1) Accurate to order O (hi) + O (h j)

hk = ±η1/3 max{1, |xk|} for k = i, j.
FD/BD formula:

∂2 f (x)

∂xi∂x j
≈ 1

hih j

(
f (x + hiei + h je j) − f (x + hiei) − f (x + h je j) + f (x)

)
. (9)

(2) Accurate to order O (hih j)

hk = ±η1/4 max{1, |xk|} for k = i, j.
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
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(a) FD/BD formula:
Off-diagonal elements:

∂2 f (x)

∂xi∂x j
≈ 1

4hih j

(
9 f (x) + 16 f (x + hiei + h je j) + f (x + 2hiei + 2h je j) − 4 f (x + hiei + 2h je j) − 4 f (x + 2hiei + h je j)

− 12 f (x + hiei) − 12 f (x + h je j) + 3 f (x + 2hiei) + 3 f (x + 2h je j)
)
. (10)

Diagonal elements:

∂2 f (x)

∂x2
i

≈ 1

h2
i

(
2 f (x) − f (x + 3hiei) + 4 f (x + 2hiei) − 5 f (x + hiei)

)
. (11)

(b) CD formula:
Off-diagonal elements:

∂2 f (x)

∂xi∂x j
≈ 1

4hih j

(
f (x + hiei + h je j) + f (x − hiei − h je j) − f (x + hiei − h je j) − f (x − hiei + h je j)

)
. (12)

Diagonal elements:

∂2 f (x)

∂x2
i

≈ 1

h2
i

(
f (x + hiei) + f (x − hiei) − 2 f (x)

)
. (13)

(c) Mixed CD and FD(BD) formula:

∂2 f (x)

∂xi∂x j
≈ 1

4hih j

(
4
(

f (x + hiei + h je j) − f (x + hiei − h je j)
) − 3

(
f (x + h je j) − f (x − h je j)

)

− (
f (x + 2hiei + h je j) − f (x + 2hiei − h je j)

))
. (14)

3. Parallelization strategy

For the shared-memory parallelization of the Numerical Differentiation Library (NDL) we have used OpenMP, the standard programming
model for a wide range of parallel platforms including small-scale SMPs and emerging multi-core processors. OpenMP defines a portable
programming interface based on directives, i.e. annotations that enclose loops and sections of code. In addition, it provides a means of
seamless parallelization of NDL, as it allows the construction of a parallel program as a natural extension of its sequential counterpart.
To achieve optimal load balance and speedup in NDL, we exploit its inherent nested parallelism [34], that results from the multiple
function evaluations performed at each coordinate direction. Nested parallelism is a major feature of OpenMP that allows multiple levels
of parallelism to be active simultaneously. Nowadays, several research and commercial OpenMP compilers support more than one level of
parallelism.

The parallelization of the software library on multiprocessor clusters has been based on the master–worker programming paradigm,
a fundamental approach for parallel and distributed computing. In NDL, task parallelism is possible due to the independent function
evaluations assigned by the master to the workers. For each function evaluation, the master provides the input vector x to the worker
and receives the computed function value f (x). The parallel version of NDL has been coded using the LWRPC library [35], a runtime
environment which is part of the software and provides a lightweight framework for executing task parallelism on top of MPI. LWRPC
is a flexible and portable runtime library that implements a two-level thread model (where user-level threads run on top of kernel-level
threads [36]) on clusters of multiprocessors, trying to exploit the shared-memory hardware whenever this is available.

It provides transparent data movement and load balancing and allows for static and dynamic scheduling of tasks. Furthermore, it sup-
ports multiple levels of parallelism and enables the same code to run efficiently on both distributed and shared memory multiprocessors.

In LWRPC, a task is represented with a data structure, called work descriptor. Tasks are distributed to the available nodes and eventually
executed on top of user-level threads. The same approach has also been followed for the master which is the primary task. An MPI process
runs on each cluster node and utilizes one or more kernel threads that execute these tasks. Moreover, task submission and management
is performed completely asynchronously by means of a special per-node server thread. There are ready queues where tasks are submitted
for execution. The submission of a work descriptor to a local queue is always performed through hardware shared memory, otherwise
appropriate messages are sent to the server thread of the remote node. Each work descriptor (i.e. task) is associated with an owner node.
If a task finishes on its owner node, its parent is notified directly through shared memory. Otherwise, a message is sent to the owner
node and this notification is performed by the server thread of that node.

When the application is executed on shared memory machines, the runtime library, and accordingly the application, operates exclu-
sively through the available hardware. However, whenever a task is inserted on a remote node, its data has to be sent explicitly. In this
case, we associate each work descriptor with the arguments (data) of its corresponding function, similarly to the Remote Procedure Call
protocol [37]. For each argument, the user specifies its MPI data type and number of elements, an intent attribute, and optionally a reduc-
tion operator. These MPI-specific details are the only references made to message passing programming at the user level. Note that, the
explicit data movement is performed transparently to the user.

The parallel routines that NDL exports to MPI programs are designed to be called by all MPI processes that participate in the program
execution, similarly to the MPI collective communication routines. This design adheres to the SPMD (Single Program Multiple Data) exe-
cution model that MPI supports by default. When an NDL parallel routine is invoked, the execution model switches to master–worker and
the thread of the process with rank 0 becomes responsible for distributing the tasks to the workers and gathering the results. In NDL, each
task corresponds to a function evaluation at a given point. Before returning from the library call to the user program, the execution model
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
doi:10.1016/j.cpc.2009.02.004
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Fig. 1. Library’s Programming Model.

switches back to SPMD and the results are broadcast from the master to the rest of the MPI processes. This is schematically illustrated in
Fig. 1.

In the case of second order derivatives we use a nested parallelization model that is provided by the LWRPC library. By nested we
mean that each element of the Hessian is calculated, as a first level job, by a single worker. That leads to (N2 + N)/2 first level jobs. Every
first level job is responsible to perform function/gradient evaluations, second level jobs, according to the desired accuracy and the bounds.
By inspecting the formulae of the previous section, it is readily deduced that the required number of second level jobs ranges between
two and nine.

4. User interface

We have implemented subroutines for calculating gradients, Hessians and Jacobians. In all cases we provide serial, OpenMP-parallel and
MPI-parallel subroutines. Every subroutine has a standard and an advanced interface. The advanced interface allows the user to specify
bounds on the variables and an estimate for the relative accuracy of the function evaluation. It also returns the number of function calls,
error codes and optionally issues verbose output.

4.1. Naming conventions

We use the following naming convention for the subroutines:

xNDLyz ( arguments )

where x, denotes the type of parallelization and can be:

empty: for the serial version
O: for the OpenMP-parallel version
P: for the MPI-parallel version

y denotes the order of the derivative and can be:

G: for the gradient
HF: for the Hessian using function values
HG: for the Hessian using analytic gradients
J: for the Jacobian
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
doi:10.1016/j.cpc.2009.02.004
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z denotes the interface type correspondingly and can be:

empty: for the standard interface
A: for the advanced interface

where by empty is meant that the symbol is missing.
For example, subroutine PNDLGA stands for the MPI-parallel code (P) for the gradient calculation (G) using the advanced interface (A).

Also, NDLJ is the serial subroutine to calculate the Jacobian matrix using the standard interface.

4.2. Common arguments

The provided subroutines share a number of common arguments which are described bellow.

X (input) Array containing the point at which the calculation is desired.
N (input) The dimensionality of the function.
XL (input) Array containing the lower bounds on the variables.
XU (input) Array containing the upper bounds on the variables.
FEPS (input) The user’s estimate for the relative precision of the function evaluation. If FEPS=0 it is reset to the machine’s precision.
IORD (input) Requested order of accuracy. Possible values for gradients are 1, 2, 4 and for Hessians and Jacobians 1, 2.
IPRINT (input) Controls the amount of printout from the routine. Note that all output appears on the standard output device. Possible

values are:

0 No printout at all.
1 Fatal error messages are printed.
2 Warning messages are printed.
3 Detailed information is printed (the formula that was used, differentiation steps and the resulting derivatives

vector).

NOC (output) Number of calls to the function being differentiated.
IERR (output) Error indicator. Possible values are:

0 No errors at all.
1 Improper IORD value.
2 The supplied N is less than 1.
3 Some of the supplied upper bounds (XU) are less than the corresponding lower bounds (XL).
4 Some of the supplied variables are out of bounds.
5 The value of FEPS is incorrect (less than 0 or greater than 1).
6 The supplied IPRINT is incorrect.
7 N exceeds the maximum allowed value (MAXN). MAXN must be increased appropriately and the library must be

reconfigured.
8 There is not enough internal storage. MAXN must be increased to match the number of squared terms (M) and

the library must be reconfigured.
9 The number of squared terms (M) is less than 1.

4.3. Gradient calculation

Given a multidimensional function (F), these routines return the gradient vector (G) by applying a numerical differentiation formula
according to the desired order of accuracy (IORD). The user provided function F must be declared as:

FUNCTION F ( X, N )
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(N)

Standard interface. SUBROUTINE NDLG (F,X,N,IORD,G)

Advanced interface. SUBROUTINE NDLGA (F,X,N,XL,XU,FEPS,IORD,IPRINT,G,NOC,IERR)

F (input) The function to be differentiated.
G (output) Array containing the resulting gradient vector

4.4. Jacobian calculation

Given a multidimensional function that is written as a sum of squared terms (residuals):

F (x) =
M∑

f i(x)2
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
doi:10.1016/j.cpc.2009.02.004
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these routines return the Jacobian matrix (FJ) by applying a numerical differentiation formula according to the desired order of accuracy
(IORD). The user provided subroutine must declared as:

SUBROUTINE RSD ( X, N, M, F )
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(N), F(M)

Standard interface. SUBROUTINE NDLJ (RSD,X,N,M,IORD,FJ,LD)

Advanced interface. SUBROUTINE NDLJA (RSD,X,N,M,XL,XU,FEPS,IORD,IPRINT,FJ,LD, NOC,IERR)

RSD (input) A subroutine that returns the residuals.
M (input) The number of squared terms.
LD (input) Leading dimension of matrix FJ.
FJ (output) The Jacobian matrix. J i j(x) = ∂ f i(x)/∂x j .

4.5. Hessian calculation

4.5.1. Using gradients
Given a routine (GRD) that evaluates analytically the first partial derivatives of a function, these routines return the Hessian matrix

(HES) by applying a numerical differentiation formula according to the desired order of accuracy (IORD). The user provided subroutine
GRD must be declared as:

SUBROUTINE GRD ( X, N, G )
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(N), G(N)

Standard interface. SUBROUTINE NDLHG (GRD,X,N,IORD,HES,LD)

Advanced interface. SUBROUTINE NDLHGA (GRD,X,N,XL,XU,FEPS,IORD,IPRINT,HES,LD,NOC,IERR)

GRD (input) A subroutine that returns the gradient vector (G), given the values of the variables (X).
LD (input) Leading dimension of matrix HES.
HES (output) Array containing the resulting Hessian matrix. Note that only the lower triangular part (plus the diagonal elements) is

returned.

4.5.2. Using function values
Given a multidimensional function (F), these routines return the Hessian matrix (HES) by applying a numerical differentiation formula

according to the desired order of accuracy (IORD). The user provided function F must be declared as:

FUNCTION F ( X, N )
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(N)

Standard interface. SUBROUTINE NDLHF (F,X,N,IORD,HES,LD)

Advanced interface. SUBROUTINE NDLHFA (F,X,N,XL,XU,FEPS,IORD,IPRINT,HES,LD,NOC,IERR)

F (input) The function to be differentiated.
LD (input) Leading dimension of matrix HES.
HES (output) Array containing the resulting Hessian matrix. Note that only the lower triangular part (plus the diagonal elements) is

returned.

5. Installation instructions and sample program

In this section we describe in brief how to configure and install the software and we provide a basic sample program for the MPI-
parallel case.

5.1. Installation instructions

The software is distributed as a tar.gz file and can be uncompressed and extracted by issuing

gunzip ndl-1.0.tar.gz
tar -xvf ndl-1.0.tar.gz

A directory called ndl-1.0 will be created with three subdirectories serial, openmp and mpi containing the serial, OpenMP–parallel
and MPI-parallel distributions respectively. Any of the three distributions can be installed by entering the corresponding directory and
executing the following steps:
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
doi:10.1016/j.cpc.2009.02.004
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(1) Configure the package:

./configure

In the case of OpenMP one must specify the Fortran compiler with the appropriate options. For example:

./configure F77=gfortran FFLAGS=-fopenmp

./configure F77=ifort FFLAGS=-openmp

Other configuration choices include the specification of the installation directory:

./configure --prefix=<install-dir>

the definition of the desired C and Fortran compilers:

./configure CC=<path-to-mpicc> F77=<path-to-mpif77>

and the definition of the maximum problem dimension:

./configure --with-maxn=<num>

Further help for the configuration parameters can be obtained by entering:

./configure --help

(2) Build the library:

make

For each distribution a library file will be created, libndl.a for the serial version, libpndl.a for the OpenMP-parallel version and
libondl.a for the MPI-parallel version. This step also compiles the provided test run code.

(3) Install the library:

make install

By default the NDL library files will be placed in /usr/local/lib.

5.2. Sample program

We present a sample program (file osample.f) that uses the OpenMP version of our library in order to calculate the gradient of the
function f (x1, x2) = x1 cos(x2) + x2 cos(x1) using order O (h2).

program otest
implicit double precision (a-h, o-z)
parameter (n=2)
dimension x(n), g(n)
external f

C
x(1) = 1.0d0
x(2) = 1.1d0
iord = 2
call ondlg ( f, x, n, iord, g )
print *, ’point ’, (x(i), i=1, n)
print *, ’gradient ’, (g(i), i=1, n)
end

c----------------------------------------------------------
function f(x,n)
implicit double precision (a-h, o-z)
dimension x(n)
f = x(1)*cos(x(2))+x(2)*cos(x(1))
end

The above sample program can be compiled and executed using:

$ gfortran -o osample osample.f -londl
$ export OMP_NUM_THREADS=2
$./osample

Command export OMP_NUM_THREADS=<num> sets the number of worker threads in the OpenMP runtime library [33]. The MPI
version of the above a sample program is presented bellow (file psample.f).
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
doi:10.1016/j.cpc.2009.02.004
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program ptest
implicit double precision (a-h, o-z)
parameter (n=2)
dimension x(n), g(n)
external f
include ’mpif.h’
call mpi_init(mpierror)

c ...
x(1) = 1.0d0
x(2) = 1.1d0
iord = 2
call pndlg ( f, x, n, iord, g )

c ...
call mpi_comm_rank (mpi_comm_world,irank,ierr)
if (irank.Eq.0) then

print *, ’point ’, (x(i), i=1, n)
print *, ’gradient ’, (g(i), i=1, n)

endif
c ...

call mpi_finalize(mpierror)
end

c----------------------------------------------------------
function f(x,n)
implicit double precision (a-h, o-z)
dimension x(n)
f = x(1)*cos(x(2))+x(2)*cos(x(1))
end

The above sample program can be compiled and executed using:

$ mpif77 -o psample psample.f -lpndl
$ mpirun -n 2./psample

6. Performance results

In Table 1 we report the relative error defined as:

err(k) = | f (k)(x) − f (k)

f d |
max(1, | f (k)(x)|)

where f (k)(x) is the exact kth order derivative and f (k)

f d is a finite difference approximation to it. We used the five test functions listed in
the first column. The relative error has been calculated at eleven equidistant points in [−1,1]. In columns 2–4 we report the maximum
(among these points) err(1) , for the O (h), O (h2) and O (h4) formulae. Correspondingly in columns 5–6 we report the maximum err(2) for
the O (h) and O (h2) formulae.

In order to measure the performance of the parallel-NDL implementation we have conducted extensive tests for both OpenMP and
MPI-parallel versions. We have performed two sets of experiments:

E1: We used a 500-dimensional test function (without imposing bounds on the variables) and we calculated the gradient with O (h4)

precision. That leads to a total of 2000 function evaluations. We have arranged for function evaluation time to be 1, 10, and 100 ms,
respectively, via appropriate artificial delays.

E2: We used a 20-dimensional test function (without imposing bounds on the variables) and we calculated the gradient with O (h4)

precision. In this setting the total number of function evaluations is 80. The computational cost for each function call was again set to
be 1, 10, and 100 ms, respectively.

We measure the speedup s defined as s = T1/T p , where T1 is the time required for execution on one processor and T p is the real time
required when running on p processors.

Table 1
Relative errors in several example functions.

Function First order Second order

O (h) O (h2) O (h4) O (h) O (h2)

sin x 1.5E–08 2.0E–11 1.1E–13 1.0E–05 5.3E–09
ex 2.0E–08 2.4E–11 1.9E–13 1.4E–05 5.4E–09
x2 sin x 4.7E–08 1.0E–10 6.7E–13 6.0E–05 2.5E–08
xe−2x + sin 3x 1.5E–07 2.2E–10 5.1E–12 2.2E–04 1.2E–07
x7 + 2x5 − 5x 5.3E–07 2.7E–09 6.2E–11 8.2E–05 1.4E–07
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
doi:10.1016/j.cpc.2009.02.004
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Fig. 2. Speedup for experiment E1 (N = 500).

Fig. 3. Speedup for experiment E2 (N = 20).

6.1. MPI-parallel

Our experiments are performed on a 200 node Hewlett-Packard XC cluster system. Each node has 2 AMD Opteron-248 processors and
4 GB main memory, while the nodes are interconnected with Gigabit Ethernet.

In Fig. 2 we present the results from experiment E1. The solid line represents the ideal speedup. For the 1 and 10 ms test functions
where the communication times are comparable to execution times, the speedup is reduced to approximately 35 and 70% away from the
ideal, while the speedup for the 100 ms function almost coincides with the ideal as it was expected. The results for experiment E2 are
presented in Fig. 3, where similar behavior is observed. The steps in the curves for the 10 and 100 ms functions are due to the way the
required 80 function evaluations are distributed to the available processors. If the number of processors p divides exactly the number of
tasks nt , then all p processors are employed for nt/p cycles. Otherwise p processors are fully utilized for [nt/p] cycles, and one more
cycle is needed employing nt mod p processors.
Please cite this article in press as: C. Voglis et al., A numerical differentiation library exploiting parallel architectures, Computer Physics Communications (2009),
doi:10.1016/j.cpc.2009.02.004
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Fig. 4. OpenMP implementation speedup.

6.2. OpenMP-parallel

The same experiments were conducted on a shared-memory multiprocessor system equipped with 4 Dual-Core 3.0 GHz Intel Xeon
processors and 4 GB main memory, running 64-bit Debian Linux. In Fig. 4 we present the results only for the 1 ms test function since
the others (10, 100 ms test functions) almost coincide with the ideal speedup. We notice a 19% reduction from the ideal speedup when
N = 20.

7. Test run description

Extensive test runs for the serial and parallel versions of the library were performed and are available with the distribution. The user
is advised to repeat these runs in order to validate the installation. The relevant files are located in a subdirectory named test.
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