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Abstract

A new type of Neural Network is presented, with a single hidden layer and
an infinite number of neurons. To render the transition to the continuum, a
neuron density is introduced, the network weights become functions of a
continuous variable, and the conventional sum is replaced by an integral.
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Feed Forward Neural Networks

There is a plethora of Feed Forward Neural Networks that differ in:

Architecture: Shallow
Deep

Number of Nodes: Few or Many
Activation: Sigmoid: σ(x) = [1 + exp(−x)]−1

tanh(x) = 2σ(2x)− 1

Gaussian: G(x, µ, σ) = e−
1
2
( x−µ

σ
)2

Multiquadric:
√

1 + x2
Thin plate spline: x2 ln(x)
Legendre, Chebychev, Bernstein, ...

Functionally Weighted Neural Networks with Infinite Number of Neurons CSE, University of Ioannina



Why a new Neural Network The Way to Higher Accuracy Gaussian RBF Networks Infinite number of nodes Functionally Weighted RBF Choices for S and ρ(s) Gauss-Chebyshev Quadrature FW-RBF Final Form Parametrize-Economize Simple Case Illustration Posteriori Ascertainments Numerical Experiments Extrapolation Performance Training Techniques Small Residual Problems Solving ODEs & PDEs

Why a new Neural Network, and what is expected from it?

A new network in order to be competitive should offer:

I Higher Accuracy
I Parametric Economy
I Enhanced Interpolation Generalization
I Enhanced Extrapolation Generalization

”Parametric Economy” and ”Generalization”
are intimately correlated !!!
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The Way to Higher Accuracy

It is proved1 that single hidden layer networks can approximate any
function, to any desired degree of accuracy provided that

sufficient number of neurons are available.

Hence, to obtain ultimate accuracy,
the number of neurons should tend to Infinity.

∞
1K. Hornik, M. B. Stinchcombe, H. White, Neural Networks 2(1989)359-366,

Multilayer feedforward networks are universal approximators
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Gaussian RBF Networks

A Gaussian RBF Network with K nodes (neurons), is given by:

NG(x, θ) =
K∑
i=1

Aie
− 1

2

(
|x−µi|

σi

)2

≡
K∑
i=1

AiG(x, µi, σi)

where θ stands collectively for all {Ai, µi, σi}.

What happens when K → ∞ ?

Functionally Weighted Neural Networks with Infinite Number of Neurons CSE, University of Ioannina



Why a new Neural Network The Way to Higher Accuracy Gaussian RBF Networks Infinite number of nodes Functionally Weighted RBF Choices for S and ρ(s) Gauss-Chebyshev Quadrature FW-RBF Final Form Parametrize-Economize Simple Case Illustration Posteriori Ascertainments Numerical Experiments Extrapolation Performance Training Techniques Small Residual Problems Solving ODEs & PDEs

Disaster ... at First Sight

1. Number of parameters (weights): Infinite !!!
2. Computational Task: Impossible !!!
3. Approximation: Exact but Worthless !!!
4. Generalization: Infeasible !!!

With four parameters I can fit an Elephant,
and with five I can make him wiggle his Trunk.

John von Neumann
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Transition to the Continuum2

In Physics this is a familiar limiting procedure ...

I The continuum limit of a chain, is a string.
I Discrete points are replaced by a point density.
I Differences become Derivatives.
I Indexed quantities become functions.
I Sums become Integrals.

2K. Blekas and I. E. Lagaris,“Artificial neural networks with an infinite number
of nodes”. IOP Conf. Series: Journal of Physics: Conf. Series 915 (2017) 012006
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Functionally Weighted Networks

Standard RBF: NG(x, θ) =
K∑∑∑

i=1

Aie
−1

2

(
|x−µi|

σi

)2

Introduce the neural node density: ρ(s) ≥ 0, s ∈ S ⊂ R

Such that: K =

∫∫∫
S
ρ(s)ds → ∞

• Ai → A(s) • µi → µ(s) • σi → σ(s) •
∑∑∑
i

→
∫∫∫

S
dsρ(s)

FW-RBF:
• NG(x, θ) → NFW(x, θ) ≡

∫∫∫
S
dsρ(s)A(s)e−

1
2

(
|x−µ(s)|

σ(s)

)2
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Choices for S and ρ(s)

Multitude of choices that satisfy:
∫
S dsρ(s) → ∞, ρ(s) ≥ 0

1. S = (−∞,∞), ρ(s) = 1

2. S = [0, 1], ρ(s) = s−1

3. S = [−1, 1], ρ(s) = (1− s2)−1

4. · · · · · · · · ·
We have considered the third option: ρ(s) =

1

1− s2
, with s ∈ [−1, 1]

NFW(x, θ) ≡
+1∫∫∫
−1

ds
1 − s2

A(s)e−
1
2

(
|x−µ(s)|

σ(s)

)2
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Gauss-Chebyshev Quadrature

A Technical Note
The Gauss-Chebyshev rule, known to be highly accurate, is given by:

+1∫∫∫
−1

f(s)
√
1 − s2

ds ≈
π

N

N∑∑∑
i=1

f(si)

where: si = cos
(
2i− 1

2N
π

)
, ∀ i = 1, 2, · · · ,N
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FW-RBF Final Form

Setting: w(s) ≡ A(s)√
1− s2

, the expression for the FW-RBF becomes:

NFW(x, θ) =
+1∫∫∫
−1

ds
√
1 − s2

w(s)e−
1
2

(
|x−µ(s)|

σ(s)

)2

Remaining task is to choose the functions w(s), µ(s), σ(s).
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Parametrize-Economize

Let the data dimension be d. Then µ = (µ1, · · · , µd)
T ∈ Rd.

Polynomial forms:

• w(s) =
Lw∑
i=0

wisi • µm(s) =
Lµ∑
i=0

µmisi • σ(s) =
Lσ∑
i=0

σisi

Total number of parameters: L = Lw + d× Lµ + Lσ + d+ 2

Ellipsoidal forms:
µi(s) = ui + vi

s+ bi√∑d
k=1(s+ bk)2

, w(s) and σ(s) as above.

Total number of parameters: L = Lw + Lσ + 3× d+ 2

The number of adjustable parameters is certainly finite !!!

Functionally Weighted Neural Networks with Infinite Number of Neurons CSE, University of Ioannina



Why a new Neural Network The Way to Higher Accuracy Gaussian RBF Networks Infinite number of nodes Functionally Weighted RBF Choices for S and ρ(s) Gauss-Chebyshev Quadrature FW-RBF Final Form Parametrize-Economize Simple Case Illustration Posteriori Ascertainments Numerical Experiments Extrapolation Performance Training Techniques Small Residual Problems Solving ODEs & PDEs

Simple Cases

For Lµ = 1 and Lσ = 0,
µ(s) = µ0 + sµ1 and σ(s) = σ0

The locus of µ(s), the width σ0, and the data points.
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Posteriori Ascertainments

I Performed tests using data sets created by known functions.
I Each set was split in two subsets for Training and Testing.
I The training was performed both with and without “noise”.
I The testing subset remained clean (noise free).

Our Findings:
I Generalization in interpolating is superior.
I The generalization performance relative to other networks,

increases with the noise level. (Noise Filter).
I FWNN is by far more economical compared to other networks.
I The generalization in extrapolating, clearly has an edge.
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Test functions in 1-d
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(a) f(x) = 2x2 + exp(π/x) sin(2πx) (b) f(x) = x sin(x) cos(x)
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(c) f(x) = sin(x2)− 0.25x (d) f(x) = x sin(x2)
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NMSE over the TEST set
Method medium noise high noise

dataset 1(a)
FWNN 0.63 1.43

MLP (best) 0.59 (K = 30) 1.73 (K = 30)
RBF (best) 1.17 (K = 10) 1.78 (K = 10)

dataset 1(b)
FWNN 0.04 0.12

MLP (best) 2.92 (K = 100) 5.43 (K = 100)
RBF (best) 1.19 (K = 10) 3.05 (K = 10)

FWNN configuration: Lw = 5, Lµ = 1, Lσ = 1.
Number of Parameters. FWNN: 10, MLP: 90/300, RBF: 30
NMSE stands for the “Normalized Mean Squared Error”:

ENMSE(θ) =
1

M

M∑
i=1

(
N(xi, θ)− f(xi)
max(1, |f(xi)|)

)2

× 100
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NMSE over the TEST set
Method medium noise high noise

dataset 1(c)
FWNN 0.03 0.24

MLP (best) 3.67 (K = 30) 5.71 (K = 10)
RBF (best) 3.83 (K = 20) 6.55 (K = 50)

dataset 1(d)
FWNN 1.29 2.01

MLP (best) 23.96 (K = 100) 48.19 (K = 100)
RBF (best) 3.47 (K = 80) 5.77 (K = 80)

FWNN configuration: Lw = 5, Lµ = 1, Lσ = 1.
Number of Parameters. FWNN: 10, MLP: 90/300, RBF: 60/240
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Test Functions in 2-d: Exponential and Gabor functions

(a) f(x1, x2) = x1 exp(−(x21 + x22))

(b) f(x1, x2) = π
2 exp(−2(x21 + x22)) cos(2π(x1 + x2))

Functionally Weighted Neural Networks with Infinite Number of Neurons CSE, University of Ioannina



Why a new Neural Network The Way to Higher Accuracy Gaussian RBF Networks Infinite number of nodes Functionally Weighted RBF Choices for S and ρ(s) Gauss-Chebyshev Quadrature FW-RBF Final Form Parametrize-Economize Simple Case Illustration Posteriori Ascertainments Numerical Experiments Extrapolation Performance Training Techniques Small Residual Problems Solving ODEs & PDEs

The Mexican Hat Function

(c) f(x1, x2) =
sin(x21 + x22)√

x21 + x22
In each case 100 training and 1000 testing points were used.
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NMSE over the TEST set
Method medium noise high noise

dataset 2(a)
FWNN 11.14 22.83

MLP (best) 19.84 (K = 10) 71.84 (K = 10)
RBF (best) 11.98 (K = 50) 51.73 (K = 50)

dataset 2(b)
FWNN 1.55 4.66

MLP (best) 2.34 (K = 100) 7.95 (K = 100)
RBF (best) 1.69 (K = 50) 8.11 (K = 30)

dataset 2(c)
FWNN 68.99 69.82

MLP (best) 84.97 (K = 100) 110.71 (K = 100)
RBF (best) 80.42 (K = 80) 86.18 (K = 80)

Number of Parameters. FWNN: 12, MLP: 40/400, RBF: 120/200/320
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Extrapolation Performance

Extrapolation is connected to prediction.
Prediction is important !!!

Make me a prophet,
and I will make you rich !!!

I Does the FWNN extrapolate well ?
I Is there a fair systematic comparison procedure ?
I How does FWNN compare to the “competition” ?
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Comparison Setting

I Pick a test function f(x).
I Choose 150 successive equidistant points.
I Train the networks (FWNN, MLP, RBF) using the first 100 points.
I Use the last 50 points: x1, · · · , x50, for testing the extrapolation.

Extrapolation measure: ri ≡
| f(xi)− N(xi, θ)|
max(1, | f(xi)|)

, the relative deviation.

For satisfactory extrapolation, ri should be small.
Let d ∈ (0, 0.25] be an acceptable upper bound for ri, i.e. ri ≤ d.
Determine J such that: ri < d, ∀i ∈ [1, J ] and rJ+1 ≥ d.

The network with the highest index J,
is the extrapolation Winner

.
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Extrapolation Test Functions
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f1(x) = x sin(x) cos(x) f2(x) = sin(x2)− 0.25x
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Extrapolation Performances

0 5 10 15 20 25 30 35 40 45 50

 Extrapolation points

0

1

2

3

4

5

6

7

re
la

ti
v
e

 d
e

v
ia

ti
o

n
 (

r
i)

NNFW

MLP
10

RBF
10

0 5 10 15 20 25 30 35 40 45 50

 Extrapolation points

0

0.5

1

1.5

2

2.5

3

3.5

re
la

ti
v
e

 d
e

v
ia

ti
o

n
 (

r
i)

NNFW

MLP
10

RBF
10

for: f1(x) = x sin(x) cos(x) for: f2(x) = sin(x2)− 0.25x
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Extrapolation Comparison

Extrapolation index J
Network Deviation bound: d

Architecture 0.05 0.10 0.15 0.20 0.25

f1(x) = x sin(x) cos(x)
FWNN 24± 3 25± 3 35± 2 37± 2 38± 2

MLP 10 nodes 12± 2 14± 2 15± 3 16± 1 16± 1

RBF 10 nodes 14± 2 16± 2 17± 2 18± 1 19± 1

f2(x) = sin(x2)− 0.25x
FWNN 18± 1 20± 1 21± 1 21± 1 21± 1

MLP 10 nodes 6± 2 8± 1 9± 1 10± 1 11± 1

RBF 10 nodes 11± 1 13± 2 14± 2 15± 1 16± 1
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Training Techniques

“Training” a Neural Network, is an optimization problem with the
following “Sum-Of-Squares” objective function:

E(θ) =
M∑
i=1

[N(xi, θ)− yi]2 ≡
M∑
i=1

[R(xi, θ)]2

Its gradient and Hessian given by:

∇θE(θ) = 2

M∑
i=1

R(xi, θ)∇θR(xi, θ)

∇2
θE(θ) = 2

M∑
i=1

[∇θR(xi, θ)∇θR(xi, θ)T + R(xi, θ)∇2
θR(xi, θ)]
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Small Residual Problems

If the model, i.e. the Network N(x, θ), is proper, then near the
minimum point θ∗, ı.e. for ||θ − θ∗|| ≤ ϵ, R(xi, θ) ≈ 0.
This is called a “Small Residual Problem”, and in this case the

Hessian may be approximated using first derivatives only as:

∇2
θE(θ) ≈ 2

M∑
i=1

∇θR(xi, θ)∇θR(xi, θ)T

The indicated optimization methods therefore, belong to the so called
“Gauss-Newton” class, either within the “Trust-Region” framework
(Levenberg-Marquardt), or with the “line-search” approach.
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Large Residual Problems

When for ||θ − θ∗|| ≤ ϵ, R(xi, θ) ≫ 0, as for example in the
case of “very” noisy data, we have a “Large Residual Problem”.
In this case the “Gauss-Newton” approximation is not valid.

Appropriate methods are:
I “Modified Newton”
I “Quasi-Newton” (SR1, BFGS)
I “Limited Memory Quasi-Newton”
I “Conjugate Gradient” (Polak-Ribiere, Dixon, ... )
I “Hybrid Methods” (Fletcher & Xu3)

3Hybrid Methods for Nonlinear Least Squares. IMA Journal of Numerical
Analysis, 7 (1987) 371–389
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Solving ODEs & PDEs with FWNN

ANNs have been used in the past to solve ODEs and PDEs.
A set of problems was considered and solved in a work4 entitled:

“Artificial Neural Networks for solving ordinary and partial differential equations”.

These problems have since been used as benchmarks by several
authors who were developing methods for ODEs and/or PDEs,

using various kinds and architectures of neural networks.

We have applied the same methodology using the FW-RBF Network
instead of the MLP, on two of these problems (Problems #4 and #5).

4IEEE Transactions on Neural Networks, 9 (1998) 987-1000
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System of ODEs. Problem #4

dΨ1(x)
dx

= cos(x) + Ψ2
1(x) + Ψ2(x)− (1 + x2 + sin2(x))

dΨ2(x)
dx

= 2x− (1 + x2) sin(x) + Ψ1(x)Ψ2(x)

Ψ1(0) = 0, Ψ2(0) = 1, x ∈ [0, 3]

Exact solution: Ψ1(x) = sin(x),Ψ2(x) = 1 + x2
Trial Solution: Ψ1t(x) = xN1(x, θ1), Ψ2t(x) = 1 + xN2(x, θ2)
Number of Points: 10 for Training and 100 for Testing.

Preliminary Results

Network # of Parameters MAD1 MAD2
MLP 30 (= 10× 3) 2.0E-5 8.0E-5
FWNN 8 (= 3 + 3 + 2) 5.0E-5 7.0E-5
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PDE in 2-d. Problem #5

∇2Ψ(x, y) = e−x(x− 2 + y3 + 6y), (x, y) ∈ [0, 1]⊗ [0, 1]

Dirichlet BCs: Ψ(0, y) = y3, Ψ(1, y) =
1 + y3

e
Ψ(x, 0) = xe−x,Ψ(x, 1) = (x+ 1)e−x

with exact solution: Ψ(x, y) = e−x(x+ y3).
Trial Solution: Ψt(x, y) = A(x, y) + x(1− x)y(1− y)N(x, y, θ)

A(x, y) = (1− x)y3 + x
1 + y3

e
+ (1− y)x

(
e−x − e−1

)
+ y

[
(x+ 1)e−x −

(
1− x+ 2xe−1

)]
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∆Ψ(x, y) = Ψ(x, y)−Ψt(x, y)
Used a FWNN with 11 parameters (3 + 2× 3 + 2)

Plot of the difference between the exact and the calculated solutions.

A mesh of 100 points (10× 10) was used for training,
and a mesh of 900 points (30× 30) for testing.
Absolute mean deviation ≈ 1.3× 10−6.
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Conclusions

The main features of the FWNN may be summarized as:
I “Economic” in the number of parameters.
I Excellent generalization while interpolating.
I Superior extrapolation capability.
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Work to be done

I Only polynomials have been tried up to now for
w(s), µ(s), σ(s). More forms should be investigated.

I Sigmoidal FWNNs should also be explored, i.e.:

Nσ
FW(x, θ) =

∫ 1

−1

ds√
1− s2

a(s)σ(wT(s)x+ b(s))

I Extend FWNN to Deep-FWNN, to explore possible benefits.
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