Functionally Weighted Neural Networks with Infinite Number of Neurons

I. E. Lagaris

CSE, University of Ioannina

Abstract

A new type of Neural Network is presented, with a single hidden layer and an infinite number of neurons. To render the transition to the continuum, a neuron density is introduced, the network weights become functions of a continuous variable, and the conventional sum is replaced by an integral.

Talk Structure

Why a new Neural Network Infinite number of nodes Functionally Weighted RBF Posteriori Ascertainments

Numerical Experiments Extrapolation Performance Training Techniques Solving ODEs & PDEs

Feed Forward Neural Networks

There is a plethora of Feed Forward Neural Networks that differ in:

Architecture: Shallow Deep

Number of Nodes: Few or Many

Activation: Sigmoid: $\sigma(x) = [1 + exp(-x)]^{-1}$ $\tanh(x) = 2\sigma(2x) - 1$ Gaussian: $G(x, \mu, \sigma) = e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$ Multiquadric: $\sqrt{1 + x^2}$ Thin plate spline: $x^2 \ln(x)$ Legendre, Chebychev, Bernstein, ...

Why a new Neural Network, and what is expected from it?

A new network in order to be competitive should offer:

- Higher Accuracy
- Parametric Economy
- Enhanced Interpolation Generalization
- Enhanced Extrapolation Generalization

"Parametric Economy" and "Generalization" are intimately correlated !!!

The Way to Higher Accuracy

It is proved¹ that single hidden layer networks can approximate any function, to **any desired degree of accuracy** provided that **sufficient number of neurons** are available.

Hence, to obtain ultimate accuracy, the number of neurons should tend to Infinity.

¹K. Hornik, M. B. Stinchcombe, H. White, Neural Networks 2(1989)359-366, Multilayer feedforward networks are universal approximators

Gaussian RBF Networks

A Gaussian RBF Network with K nodes (neurons), is given by:

$$N_G(x,\theta) = \sum_{i=1}^K A_i e^{-\frac{1}{2} \left(\frac{|x-\mu_i|}{\sigma_i}\right)^2} \equiv \sum_{i=1}^K A_i G(x,\mu_i,\sigma_i)$$

where θ stands collectively for all $\{A_i, \mu_i, \sigma_i\}$.

What happens when $K \rightarrow \infty$?

Disaster ... at First Sight

- 1. Number of parameters (weights): Infinite !!!
- 2. Computational Task: Impossible !!!
- 3. Approximation: Exact but Worthless !!!
- 4. Generalization: Infeasible !!!

With four parameters I can fit an *Elephant*, and with five I can make him wiggle his *Trunk*.

John von Neumann

Transition to the Continuum²

In Physics this is a familiar limiting procedure ...

- The continuum limit of a chain, is a string.
- Discrete points are replaced by a point density.
- Differences become Derivatives.
- Indexed quantities become functions.
- Sums become Integrals.

²K. Blekas and I. E. Lagaris, "Artificial neural networks with an infinite number of nodes". IOP Conf. Series: Journal of Physics: Conf. Series 915 (2017) 012006

Functionally Weighted Networks

Standard RBF:
$$N_G(x,\theta) = \sum_{i=1}^{K} A_i e^{-\frac{1}{2} \left(\frac{|x-\mu_i|}{\sigma_i} \right)^2}$$

Introduce the neural node density: $\rho(s) \ge 0, s \in S \subset R$

Such that:
$$K = \int_{S} \rho(s) ds \to \infty$$

•
$$A_i \to A(s)$$
 • $\mu_i \to \mu(s)$ • $\sigma_i \to \sigma(s)$ • $\sum_i \to \int_S ds \rho(s)$

•
$$N_G(x,\theta) \to N_{FW}(x,\theta) \equiv \int_S ds \rho(s) A(s) e^{-\frac{1}{2} \left(\frac{|x-\mu(s)|}{\sigma(s)} \right)}$$

Choices for *S* and $\rho(s)$

Multitude of choices that satisfy: $\int_{S} ds \rho(s) \to \infty, \ \rho(s) \ge 0$

1.
$$S = (-\infty, \infty), \ \rho(s) = 1$$

2. $S = [0, 1], \ \rho(s) = s^{-1}$
3. $S = [-1, 1], \ \rho(s) = (1 - s^2)^{-1}$
4. ...

We have considered the third option: $\rho(s) = \frac{1}{1-s^2}$, with $s \in [-1,1]$

$$N_{FW}(x,\theta) \equiv \int_{-1}^{+1} \frac{ds}{1-s^2} A(s) e^{-\frac{1}{2} \left(\frac{|x-\mu(s)|}{\sigma(s)}\right)^2}$$

Gauss-Chebyshev Quadrature

A Technical Note

The Gauss-Chebyshev rule, known to be highly accurate, is given by:

$$\int_{-1}^{+1} \frac{f(s)}{\sqrt{1-s^2}} ds \approx \frac{\pi}{N} \sum_{i=1}^{N} f(s_i)$$

where:
$$s_i = \cos\left(\frac{2i-1}{2N}\pi\right), \forall i = 1, 2, \cdots, N$$

FW-RBF Final Form

Setting:
$$w(s) \equiv \frac{A(s)}{\sqrt{1-s^2}}$$
, the expression for the FW-RBF becomes:

$$N_{FW}(x,\theta) = \int_{-1}^{+1} \frac{ds}{\sqrt{1-s^2}} w(s) e^{-\frac{1}{2} \left(\frac{|x-\mu(s)|}{\sigma(s)}\right)^2}$$

Remaining task is to choose the functions w(s), $\mu(s)$, $\sigma(s)$.

Parametrize-Economize

Let the data dimension be *d*. Then $\mu = (\mu_1, \cdots, \mu_d)^T \in \mathbb{R}^d$.

Polynomial forms:

•
$$w(s) = \sum_{i=0}^{L_w} w_i s^i$$
 • $\mu_m(s) = \sum_{i=0}^{L_\mu} \mu_{mi} s^i$ • $\sigma(s) = \sum_{i=0}^{L_\sigma} \sigma_i s^i$

Total number of parameters: $L = L_w + d \times L_\mu + L_\sigma + d + 2$

Ellipsoidal forms:

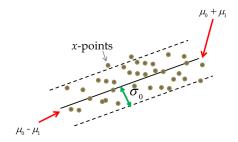
 $\mu_i(s) = u_i + v_i \frac{s + b_i}{\sqrt{\sum_{k=1}^d (s + b_k)^2}}, \quad w(s) \text{ and } \sigma(s) \text{ as above.}$

Total number of parameters: $L = L_w + L_\sigma + 3 \times d + 2$

The number of adjustable parameters is certainly finite !!!

Simple Cases

For
$$L_{\mu} = 1$$
 and $L_{\sigma} = 0$,
 $\mu(s) = \mu_0 + s\mu_1$ and $\sigma(s) = \sigma_0$



The locus of $\mu(s)$, the width σ_0 , and the data points.

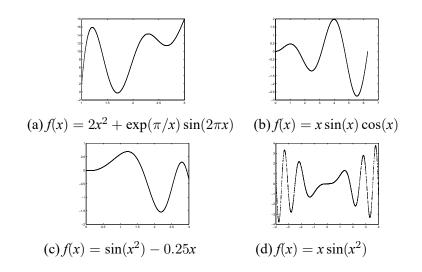
Posteriori Ascertainments

- Performed tests using data sets created by known functions.
- Each set was split in two subsets for **Training** and **Testing**.
- ► The training was performed both with and without "noise".
- The testing subset remained clean (noise free).

Our Findings:

- Generalization in interpolating is superior.
- The generalization performance relative to other networks, increases with the noise level. (*Noise Filter*).
- ▶ FWNN is by far more economical compared to other networks.
- ▶ The generalization in extrapolating, clearly has an edge.

Test functions in 1-d



10

	NMSE over the TEST set		
Method	medium noise high noise		
dataset 1(a)			
FWNN	0.63	1.43	
MLP (best)	0.59 (K = 30)	1.73 (K = 30)	
RBF (best)	1.17 (K = 10)	1.78 (K = 10)	
dataset 1(b)			
FWNN	0.04	0.12	
MLP (best)	2.92 (K = 100)	5.43 (K = 100)	
RBF (best)	1.19 (K = 10)	3.05 (K = 10)	

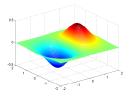
FWNN configuration: $L_w = 5$, $L_\mu = 1$, $L_\sigma = 1$. Number of Parameters. FWNN: 10, MLP: 90/300, RBF: 30 NMSE stands for the "Normalized Mean Squared Error":

$$E_{NMSE}(\theta) = \frac{1}{M} \sum_{i=1}^{M} \left(\frac{N(x_i, \theta) - f(x_i)}{\max(1, |f(x_i)|)} \right)^2 \times 100$$

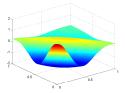
	NMSE over the TEST set		
Method	medium noise high noise		
dataset 1(c)			
FWNN	0.03	0.24	
MLP (best)	3.67 (K = 30)	5.71 (K = 10)	
RBF (best)	3.83 (K = 20)	6.55 (K = 50)	
dataset 1(d)			
FWNN	1.29 2.01		
MLP (best)	23.96 ($K = 100$) 48.19 ($K =$		
RBF (best)	3.47 (K = 80)	5.77 (K = 80)	

FWNN configuration: $L_w = 5$, $L_\mu = 1$, $L_\sigma = 1$. Number of Parameters. FWNN: 10, MLP: 90/300, RBF: 60/240

Test Functions in 2-d: Exponential and Gabor functions

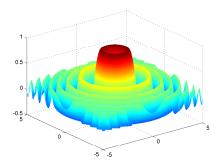


(a)
$$f(x_1, x_2) = x_1 \exp(-(x_1^2 + x_2^2))$$



(b) $f(x_1, x_2) = \frac{\pi}{2} \exp(-2(x_1^2 + x_2^2)) \cos(2\pi(x_1 + x_2))$

The Mexican Hat Function



(c)
$$f(x_1, x_2) = \frac{\sin(x_1^2 + x_2^2)}{\sqrt{x_1^2 + x_2^2}}$$

In each case 100 training and 1000 testing points were used.

	NMSE over the TEST set		
Method	medium noise	high noise	
dataset 2(a)			
FWNN	11.14	22.83	
MLP (best)	19.84 (K = 10)	71.84 (K = 10)	
RBF (best)	11.98 (K = 50)	51.73 (K = 50)	
dataset 2(b)			
FWNN	1.55	4.66	
MLP (best)	2.34 (K = 100)	7.95 (K = 100)	
RBF (best)	1.69 (K = 50)	8.11 (K = 30)	
dataset 2(c)			
FWNN	68.99	69.82	
MLP (best)	84.97 (K = 100)	110.71 (K = 100)	
RBF (best)	80.42 (K = 80)	86.18 (K = 80)	

Number of Parameters. FWNN: 12, MLP: 40/400, RBF: 120/200/320

Functionally Weighted Neural Networks with Infinite Number of Neurons

Extrapolation Performance

Extrapolation is connected to prediction. Prediction is important !!!

Make me a **prophet**, *and I will make you* **rich !!!**

- ► Does the FWNN extrapolate well ?
- ► Is there a fair systematic comparison procedure ?
- ► How does FWNN compare to the "competition" ?

Comparison Setting

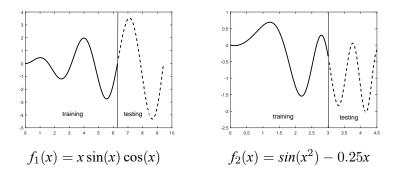
- Pick a test function f(x).
- Choose 150 successive equidistant points.
- ► Train the networks (FWNN, MLP, RBF) using the first 100 points.
- Use the last 50 points: x_1, \dots, x_{50} , for testing the extrapolation.

Extrapolation measure: $r_i \equiv \frac{|f(x_i) - N(x_i, \theta)|}{\max(1, |f(x_i)|)}$, the relative deviation.

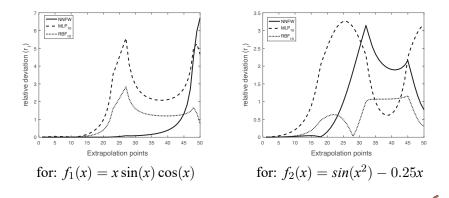
For satisfactory extrapolation, r_i should be small. Let $d \in (0, 0.25]$ be an acceptable upper bound for r_i , i.e. $r_i \leq d$. Determine J such that: $r_i < d$, $\forall i \in [1, J]$ and $r_{J+1} \geq d$.

The network with the highest index *J*, is the extrapolation Winner

Extrapolation Test Functions



Extrapolation Performances



Extrapolation Comparison

Extrapolation index *J*

Network	Deviation bound: <i>d</i>				
Architecture	0.05	0.10	0.15	0.20	0.25
$f_1(x) = x\sin(x)\cos(x)$					
FWNN	24 ± 3	25 ± 3	35 ± 2	37 ± 2	38 ± 2
MLP 10 nodes	12 ± 2	14 ± 2	15 ± 3	16 ± 1	16 ± 1
RBF 10 nodes	14 ± 2	16 ± 2	17 ± 2	18 ± 1	19 ± 1
	$f_2(x) = \sin(x^2) - 0.25x$				
FWNN	18 ± 1	20 ± 1	21 ± 1	21 ± 1	21 ± 1
MLP 10 nodes	6 ± 2	8 ± 1	9 ± 1	10 ± 1	11 ± 1
RBF 10 nodes	11 ± 1	13 ± 2	14 ± 2	15 ± 1	16 ± 1

Training Techniques

"Training" a Neural Network, is an optimization problem with the following "Sum-Of-Squares" objective function:

$$E(\theta) = \sum_{i=1}^{M} [N(x_i, \theta) - y_i]^2 \equiv \sum_{i=1}^{M} [R(x_i, \theta)]^2$$

Its gradient and Hessian given by:

$$\nabla_{\theta} E(\theta) = 2 \sum_{i=1}^{M} R(x_i, \theta) \nabla_{\theta} R(x_i, \theta)$$
$$\nabla_{\theta}^2 E(\theta) = 2 \sum_{i=1}^{M} [\nabla_{\theta} R(x_i, \theta) \nabla_{\theta} R(x_i, \theta)^T + R(x_i, \theta) \nabla_{\theta}^2 R(x_i, \theta)]$$

Small Residual Problems

If the model, i.e. the Network $N(x, \theta)$, is proper, then near the minimum point θ^* , i.e. for $||\theta - \theta^*|| \le \epsilon$, $R(x_i, \theta) \approx 0$. This is called a "**Small Residual Problem**", and in this case the Hessian may be approximated using first derivatives only as:

$$\nabla_{\theta}^{2} E(\theta) \approx 2 \sum_{i=1}^{M} \nabla_{\theta} R(x_{i}, \theta) \nabla_{\theta} R(x_{i}, \theta)^{T}$$

The indicated optimization methods therefore, belong to the so called "Gauss-Newton" class, either within the "Trust-Region" framework (Levenberg-Marquardt), or with the "line-search" approach.

Large Residual Problems

When for $||\theta - \theta^*|| \le \epsilon$, $R(x_i, \theta) \gg 0$, as for example in the case of "very" noisy data, we have a "Large Residual Problem". In this case the "Gauss-Newton" approximation is not valid.

Appropriate methods are:

- "Modified Newton"
- "Quasi-Newton" (SR1, BFGS)
- "Limited Memory Quasi-Newton"
- "Conjugate Gradient" (Polak-Ribiere, Dixon, ...)
- "Hybrid Methods" (Fletcher & Xu³)

³*Hybrid Methods for Nonlinear Least Squares*. IMA Journal of Numerical Analysis, 7 (1987) 371–389

Solving ODEs & PDEs with FWNN

ANNs have been used in the past to solve ODEs and PDEs. A set of problems was considered and solved in a work⁴ entitled:

"Artificial Neural Networks for solving ordinary and partial differential equations".

These problems have since been used as benchmarks by several authors who were developing methods for ODEs and/or PDEs, using various kinds and architectures of neural networks.

We have applied the same methodology using the FW-RBF Network instead of the MLP, on two of these problems (Problems #4 and #5).

⁴IEEE Transactions on Neural Networks, 9 (1998) 987-1000

System of ODEs. Problem #4

$$\begin{aligned} \frac{d\Psi_1(x)}{dx} &= \cos(x) + \Psi_1^2(x) + \Psi_2(x) - (1 + x^2 + \sin^2(x)) \\ \frac{d\Psi_2(x)}{dx} &= 2x - (1 + x^2)\sin(x) + \Psi_1(x)\Psi_2(x) \\ \Psi_1(0) &= 0, \ \Psi_2(0) = 1, \ x \in [0,3] \end{aligned}$$

Exact solution: $\Psi_1(x) = \sin(x), \Psi_2(x) = 1 + x^2$ Trial Solution: $\Psi_{1t}(x) = xN_1(x, \theta_1), \Psi_{2t}(x) = 1 + xN_2(x, \theta_2)$ Number of Points: 10 for Training and 100 for Testing.

Preliminary Results

Network	# of Parameters	MAD1	MAD2
MLP	$30 (= 10 \times 3)$	2.0E-5	8.0E-5
FWNN	8 $(=3+3+2)$	5.0E-5	7.0E-5

PDE in 2-d. Problem #5

$$\nabla^2 \Psi(x, y) = e^{-x}(x - 2 + y^3 + 6y), \quad (x, y) \in [0, 1] \otimes [0, 1]$$

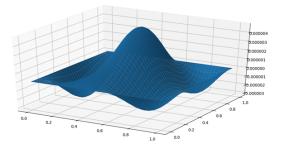
Dirichlet BCs: $\Psi(0, y) = y^3, \quad \Psi(1, y) = \frac{1 + y^3}{e}$
 $\Psi(x, 0) = xe^{-x}, \quad \Psi(x, 1) = (x + 1)e^{-x}$

with exact solution: $\Psi(x, y) = e^{-x}(x + y^3)$. Trial Solution: $\Psi_t(x, y) = A(x, y) + x(1 - x)y(1 - y)N(x, y, \theta)$

$$A(x,y) = (1-x)y^3 + x\frac{1+y^3}{e} + (1-y)x\left(e^{-x} - e^{-1}\right) + y\left[(x+1)e^{-x} - \left(1-x+2xe^{-1}\right)\right]$$

$$\Delta \Psi(x,y) = \Psi(x,y) - \Psi_t(x,y)$$

Used a FWNN with 11 parameters $(3 + 2 \times 3 + 2)$



Plot of the difference between the exact and the calculated solutions.

A mesh of 100 points (10×10) was used for training, and a mesh of 900 points (30×30) for testing. Absolute mean deviation $\approx 1.3 \times 10^{-6}$.

Conclusions

The main features of the FWNN may be summarized as:

- "Economic" in the number of parameters.
- Excellent generalization while interpolating.
- Superior extrapolation capability.

Work to be done

- Only polynomials have been tried up to now for w(s), μ(s), σ(s). More forms should be investigated.
- Sigmoidal FWNNs should also be explored, i.e.: $N_{FW}^{\sigma}(x,\theta) = \int_{-1}^{1} \frac{ds}{\sqrt{1-s^2}} a(s)\sigma(w^{T}(s)x + b(s))$
- Extend FWNN to Deep-FWNN, to explore possible benefits.