
Neural Modeling and Differential Equations

I. E. Lagaris

CSE, University of Ioannina

Abstract
The universal approximation capability of neural networks is exploited
to recover solutions of DEs.
The process of solving a DE is reduced to that of training a neural form.
Boundary conditions may be satisfied either by proper construction of the
neural form, or as constraints in an optimization setting.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 1 / 40

Talk Structure

1 Modeling with Neural Forms
2 Differential Equation Solving is Equivalent to Learning

ODEs & Systems of ODEs

PDEs

3 Homogeneous DEs
The Schrödinger Equation

The Diffusion Equation

4 Conclusions

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 2 / 40

Important related results

Kurt Hornik, Maxwell B. Stinchcombe, Halbert White, 1989
Multilayer feedforward networks are universal approximatorsMultilayer feedforward networks are universal approximators.

George Cybenko, 1989
Approximation by Superpositions of a Sigmoidal FunctionApproximation by Superpositions of a Sigmoidal Function.

In these articles it is proved that single hidden layer networks , with sigmoid
activation functions, can approximate to any desired degree of accuracy any
function, provided that sufficient number of neurons are available. This
result was later extended to Gaussian RBF networks as well.

The above results are based on the work of
Andrey N. Kolmogorov, 1957

On the representation of continuous functions of many variablesOn the representation of continuous functions of many variables
by superposition of continuous functions of one variable and additionby superposition of continuous functions of one variable and addition.

Multilayer feedforward networks are universal approximators

Approximation by Superpositions of a Sigmoidal Function

On the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 3 / 40

Common Expressions of ANNs

Sigmoidal Percepton:

N(x,w) =
Nodes∑
k=1

akσ(pTkx+ bk)

w = {a, p, b}, and σ(z) =
1

1 + exp(−z)

−−−−−−−−−−−−−−−−−−

Gaussian RBF:

N(x,w) =
Nodes∑
k=1

akg(x, µk, sk)

w = {a, µ, s}, and g(x, µ, s) = e−
1
2

(
||x−µ||

s

)2

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 4 / 40

Introduction to training
Given a set of data:

S = {xi, yi}, xi ∈ Rd, yi ∈ R

where yi, is generated by a function y(x) as: yi = y(xi),
Neural Networks (NN) are used to approximate (or “learn”“learn”)

the underlying function y(x), by considering only the information
contained in the given dataset S.

A parametric model is constructed:

YM(x,w) = N(x,w), N(x,w) being a NN

and then the Mean Squared Error (MSE):

E(w) =
1

#S
∑
xi∈S

[
YM(xi,w)− yi

]2
is minimized wrt the parameters w, the NN “weights”“weights”.

“learn”

“weights”
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 5 / 40

Is it any different from Data-Fitting ?

The technique is identicalidentical, i.e. minimization of the MSE.
The important modeling philosophy is radically differentradically different.

In data-fitting the model used is based on theoretical considerations,
phenomenology, or even on intuition. For example, when fitting the
nucleon-nucleon phase shifts to construct a two-body nuclear potential, the
long-range tensor force is attributed to the one-pion exchange process,
imposingimposing a Yukawa term, that is proportional to:(

1 +
3

µr
+

3

(µr)2

)
e−µr

µr
, µ being the mass of pion

This being so specific, is biased and very restrictiverestrictive.

identical
radically different

imposing

restrictive

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 6 / 40

Neural Networks do not Impose ; Discover

Neural Networks are:
“Flexible” enough, that actually do not impose any specific form.
(Essentially model independent).

Unbiased estimators of any function.

Exclusively data-driven.

NNs DiscoverDiscover the underlying data-generating “law”,
by “learning”“learning” from the data.

Discover
“learning”

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 7 / 40

Neural Forms may Impose properties

Definition:Definition:
A Neural Form (NF), is an expression that involves a Neural Network.

Examples: A(x) + Z(x)N(x,w), B(x) + C(x)
dN(x,w)

dx
, · · ·

If the NF: YM(x,w) = a+ xN(x,w), is used to learn the data in S,
then the property: YM(0,w) = a, is exactly satisfied.is exactly satisfied.

Similarly, the NF: YM(x,w) = a+ (b− a)x+ x(x− 1)N(x,w),
satisfies exactly:satisfies exactly: YM(0,w) = a, and YM(1,w) = b.

Neural Forms play an important roleNeural Forms play an important role
in the model construction process !!!in the model construction process !!!

Definition:

is exactly satisfied.

satisfies exactly:

Neural Forms play an important role
in themodel construction process !!!

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 8 / 40

Differential Equations

The solution of a DE can be represented by a Neural Form.
Consider the simple ODE:

d
dx

Ψ(x) = f(x), x ∈ [0,1]

with the Boundary Condition:Ψ(0) = y0

Use for the trial solution a Neural Form, that satisfies the BC:

Ψ(x) ≈ Ψt(x,w) = y0 + xN(x,w)

Substituting the trial solution in the DE yields:

x
d
dx

N(x,w) + N(x,w) = f(x), ∀ x ∈ [0,1]

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 9 / 40

The Solution Procedure

Let xi,∀ i = 1,2, · · ·,N, be a mesh in [0,1].

Hence, ∀ i = 1,2, · · ·,N, we require:

xi
d
dx

N(xi,w) + N(xi,w) = f(xi)

To satisfy this requirement, the procedure followed is to minimize:

E(w) =
1

N

N∑∑∑
i=1

[
xi

d
dx

N(xi,w) + N(xi,w)− f(xi)
]2

Equivalent to learning the set {xi, f (xi)}, using the Neural Form model :

YM(x,w) = x
dN
dx

(x,w) + N(x,w)

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 10 / 40

Boundary Conditions I

For 2nd order ODEs, two conditions are required.
Consider the two-point BCs, x ∈ [a, b].

Examples:Ψ(a) = y1 and Ψ(b) = y2, or: Ψ(a) = y1 and Ψ′(b) = y′2

The trial solution may be a Neural Form, written as:

Ψt(x,w) = A(x) + Z(x)N(x,w), x ∈ [a, b]

where A(x) and Z(x) are functions not containing parameters1.

A(x) satisfies by construction the BCs.
Z(x) vanishes only at the endpoints, and is constructed so thatΨt(x,w)
satisfies the BCs as well.

1Unless asymptotic BCs are specified, e.g. Ψ(x) ∼ exp(−βx2)
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 11 / 40

Boundary Conditions II

For the case: Ψ(a) = y1, Ψ(b) = y2

A(x) = y1
x− b
a− b

+ y2
x− a
b− a

, Z(x) = (x− a)(x− b)

while for the case: Ψ(a) = y1, Ψ′(b) = y′2

A(x) = y1 + y′2(x− a), Z(x) = (x− a)(x− b)2

For x ∈ R, (Ordinary DEs) the BCs are trivially accommodated.
For PDEs where x ∈ Rn, n = 2,3, · · ·, with Dirichlet and Neumann

conditions, constructing A(x) and Z(x) may be complicated.

For rectangular boundaries there is a systematic way of constructionFor rectangular boundaries there is a systematic way of construction.For rectangular boundaries there is a systematic way of construction

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 12 / 40

Boundary Conditions III: Constraint Alternatives

Let D be a second order differential operator. Then the equation:

DΨ(x) = f(x), x ∈ [a, b]

with BCs:Ψ(a) = y1, Ψ′(b) = y′2, may alternatively be solved as:

Set: Ψt(x,w) = N(x,w), and minimize:

Eλ(w) =
1

N

N∑∑∑
i=1

[
DN(xi,w)− f (xi)

]2
+

+λ1

[
N(a,w)− y1

]2
+ λ2

[
N ′(b,w)− y′2

]2
In other words, a simpler trial solution is chosen,
and the BCs are approximately satisfied , using penalty methods.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 13 / 40

In many dimensions, when the boundary is not a rectangular box, but is
defined by a number of points ai, a way to satisfy the BCs exactly, is to add a
correction as:

Ψt(x,w) = N(x,w) +
∑∑∑
i
qi exp (− λ(|x− µai + h|2)), h ∈ Rn

and solve the linear system (for Dirichlet BCs: Ψt(aj,w) = yj) :

yj − N(aj,w) =
∑∑∑
i
qi exp (− λ(|aj − µai + h|2))

and similarly for Neumann BCs: n̂jT∇Ψt(aj,w) = cj.
The constants λ,µ, h are chosen so that the linear system for the qi
is numerically well behaved.
For Diriclet BCs: µ = 1, h = 0 and λ = [mini̸=j |ai − aj|]−1

For Neumann BCs: µ = 0.95, hT = (0.1, 0.1, ...) and λ as above.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 14 / 40

Systems of ODEs

Let a system of first order ODEs be:

d
dx

Ψi(x) = fi(x,Ψ1,Ψ2, · · ·,Ψn,), i = 1,2, · · ·, n

with x ∈ [0,1], andΨi(0) = bi, i = 1,2, · · ·, n.
The trial solutions are taken so as to satisfy the condition at x = 0:

Ψit(x,w) = bi + xNi(x,w)

E(w) =
n∑∑∑

i=1

∑∑∑
xk∈[0,1]

[d
dx

Ψit(xk)− fi(xk,Ψ1t,Ψ2t, ...)

]2

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 15 / 40

Partial Differential Equations: Rectangular Boundaries

LetD be a second order partial differential operator. For instance:

D = α(x)∇2 + βT(x)∇+ γ(x), x ∈ Bn ⊂ Rn

where Bn is a rectangular hyper-box in n dimensions, i.e.

Bn = [a1, b1]⊗ [a2, b2]⊗ · · ·, [an, bn]

PDEs of the form: DΨ(x) = f(x), withΨ(x)|Ω1
and n̂T∇Ψ(x)|Ω2

specified, where Ω1 and Ω2 denote complementary parts of the hyper-box
boundary, appear quite frequently in science and engineering problems.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 16 / 40

Example in two dimensions

∇2Ψ(x, y) = f(x, y), x ∈ [0,1], y ∈ [0,1],

with Dirichlet conditions: i.e.:
Ψ(x,0),Ψ(x,1),Ψ(0, y),Ψ(1, y) specified.

Ψt(x, y,w) = A(x, y) + Z(x, y)N(x, y,w)

with Z(x, y) = x(1− x)y(1− y), and

A(x, y) = (1− x)Ψ(0, y) + xΨ(1, y)

+ (1− y)
{
Ψ(x,0)−

[
(1− x)Ψ(0,0) + xΨ(1,0)

]}
+ y

{
Ψ(x,1)−

[
(1− x)Ψ(0,1) + xΨ(1,1)

]}
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 17 / 40

Already Complicated !

Complexity Increases with Dimension

In two dimensions, the box has four sides.
If on each side either Dirichlet or Neumann conditions are specified,
there are 24 = 16 possible combinations.

In higher dimensions n ≥ 3 there are 22n = 4n different combinations,
and forming the A(x) function becomes even more complex.

If Neural Forms can be formed that satisfy by construction the BCs,
they are to be preferred over the constrained optimization approach.
They need fewer training points and satisfy the BCs exactly.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 18 / 40

Boundary Matches - New Developments

Let P i,j
a,b (x, f) be a polynomial of minimal degree satisfying:

∂ iP i,j
a,b

∂x i
(x, f)|x=a = f (i)(a) ≡ ∂ if

∂x i
(x)|x=a

∂ jP i,j
a,b

∂x j
(x, f)|x=b = f (j)(b) ≡ ∂ jf

∂x j
(x)|x=b

Let L i,j
x|a,b be an operator defined as:

L i,j
x|a,b f (x) = P i,j

a,b(x, f)

The function: (1− L i,j
x|a,b)f(x), has both the i

th derivative at x = a and the jth
derivative at x = b, equal to zero.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 19 / 40

Boundary Matches - for i, j ∈ {0, 1}

Some low–order common, cases:

1 P 0,0
a,b (x, f) = f(b)

x− a
b− a

− f(a)
x− b
b− a

2 P 0,1
a,b (x, f) = (x− a)f (1)(b) + f(a)

3 P 1,0
a,b (x, f) = (x− b)f (1)(a) + f(b)

4 P 1,1
a,b (x, f) =

1

2

f (1)(b)− f (1)(a)
b− a

x2 +
bf (1)(a)− af (1)(b)

b− a
x

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 20 / 40

Boundary Matches

f(x) =
1− e−x

1 + x2
, f ′(x) =

df(x)
dx

=
e−x

1 + x2
− 2x(1− e−x)

(1 + x2)2

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 21 / 40

Boundary Matches - General expressions

Case-I: i < j. P i,j
a,b (x, f) = f (j)(b)

x j

j !
+

[
f (i)(a)− f (j)(b)

a j−i

(j− i)!

]
x i

i !

Case-II: i > j. P i,j
a,b (x, f) = f (i)(a)

x i

i !
+

[
f (j)(b)− f (i)(a)

b i−j

(i− j)!

]
x j

j !

Case-III: i = j.

P i,i
a,b (x, f) =

f (i)(b)− f (i)(a)
b− a

x i+1

(i+ 1) !
+
bf (i)(a)− af (i)(b)

b− a
x i

i !

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 22 / 40

Boundary Matches, in two dimensions

Consider a function of two variables: f(x, y), x ∈ [a, b], y ∈ [c, d].
The x-match operator acts (for example when i = j = 0) on f(x, y) as:

L 0,0
x|a,b f(x, y) = f(b, y)

x− a
b− a

− f(a, y)
x− b
b− a

The y-match operator acts (for example when i = 1, j = 0) on f(x, y) as:

L 1,0
y|c,d f(x, y) = (y− d)

∂ f
∂y

(x, c) + f(x, d).

The combined operation: (Commutative)(Commutative)

L 0,0
x|a,b L

1,0
y|c,d f(x, y) = L 1,0

y|c,d L
0,0
x|a,b f(x, y) =[

(y− d)
∂ f
∂y

(b, c) + f(b, d)
]
x− a
b− a

−
[
(y− d)

∂ f
∂y

(a, c) + f(a, d)
]
x− b
b− a

(Commutative)

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 23 / 40

Building the Boundary Match in two dimensions

The function:

A(x, y) =
[
1−

(
1− L i,j

x|a,b

)(
1− L k,m

y|c,d

)]
f(x, y)

=
(
L i,j
x|a,b + L k,m

y|c,d − L i,j
x|a,bL

k,m
y|c,d

)
f(x, y)

matches the following BCs:

∂ iA
∂x i

(a, y) =
∂ if
∂x i

(a, y),
∂ jA
∂x j

(b, y) =
∂ jf
∂x j

(b, y)

∂ kA
∂y k

(x, c) =
∂ kf
∂y k

(x, c),
∂ mA
∂ym

(x, d) =
∂ mf
∂ym

(x, d)

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 24 / 40

Generalizing in many dimensions

Let, xT = (x1, x2, · · · , xN), xk ∈ [ak, bk].
Let, for xk the BCs be represented by the match-operator L ik, jk

xk|ak, bk .
Then the associated multidimensional boundary match is given by:

A(x) =

1− N∏
k=1

(
1− L ik, jk

xk|ak, bk

) f(x)

and the corresponding Z-function is:

Z(x) =
N∏

k=1

(xk − ak)1+ik(xk − bk)1+jk

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 25 / 40

Non-linear system of ODEs2

Ψ1(x)
dx

= cos(x) + Ψ2
1(x) + Ψ2(x)− (1 + x2 + sin2(x))

Ψ2(x)
dx

= 2x− (1 + x2) sin(x) + Ψ1(x)Ψ2(x)

x ∈[0, 3], Ψ1(0) = 0, Ψ2(0) = 1

with exact solution: Ψ1(x) = sin(x),Ψ2(x) = 1 + x2.

Trial solution: Ψ1t = xN(x,w1) and Ψ2t = 1 + xN(x,w2)
Used 10 sigmoid hidden neurons for N(x,w), 10 equidistant training points.
Achieved accuracy: 5 significant digits.

2Artificial neural networks for solving ordinary and partial differential equations.
IEEE Transactions on Neural Networks 9 (1998) 987
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 26 / 40

Irregular Boundary non-linear PDE 3

∇2Ψ(x, y) + eΨ(x,y) = 1+ x2 + y2 +
4(

1 + x2 + y2
)2

with the exact solution: Ψ(x, y) = log (1 + x2 + y2).

0-1 1

1

0

-1

Solved for both Dirichlet and Neumann conditions inside
the star-shaped domain, treating the BCs as constraints
with the Gaussian correction.
109 points were considered on the boundary,

and 391 inside the star domain.
Using 20 hidden neurons, achieved 5 significant figures.

This problem has also been solved inside a cardioid.

3Neural Network methods for boundary value problems with irregular boundaries.
IEEE Transactions on Neural Networks 11 (2000) 1041
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 27 / 40

Plots: Exact solution and absolute ”Error”

Plot of the exact solution Asbolute deviation

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 28 / 40

Homogeneous DEs

They are Important - No need to Emphasize !!!

1 The Schrödinger equation: −∇2Ψ(x) + V(x)Ψ(x) = EΨ(x)

2 The Diffusion equation:
∂u(x, t)

∂t
= ∇ · (D(u, x)∇u(x, t))

3 The Laplace equation: ∇2Φ(x) = 0

The general approach is similar albeit with a few differences.
The DE part (not the BCs) is satisfied by the trivial vanishing “solution”.
For vanishing BCs, the trivial solution may persist.
In such cases, normalization usually settles the issue.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 29 / 40

The Schrödinger Equation: HΨ = EΨ

Let Ψt(x,w) be the trial solution that respects the specified BCs.
HΨt(x,w) = EΨt(x,w), will be satisfied at a set of selected points xi,
by minimizing the relative “error”:

E(w,E) =
∑

i
[
HΨt(xi,w) − EΨt(xi,w)

]2∑
i Ψt(xi,w)2

where E =

∑
iΨt(xi,w)HΨt(xi,w)∑

iΨt(xi,w)2
, obtained by:

∂

∂E
E(w, E) = 0.

The denominator prevents convergence to the trivial solution.
Computationally, optimizing the relative error is clearly more complex.
Excited states may also be obtained, by a deflation approach.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 30 / 40

The Schrödinger Equation: HΨ = EΨ
Illustration via simple examples4.
1-d Morse Potential: (For the I2 molecule, m = 119406)
V(x) = D[e−2ax − 2e−ax + 1] with D = 0.0224, a = 0.9374[

−1

2m
d2

dx2
+ V(x)

]
Ψ(x) = EΨ(x).

For x → 0,V(x) → Da2x2
Harmonic oscillator.
Ψ(0) finite, and Ψ(x) ∼ e−βx2

The trial solution is written as: Ψt(x) = exp (− βx2)N(x,w)
Exact E0 = 0.286171979× 10−3, Calculated E0 = 0.286171981× 10−3

Trained with 8 hidden nodes and 150 points ∈ [−1, 2].

4Artificial neural network methods in quantum mechanics.
Comput. Phys. Commun. 104(1997)1-14
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 31 / 40

Integrodifferential Schrödinger Equation:

The n+α system, in the framework of the “Resonating Group Method”,
is described by the non-local Schrödinger Equation:(

−h̄2

2m
d2

dr2
+ V(r)

)
Ψ(r) +

∫ ∞

0
K0(r, r′)Ψ(r′)dr′ = EΨ(r)

V(r) = −V0 exp(−βr2),V0 = 41.28386, β = 0.2751965
K0(r, r′) = −Ae−γ(r2+r′2)(e2krr′ − e−2krr′)
(A = 62.03772, γ = 0.8025, k = 0.46)

with Ψ(0) = 0 and Ψ(r) ∼ e−λr, λ > 0

Trial solution: Ψt(r) = r exp (− λr)N(r,w)
Trained with 8 hidden nodes and 100 points ∈ [0, 12].
Calculated E0 = −24.0764 in agreement with other calculations.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 32 / 40

2-d Henon-Heiles potential

V(x, y) = 1
2(x

2 + y2) + xy2−x3/3
4
√
5

(−1
2∇

2 + V(x, y))Ψ(x, y) = EΨ(x, y)

Ψ(0, 0) finite, Ψ(x, y) ∼ e−β(x2+y2)

Trial solution: Ψt(x, y) = e−β(x2+y2)N(x, y,w), β > 0
Trained with 8 nodes and 20× 20 points ∈ [−6, 6]⊗ [−6, 6]
Calculated E0 = 0.99866, in agreement with other calculations.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 33 / 40

A Time-Saving Technique

It is well known that for the lowest eigenvalue E of H:

E = min
Ψ

< Ψ|H|Ψ >

< Ψ|Ψ >

Minimizing
∑

iΨt(xi,w)HΨt(xi,w)∑
iΨt(xi,w)2

, leads to a fairly accurate estimation of E .

However the resulting Ψt(x,w) may not be as close to the ground state.
Use this to estimate E and obtain an initial approximation to Ψt(x,w).
Then, minimize the relative error to obtain an accurate Ψt(x,w) as well.

This will save a lot of unnecessary evaluations of the relative error, which is
far more computationally demanding.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 34 / 40

Diffusion Equation

∂u(x, t)
∂t

=
∂

∂x

(
D(u, x)

∂u(x, t)
∂x

)
, x ∈ [0,1]

Initial Condition: u(x,0) specified
Dirichlet BCs: u(0, t) and u(1, t) specified
Trial solution: ut(x, t) = A(x, t) + x(1− x)(1− e−λt)N(x, t,w)

The factor (1− e−λt) accommodates the initial condition.
Note that λ must be positive to keep u(x, t)|t→∞ finite.

A(x, t) = L00
x|01u(x, t) + (1− L00

x|01)u(x, 0)

= u(x, 0) + (1− x)
[
u(0, t)− u(0, 0)

]
+ x

[
u(1, t)− u(1, 0)

]
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 35 / 40

Heat Conduction
1

ρcp
∂T(r, t)

∂t
= k

[
∂2T(r, t)

∂r2
+

1

r
∂T(r, t)

∂r

]
Initial Condition: T(r, 0) specified

BCs:
∂T(0, t)

∂r
= 0, T(R2, t) specified.

k =

{
k1, r ∈ [0,R1]

k2, r ∈ (R1,R2]

At the glass-wax interface, r = R1, the following conditions must hold:

For ϵ → 0, T(R1 − ϵ, t) = T(R1 + ϵ, t)

k1
∂T(R1 − ϵ, t)

∂r
= k2

∂T(R1 + ϵ, t)
∂r

Important note: There is a discontinuity in ∂T(r,t)
∂r at r = R1.

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 36 / 40

Introducing the discontinuity

A(r, t) = T(r, 0) + T(R2, t)− T(R2, 0)

Z(r, t) = r2(R2 − r)(1− e−λt), λ > 0

Tt(r, t) = A(r, t) + Z(r, t)
[
N(r, t) + a(t)|r− R1|

]
Given that T(r, 0) satisfies the Interface Conditions, a(t) is then determined so
that T(r, t) satisfies them as well, yielding:

a(t) =
k1 − k2
k1 + k2

[
2R2 − 3R1

R1(R2 − R1)
N(R1, t) +

∂N(R1, t)
∂r

]

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 37 / 40

Pros and Cons

Obvious Pros Obvious Cons

Closed form solution Requires non-linear optimization 5

Continuous, differentiable solution Multiple local minima

Other Pros Other Cons

Interpolation quality control Time consuming
Data Set Extension at will Global optimization ?
Economical representation 6 —

5Basis functions methods require only the solution of linear systems
6Basis functions methods require many terms to obtain similar accuracy

I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 38 / 40

Future Endeavors

Activation functions may impact the performance of DE solving.
Customization for different classes of DEs may be worthwhile.
Different types of Neural Networks, may also offer advantages
for certain classes of DEs.
Deep Neural Networks have recently been applied to PDEs7 in
high dimensions, and to free boundary problems.
ANNs with an infinite number of nodes is a new class of
networks8 quite promising for solving ODEs and PDEs.

7J. Sirignano, K. Spiliopoulos, “DGM: A deep learning algorithm for solving partial
differential equations”, J. Comp. Phys. 375 (2018) 1339-1364

8K. Blekas, I.E. Lagaris, “Artificial neural networks with an infinite number of nodes”,
IOP Conf. Series: Journal of Physics: Conf. Series 915 (2017) 012006
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 39 / 40

Physics-Informed Neural Networks 9 is a novel promising development
treating inverse problems as well.
A Legendre-type ANN has been applied το ODEs 10.

A Chebyshev-type ANN has been recently used to solve PDEs 11.

Deep Neural Networks have been applied to solve PDEs with complex
boundaries12

9M.Raissi, P.Perdikaris, G.E.Karniadakis,”Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations”, JCP 378 (2019) 686-707

10S. Mall, S. Chakraverty, “Application of Legendre Neural Network for solving ordinary
differential equations”, Applied Soft Computing 43 (2016) 347-356,

11S. Mall, S. Chakraverty, “Single Layer Chebyshev Neural Network Model for Solving
Elliptic partial differential equations”, Neural Process. Lett. 45 (2017)825–840

12Jens Berg, Kaj Nyström, “A unified deep artificial neural network approach to partial
differential equations in complex geometries”, Neurocomputing 317 (2018) 28-41
I. E. Lagaris (CSE, University of Ioannina) Neural Modeling and Differential Equations 40 / 40

	Modeling with Neural Forms
	Differential Equation Solving is Equivalent to Learning
	blueODEs & Systems of ODEs
	bluePDEs

	Homogeneous DEs
	blue The Schrödinger Equation
	blue The Diffusion Equation

	Conclusions

