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Abstract In this paper we propose a new class of test functions for unconstrained
global optimization problems. The class depends on some parameters through which
the difficulty of the test problems can be controlled. As a basis for future compari-
son, we propose a selected set of these functions, with increasing difficulty, and some
computational experiments with two simple global optimization algorithms.

Keywords Global optimization · Test problems · Multilevel structure · Molecular
conformation problems

1 Introduction

In the field of optimization the definition of test problems is an important and non-
trivial task. Test problems should reflect the wide variety of difficulties encountered
when solving practical problems and are essential in validating algorithms. In the
field of Global Optimization (GO in what follows) there exists an old class of test
functions, the Dixon–Szegö test set (see Dixon and Szegö 1978). Unfortunately, these
problems are of limited dimension and of mild difficulty (they usually have only few
local minimizers). Therefore, testing only on them is not an appropriate way to val-
idate GO algorithms. The test functions presented in Hock-Schittkowski (1981) and
Schittkowski (1987) are widely employed for constrained local optimization but many
of these test problems have several local minimizers with different function values and
are thus also appropriate tests for GO methods. More multimodal functions are also
included in Moré et al. (1981). In Schoen (1993) a class of test functions is proposed

B. Addis (B)
Dip. Ingegneria dell’Informazione, Università di Siena, Siena, Italy
e-mail: addis@dii.unisi.it

M. Locatelli
Dip. Informatica, Università di Torino, Torino, Italy
e-mail: locatell@di.unito.it



480 J Glob Optim (2007) 38:479–501

whose global minimizer is a priori known, whose smoothness is controllable by means
of a set of parameters, and for which the number and location of stationary points
are controllable by the user. In Mathar and Z̆ilinskas (1994) a method in multidi-
mensional scaling is employed to define multimodal test functions. There also exist
test sets for specific GO problems (see, e.g., Kalantari and Rosen 1986 for concave
optimization problems, Pardalos 1987 for quadratic problems). The interest for new
and widely recognized GO test problems emerged in a number of recent publications.
Here we recall a book (Floudas et al. 1999), some papers (Gaviano et al. 2003, Lavor
and Maculan 2004, Neumaier et al. 2005, Pinter 2002), and the global optimization
web site (GO-site 2005). In this paper, we will focus our attention on unconstrained
GO problems for which it can be guaranteed that the global minimizer lies within a
limited region and for which efficient local search procedures exist. We will propose
a new class of test functions depending on a limited number of user-specified param-
eters, through which it is possible to control a relevant source of difficulty of these
unconstrained problems related to the positions of local minimizers. In particular, the
proposed test functions will be able to mimic situations which have been observed in
some practical GO applications, namely molecular conformation problems.

The paper is structured as follows. In Sect. 2, we recall some features on which
the difficulty of GO problems depend. In particular, we will discuss the role played
by the number and positions of local minimizers. In Sect. 3, we introduce some basic
one-dimensional and multidimensional component functions, and we generate GO
test functions with the required properties by iterative procedures starting from the
basic components. For any generated test function the objective function value of the
global minimizer will be known, but its position will not. In Sect. 4, we summarize
the (user-defined and randomly assigned) parameters employed to define the test
functions. In Sect. 5, we present the results of two simple GO algorithms on some
selected test functions, which can be employed as a basis for future comparison, and
we give some information about the web site (GOL 2006) where a C++ library of our
test functions can be downloaded.

2 Features making a GO problem difficult

The difficulty of a GO problem depends on many factors. Among the most relevant
ones we recall: the size of the basin of attraction of the global minimizer (which can be
explicitly controlled in, e.g., the test functions proposed in Gaviano et al. 2003); the
shape of the function around the global minimizer, the classical example being the
Rosenbrock function, where the minimum point is inside a long, narrow and parabo-
loic-shaped flat valley, which makes convergence difficult; dimension (many existing
test functions depend on a dimension parameter); high multimodality.

In this paper, we will focus our attention on the last source of difficulty. In Locatelli
(2005) it is observed that the difficulty of highly multimodal GO problems is not
merely connected to the number of local (and not global) minimizers. An important
factor is how “chaotic” is the position of these local minimizers. This observation was
stimulated by the analysis of some practical GO problems, namely molecular confor-
mation problems such as the Lennard-Jones, Morse, Dzugutov, binary Lennard-Jones
cluster optimization (see, e.g., Doye 2006), where one aims at predicting the most
stable structure of a cluster of N atoms by globally minimizing a potential energy
function. The number of local minimizers for such problems has been experimentally
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observed to increase exponentially with the number N of atoms within the cluster, but
the introduction of the notions of funnel and funnel bottom (see, e.g., Wales and Doye
1997) considerably simplified the solution of these problems. These notions lead to
the definition of local minimizers at different levels in Locatelli (2005) which will be
discussed in the following subsection.

2.1 Local minimizers at different levels

The notion of local minimizer is strictly connected to that of neighborhood: a local
minimizer is a point with the lowest function value among all those in its neighbor-
hood. By changing the neighborhood we also change the set of local minimizers. A
standard local minimizer is a point with lowest function value within a d-dimensional
sphere centered at it and with positive radius (d denotes the number of variables
on which the function depends). According to the terminology in Locatelli (2005), a
standard local minimizer is called a local minimizer at level 1. If we define a directed
graph whose nodes are the local minimizer at level 1 and arcs are defined by a suitable
neighborhood structure, then the local minimizers over this graph are called local
minimizers at level 2. The definition of a suitable neighborhood structure is an impor-
tant and nontrivial task. One possibility is to define arcs through transition points of
first order (stationary points with a single negative eigenvalue) as done in Floudas
and Jongen (2005). In this paper, we employ the following definition of an arc.

Definition 1 Given a threshold distance r1 and two local minimizers X and Y at
level 1, then the directed arc (X, Y) exists if the following two conditions are satisfied:

(1) ∃ Z �= X : ‖X −Z‖≤ r1 and f (X) ≥ f (Z), where f denotes the objective function;
(2) there exists a nonascending continuous path starting at Z and ending at Y, i.e.,

more formally ∃ W(λ), λ ∈ [0, 1] such that
(a) W(0) = Z;
(b) W(1) = Y;
(c) g(λ) = f (W(λ)) is a nonincreasing function for λ ∈ [0, 1].

In particular, note that it must hold f (Y) ≤ f (X).

Given the above definition, a local minimizer at level 2 is a node/local minimizer at
level 1 for which we have an ingoing arc from each of its neighbors. It also holds that a
local minimizer at level 2 is a local minimizer at level 1 for which there exists no point
at distance not larger than the threshold distance r1 with a better function value.

Local minimizers at level 2 are the equivalent of funnel bottoms in the terminology
of the above mentioned molecular conformation problems.

Some remarks follow.

Remark 1 Definition 1 depends on the threshold distance r1. The choice of r1 deter-
mines the neighborhood of local minimizers at level 1 and, as for combinatorial
problems,1 this choice is fundamental. We should choose a neighborhood structure so
that the number of local minimizers at level 2 is small but at the same time the size of
the neighborhood of local minimizers at level 1 is also small so that it can be efficiently
explored. The extreme choice r1 = 0 makes the neighborhood of any local minimizer
at level 1 empty and, thus, trivial to explore, but at the same time local minimizers

1 Note that, under the assumption of a finite number of local minimizers at level 1, if we restrict the
attention to them we are reducing our GO problem to a combinatorial one.
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at level 2 coincide with local minimizers at level 1. At the other extreme, the choice
r1 = +∞ reduces the number of local minimizers at level 2 to the number of global
minimizers but the neighborhood of each local minimizer at level 1 contains all other
local minimizers at level 1, making the neighborhood too large. The value r1 should
be chosen, when possible, in such a way that the number of local minimizers at level
2 is much smaller than the number of local minimizers at level 1, but at the same time
the neighborhoods can still be efficiently explored.

This has been a key observation in solving the above mentioned molecular con-
formation problems. Indeed, in these problems it is usually possible to define neigh-
borhoods of manageable size for which the number of local minimizers at level 2 (or
funnel bottoms) is much lower than the (huge) number of local minimizers at level 1
(see, e.g., Leary 2000).

Remark 2 Efficient algorithms for the detection of local minimizers at level 2 exist in
the literature (see, e.g., Leary 2000; Addis and Leyffer 2004,; Addis et al. 2005). These
algorithms are based on local moves between neighbor local minimizers at level 1,
i.e., local moves on the directed graph. One of these algorithms (Monotonic Basin
Hopping) will be shortly presented in Sect. 5.

Remark 3 Detecting a local minimizer at level 2 is much more time consuming than
detecting a local minimizer at level 1. Indeed, while the cost of the latter is that of a
single call of a local search routine, algorithms aimed at detecting local minimizers at
level 2 have to move within the graph of local minimizers at level 1 and, thus, have to
start multiple local searches.

Once local minimizers at level 2 were defined, in Locatelli (2005) also local mini-
mizers at level 3 were defined in a similar way: they are the local minimizers over a
directed graph where nodes are all the local minimizers at level 2 and arcs are defined
as follows.

Definition 2 Given a threshold distance r2 and two local minimizers X and Y at level
2, then the directed arc (X , Y) exists if the following two conditions are satisfied:

(1) ∃ a local minimizer Z �= X at level 1 such that ‖ X − Z ‖≤ r2 and f (X ) ≥ f (Z);
(2) there exists a nonascending path within the graph of the local minimizers at level

1 starting at Z and ending at Y .

Remarks 1 and 3 immediately extend to local minimizers at level 2, pointing out the
relevance of the choice of the parameter r2 and the higher cost of detecting local
minimizers at level 3 with respect to local minimizers at level 2. It is possible to define
algorithms aimed at detecting local minimizers at level 3 which are based on local
moves within the directed graph whose nodes are the local minimizers at level 2 (see
Locatelli 2005) but more research in this direction is expected for the future. We also
make the following remark.

Remark 4 The global minimizer is always a local minimizer at any level.

Note that we could also define higher levels but level 3 is already enough to define
very challenging GO problems.

Figure 1 offers an example where we move from local minimizers at level 1 up to
local minimizers at level 3. In Fig. 1a the white squares represent the local minimizers
at level 1 of some objective function. In Fig. 1b a neighborhood structure is imposed



J Glob Optim (2007) 38:479–501 483

(a) (b)

(c) (d)

Fig. 1 (a) local minimizer at level 1, (b) neighborhood structure between local minimizer at level 1,
(c) local minimizers at level 2, and (d) neighborhood structure between local minimizers at level 2:
the grey square is the unique local minimizer at level 3

over the set of local minimizers at level 1 and local minimizers at level 2 (black squares)
emerge. These correspond to nodes with only ingoing arcs. The local minimizers at
level 2 are isolated in Fig. 1c. Finally, in Fig. 1d we impose a neighborhood structure
over the set of local minimizers at level 2 and a single local minimizer at level 3 (the
grey square) appears. This must also be the global minimizer.

2.2 Existing highly multimodal test functions

Once minimizers at different levels have been introduced, we can define different
degrees of difficulty based on the first level at which only one or few local minimizers
exist. The easiest GO problems are those with one or few local minimizers at level 1.
In these cases a single or few runs of a local search procedure started at random
initial points are able to reach the global minimizer, unless its region of attraction is
particularly narrow (the so called golf-hole situation).

Highly multimodal problems are usually more difficult to solve. As pointed out in
the previous subsection, in this case an essential feature to establish the difficulty of
the problem is not only the number of local minimizers but also their positions. If many
local minimizers (at level 1) exist but they are placed in a regular way in the search
space, in particular in such a way that a single or few local minimizers at level 2 exist,
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then this case can be efficiently solved by a run or few runs of algorithms aimed at
detecting local minimizers at level 2. If not only many local minimizers at level 1 exist,
but also many local minimizers at level 2, then the problem becomes more difficult
and the difficulty further increases with the number of local minimizers at level 3.

Many highly multimodal test functions exist in the literature with a number of local
minimizers (at level 1) which increases exponentially with the dimension. Most of
these functions have (under suitable choices of the neighborhood of local minimizers
at level 1) a single local minimizer at level 2 coinciding with the global minimizer.
These include Rastrigin function (see Törn and Z̆ilinskas 1989), Ackley function (see
Ackley 1987), Levy functions (Levy and Montalvo 1985), Lavor and Maculan func-
tion (see Lavor and Maculan 2004). For all these functions an algorithm to detect
local minimizers at level 2 is often quite efficient in detecting their global minimizers
(see, e.g., the experiments in Addis et al. 2005). An exception is represented by the
Schwefel function (see Schwefel 1981). The n-dimensional version of this function has
2n local minimizers at level 2 but (again under suitable choices of the neighborhood
of local minimizers at level 2) a single local minimizer at level 3 (see the experiments
in Locatelli 2005).

With respect to the existing test functions, our aim is to introduce a set of test
functions where the choice of the number of local minimizers at levels 2 and 3 (which
affect the difficulty of a GO problem) is more flexible and, as we will see in the follow-
ing section, is given by two parameters which are under the control of the user. These
test functions allow to mimic the behavior of the previously mentioned molecular
conformation problems for which the number of local minimizers at level 2 (funnel
bottoms) is quite variable with the number N of atoms (see, e.g., the experiments in
Leary 2000 for Lennard-Jones clusters). This fact makes the proposed test functions
different from those presented in Lavor and Maculan (2004), which are also thought
as test functions for molecular conformation problems but only have a single local
minimizer at level 2.

3 Building the test functions

The aim of this section is to build progressively test functions with the required num-
ber of local minimizers at levels 2 and 3. Note that, following Definitions 1 and 2, in
order to define local minimizers at levels 2 and 3 we need to specify values r1 and r2.
For our test functions reasonable choices (i.e., as pointed out in Remark 1, choices
which are able to considerably reduce the number of local minimizers when moving
from one level to the upper one and at the same to keep the size of neighborhoods
manageable) will be specified in what follows.

The proposed test functions will depend on some parameters. A complete summary
of all the introduced parameters, the ranges within which they can be chosen, a short
description of their meaning, and the indication if they have to be specified by the
user or if they are randomly chosen will be given in Sect. 4.

3.1 The one-dimensional components

The first step toward the definition of the test functions is the introduction of some
basic one-dimensional components with multiple minimizers at level 1. Following a
common practice in the definition of test functions with many local minimizers at
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level 1 (see, e.g., the definition of the Rastrigin test function in Törn and Z̆ilinskas
1989), multiple minimizers are obtained through an oscillation term based on the
cosine function

OK,H
c1,c2

(x) = −H cos

[
2π

⌈
K(c2 − c1)

10

⌉
(x − c1)

c2 − c1

]
+ H. (1)

Here c1, c2, K, and H are parameters, where c1 is constrained to belong to the inter-
val [−3.5, −2], c2 to the interval [2, 3.5], H to the interval [10, 30], K to the interval
[10, 20]. This oscillation term has (approximately) K local minimizers at level 1 (all
with function value equal to 0) in the interval [−5, 5], two of which are in c1 and c2.

Once the oscillation term has been introduced, we are ready to introduce the two
types of one-dimensional components through which the test functions are built. The
first type of one-dimensional component is defined as follows

sp,K(x) = γp(x) + OK,H
c1,c2

(x), (2)

where p is a binary parameter and:

γp(x) =
{

0.5(x − c2)
2 + 2, if p = 0,

0.5(x − c1)
2 + 2, if p = 1.

(3)

The global minimizer x∗ of sp,K is

x∗ =
{

c1, if p = 1,
c2, if p = 0

and sp,K(x∗) = 2. A particular instance of function sp,K is reported in Fig. 2a.
The second type of one-dimensional component is obtained through the sum of a

bimodal function, denoted by ξ , with two local minimizers at level 1 in x = c1 and
x = c2, and the oscillation term O

dp,K(x) = ξp(x) + OK,H
c1,c2

(x). (4)
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Fig. 2 One-dimensional component functions over the interval [−5, 5]: (a) sp,K (b) dp,K . In both
cases the parameter values are K = H = 10, c1 = −3.0, c2 = 3.0, and p = 1
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The bimodal function ξ is defined as follows:

ξp(x) =

⎧⎪⎪⎨
⎪⎪⎩

ξa(x) =
3∑

r=0
αr(x − c1)

r, if − 5 ≤ x ≤ 0,

ξb(x) =
3∑

r=0
βr(x − c2)

r, if 0 ≤ x ≤ 5.

The equations to find the parameters αr and βr, r = 0, 1, 2, 3 are

dξa

dx
(c1) = 0

dξa

dx
(0) = 0 ξa(c1) = p, ξa(0) = 5,

dξb

dx
(c2) = 0

dξb

dx
(0) = 0 ξb(c2) = 1 − p, ξb(0) = 5.

Such equations guarantee that: ξ has continuous first derivative, has a minimizer in
x = c1 with value p, a minimizer in x = c2 with value 1 − p, and a maximum in
x = 0 with value 5. Note that the constant 5 defining the value of ξ at x = 0 could be
substituted by a further parameter (with value larger than 1), but we fixed this value
in order to avoid the proliferation of parameters (the same observation applies to
other constant values employed throughout the paper).

Function dp,K has, among others, two local minimizers at level 1 in x = c1 with
dp,K(c1) = p, and in x = c2 with dp,K(c2) = 1 − p. The global minimizer is

x∗ =
{

c1, if p = 0,
c2, if p = 1

with dp,K(x∗) = 0. A particular instance of function dp,K is reported in Fig. 2b.
Now we would like to find the local minimizers at level 2 for functions sp,K and

dp,K. A reasonable choice for the value r1, needed to define local minimizers at level
2, is r1 = 1. Indeed, we are going to prove that this choice allows to reduce the number
of local minimizers at level 2 of functions sp,K to 1, and of functions dp,K to 2. We first
prove the following lemma.

Lemma 1 Any local minimizer at level 1

(1) x̃ �= c1 of s1,K for any K ∈ [10, 20];
(2) x̃ �= c2 of s0,K for any K ∈ [10, 20];
(3) x̃ �= c1, c2 of dp,K for any p ∈ {0, 1} and any K ∈ [10, 20];
is not a local minimizer at level 2 for the corresponding function.

Proof We only give the proof for s1,K. The proof for the other two cases is completely
analogous. Following Definition 1 with r1 = 1, it is enough to show that there exists a
point y such that

| x̃ − y |≤ r1 = 1 and s1,K(y) < s1,K(x̃).

We assume that x̃ < c1 (again, the proof for the case x̃ > c1 is completely analogous).
Let us consider the difference between the argument of the cosine function in (1) at
x̃ + 1 and the same argument at x̃. Such difference is equal to

2π

⌈
K(c2 − c1)

10

⌉
1

c2 − c1
≥ 2π

K
10

≥ 2π .
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Therefore, the oscillation function certainly has a minimizer y in the interval (x̃, x̃+1].
Since x̃ < c1, we can choose y ∈ (x̃, c1]. In view of the definiton (3) of γ1, it holds that

γ1(y) < γ1(x̃)

and, consequently,
s1,K(y) < s1,K(x̃)

as we wanted to prove.

Observation 1 Function s1,K has the unique local minimizer x = c1 at level 2, while
function s0,K has the unique local minimizer x = c2 at level 2.

Proof The point x = c1 is the global minimizer of s1,K and, consequently, it is also a
local minimizer at level 2 (see Remark 4). But, in view of Lemma 1, no other local
minimizer at level 1 can be a local minimizer at level 2 for s1,K. The proof for s0,K is
completely analogous.

Observation 2 Function dp,K has two local minimizers at level 2, namely x = c1 and
x = c2.

Proof We prove the result for d0,K (the proof for d1,K is completely analogous). The
point x = c1 is the global minimizer of d0,K and, thus, is also a local minimizer at level
2. But also point x = c2 is a local minimizer at level 2. Indeed, this point turns out
to be a global minimizer of d0,K over the interval [0, +∞). Since c2 is constrained to
belong to the interval [2, 3.5], it holds that

[c2 − 1, c2 + 1] ⊂ [0, +∞)

and, consequently, there is no point y �= c2 such that

|y − c2|≤ 1 and d0,K(y) ≤ d0,K(c2)

from which we can conclude that x = c2 is a local minimizer at level 2. Lemma 1
proves that there is no other local minimizer at level 2 for d0,K.

3.2 Basic function with 2m local minima at level 2

Next step is the introduction of basic n-dimensional components with 2m (m =
0, 1, . . . , n) local minimizers at level 2. The easiest way to obtain these functions is
by summing up one-dimensional components with one or two local minimizers at
level 2. However, this way we would get separable functions. In order to avoid that
explicit or implicit exploitation of the separability (e.g., by moves along single or few
coordinates) leads to very good but misleading results, we remove separability. This
is easily obtained, e.g., by a one-to-one linear transformation of the original variables
(see also Whitley et al. 1995 for methods which allow to move from separable to non-
separable test functions). In particular we consider the following distance-preserving
transformation. Let x = {x1, . . . , xn} and

w(x1, . . . , xn) = Ax, (5)

where A is a n×n orthonormal matrix obtained by randomly generating a nonsingular
matrix A′ and then orthonormalizing it through the Gram-Schmidt process. Next we



488 J Glob Optim (2007) 38:479–501

define the following n-dimensional function:

Fm(x) =
m∑

i=1

dpi,Ki(wi(x)) +
n∑

i=m+1

spi,Ki(wi(x)), (6)

where pi are binary parameters, Ki are parameters constrained to belong to the inter-
val [10, 20], and functions spi,Ki and dpi,Ki are defined as in (2) and (4), respectively.
The global minimizer of Fm is the point x∗ which uniquely solves the following system
of n linear equations

wi(x∗) =
{

c1, if (pi = 0 and i ≤ m) or (pi = 1 and i > m),
c2, otherwise

(7)

and Fm(x∗) = 2(n − m).
If we denote by Si the set of all local minimizers at level 1 of the one-dimensional

function spi,Ki for i > m, and by Di the set of all local minimizers at level 1 of the
one-dimensional function dpi,Ki for 1 ≤ i ≤ m, then the set of all local minimizers at
level 1 for Fm corresponds to the set of solutions of the following linear systems

wi(x) = �i for i ∈ {1, . . . , n}, (8)

where �i ∈ Di for i ≤ m and �i ∈ Si for i > m. We prove the following observation.

Observation 3 Function Fm has 2m local minimizers at level 2 corresponding to the
solutions of the 2m linear systems (8) obtained by choosing

�i = c1 or c2, if i ≤ m,
�i = c1, if i > m and pi = 1,
�i = c2, if i > m and pi = 0.

(9)

Proof First we prove that if for at least one index i ∈ {1, . . . , n} the value �i is not one
of those specified in (9), then the solution x of the corresponding linear system (8) is
not a local minimizer at level 2 for Fm. We only give a proof for the case when there
exists an index j > m such that pj = 1 and �j �= c1. In a way completely analogous to
the proof of Lemma 1 we can show that there exists a value ηj ∈ [�j − 1, �j + 1] such
that the solution x̃ of the linear system

wi(x) = �i for i �= j,
wj(x) = ηj,

satisfies
Fm(x̃) − Fm(x) = s1,Kj(ηj) − s1,Kj(�j) < 0.

Since
‖x̃ − x‖=‖w(x̃) − w(x)‖= | ηj − �j |≤ r1 = 1,

we can immediately conclude from Definition 1 that x is not a local minimizer at level
2 for Fm.

Next step will be the proof that all the solutions of the 2m linear systems whose �i
values are given in (9) are local minimizers at level 2 for Fm. Let x be the solution of
one of these systems. It holds that x is a global minimizer of Fm over the set defined
by the following m linear inequalities

wi(x) ≥ 0 for i ≤ m and wi(x) = c2,
wi(x) ≤ 0 for i ≤ m and wi(x) = c1.
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Since all points outside this set have distance from x larger than r1 = 1, we can
conclude, following Definition 1, that x is a local minimizer at level 2 for Fm.

In order to define local minimizers at level 3, we need to specify a value for r2. A
reasonable choice for our test functions turns out to be

r2 = max{5, c2 − c1}. (10)

Indeed, with this choice we prove in the following observation that Fm has a single
local minimizer at level 3.

Observation 4 If r2 is defined as in (10), the unique local minimizer at level 3 for Fm is
the global minimizer of Fm obtained by solving (7).

Proof Obviously, the global minimizer of Fm is a local minimizer at level 3 for Fm
(see Remark 4). Now, let us consider a local minimizer at level 2 different from the
global minimizer. We remark that the global minimizer is a solution of (8) with the
following �i values

�i = c1, if i ≤ m and pi = 0,
�i = c2, if i ≤ m and pi = 1,
�i = c1, if i > m and pi = 1,
�i = c2, if i > m and pi = 0.

Consider a local minimizer x at level 2 obtained by solving the linear system (8) where
at least one index j ≤ m is such that �j = c2 when pj = 0 or �j = c1 when pj = 1
(the unique local minimizer at level 2 for which such index does not exist is the global
minimizer). Now consider the solution x̃ of (8) with the same �i values returning the
solution x except �j which is substituted by c1 if pj = 0, or by c2 if pj = 1. Then, it
holds that

Fm(x̃) − Fm(x) =
{

d0,Kj(c1) − d0,Kj(c2) if pj = 0
d1,Kj(c2) − d1,Kj(c1) if pj = 1

}
< 0

and that
‖x̃ − x‖=‖w(x̃) − w(x)‖ = c2 − c1 ≤ r2

from which we can conclude from Definition 2 that x is not a local minimizer at level 3.

3.3 Combining basic components

Let Fm2 and Fm1 be two basic components with m2 > m1. We want to build a new
function Gt, t = 2m1 + 2m2 , by combining Fm1 and Fm2 , with t local minimizers at level
2. The combination is defined in what follows.

Definition 3 Given the combination operator ×, the combination operation is

Gt = Fm1 × Fm2

and its result is a function of the n-dimensional vector of basic variables x = (x1, . . . , xn)

and of the auxiliary variable y:

Gt(x, y) =
⎧⎨
⎩

Ga
t (x, y) + O

K̄,Fm1 +Fm2
−2.5,2.5 (y), if y ≤ 0,

Gb
t (x, y) + O

K̄,Fm1 +Fm2
−2.5,2.5 (y), if y > 0,

(11)
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where

K̄ =
n∑

i=1

Ki/n, (12)

the oscillation function O is defined as in (1), 2

Ga
t (x, y) =

3∑
r=0

µr(x)(y + 2.5)r

and

Gb
t (x, y) =

3∑
r=0

ϕr(x)(y − 2.5)r.

Parameters µr(x) and ϕr(x), r = 0, 1, 2, 3, are functions of the basic variables x and
their values can be obtained by solving, respectively, the following systems:

dGa
t

dy
(x, −2.5) = 0,

dGa
t

dy
(x, 0) = 0,

Ga
t (x, −2.5) = Fm1(x),

Ga
t (x, 0) = 2(Fm1(x) + Fm2(x))

(13)

and
dGb

t

dy
(x, 2.5) = 0,

dGb
t

dy
(x, 0) = 0,

Gb
t (x, 2.5) = Fm2(x),

Gb
t (x, 0) = 2(Fm1(x) + Fm2(x)).

(14)

It follows from the above definition that function Gt is built in such a way that

Gt(x, −2.5) = Fm1(x) and Gt(x, 2.5) = Fm2(x) ∀ x.

For each fixed x, function Gt has, among others, two minimizers at level 1 in y = −2.5
and y = 2.5, the latter being also a global minimizer.

If we denote by x∗ the global minimizer of Fm2 , then the global minimizer for Gt is
(x∗, 2.5) and the global minimum value is

Gt(x∗, 2.5) = Fm2(x
∗) = 2(n − m2).

Let us denote by S1 the set of 2m1 local minimizers at level 2 for Fm1 , and by S2 the set
of 2m2 local minimizers at level 2 for Fm2 . Next observation proves that the number
of local minimizers at level 2 for Gt is the sum of the number of local minimizers at
level 2 for Fm1 and Fm2 .

2 With a slight abuse of notation, parameter H in definition (1) of O has been substituted in (11) by
the function Fm1 + Fm2 . A similar observation will apply to definition (17) of function 
.
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Observation 5 The local minimizers at level 2 for Gt are the following

(x1, −2.5) ∀ x1 ∈ S1,
(x2, 2.5) ∀ x2 ∈ S2.

Proof Similarly to the proof of Observation 3, it is enough to observe that (x1, −2.5) is
a global minimizer of Gt over the set defined by the following m1+1 linear inequalities

wi(x) ≥ 0 for i ≤ m1 and wi(x1) = c2,
wi(x) ≤ 0 for i ≤ m1 and wi(x1) = c1,
y ≤ 0.

Since points outside this set all have distance from (x1, −2.5) larger than r1 = 1, this
point is a local minimizer at level 2 for Gt. In a completely similar way we can prove
that (x2, 2.5) is a local minimizer at level 2 for Gt for any x2 ∈ S2.

What we still need to prove is that any local minimizer at level 1 (x, ȳ) for Gt
with y �= −2.5, 2.5 is not a local minimizer at level 2 for Gt. Indeed, consider the
one-dimensional function

u(y) = Gt(x, y).

We can follow proof of Lemma 1 to see that there exists at least one point ỹ �= ȳ such
that

| ȳ − ỹ |≤ 1 and u(ỹ) < u(ȳ).

It immediately follows that

‖(x, ȳ) − (x, ỹ)‖≤ r1 = 1

and
Gt(x, ỹ) < Gt(x, ȳ),

so that (x, ȳ) can not be a local minimizer at level 2.

We also prove that function Gt has a unique local minimizer at level 3.

Observation 6 The unique local minimizer at level 3 for Gt is its global minimizer.

Proof Note that in view of Observation 4 the unique candidates to be local minimiz-
ers at level 3 for Gt are the two points (x∗

1, −2.5), where x∗
1 is the global minimizer

of Fm1 , and (x∗
2, 2.5), where x∗

2 is the global minimizer of Fm2 . The latter is the global
minimizer for Gt and, consequently, it must also be a local minimizer at level 3. About
the former it is enough to observe that (x∗

1, 2.5) is a local minimizer at level 2 for Gt
for which it holds that

‖(x∗
1, 2.5) − (x∗

1, −2.5)‖ = 5 ≤ r2,

where r2 is defined as in (10), and

Gt(x∗
1, 2.5) = Fm2(x

∗
1) < Fm1(x

∗
1) = Gt(x∗

1, −2.5),

which proves that (x∗
1, −2.5) cannot be a local minimizer at level 3.

Once we have defined a procedure to combine two basic component functions Fm1

and Fm2 , we can generalize the combination operator × in such a way that each of its
two arguments can either be one of the basic component functions Fm or the result
of previous combination operations. The details of the generalization are analogous
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to those for the combination of the two basic component functions Fm1 and Fm2 with
just a slight difference. In order to describe this difference let us consider the case of
the combination of a basic component function Fm with a function G obtained by pre-
vious combinations. We notice that function Fm only depends on the basic variables
x = (x1, . . . , xn), while function G depends on the basic variables and some auxiliary
variables, say y1, . . . , yr. In order to make both functions depending on the same set
of variables, we modify as follows the basic component function:

F̃m(x, y1, . . . , yr) = Fm(x) +
r∑

j=1

[
(yj − 2.5)2 + OK̄,H

−2.5,2.5(yj)
]

. (15)

Note that F̃m still has 2m local minimizers at level 2, has the same global minimum
value as Fm, and its global minimizer has the same x coordinates as the global mini-
mizer of Fm while the yj coordinates, j = 1, . . . , r, are all equal to 2.5.

3.4 A function with L2 local minimizers at level 2

We are finally ready to define a procedure returning a function with a given number
L2 (1 ≤ L2 ≤ 2n+1 − 1) of local minimizers at level 2. Let qmqm−1 . . . q1q0 be the
binary code of L2. Let

J = {j : qj = 1} = {j0, . . . , jk}, j0 < · · · < jk.

Then we can employ the following procedure.

Initialization Set G = Fj0 and h = 1.
Step 1 If h > k, then STOP and return G, otherwise go to Step 2.
Step 2 Set

G = G × F̃jh , h = h + 1

(where F̃jh is the modification of the basic component Fjh as in (15) with the additional
y1, . . . , yh−1 auxiliary variables) and go back to Step 1.

Simple extensions of the previous proofs show that the resulting function has
exactly L2 local minimizers at level 2, the same global minimum value as Fjk and a
global minimizer whose x coordinates are the same as those of Fjk , while the y1, . . . , yk
coordinates are all equal to 2.5. Moreover, this function has a unique local minimizer
at level 3.

3.5 A function with L3 local minimizers at level 3

Next step is to define functions with a given number L3 of local minimizers at level
3. In order to obtain this function, first we can build L3 different components Gj,
j = 1, . . . , L3, each one with L2 local minimizers at level 2 and a single local minimizer
at level 3. These functions are obtained by the procedure described in the previous
subsection but the set of binary parameters used to define the basic multidimensional
functions (6) is different for each component Gj, i.e., we introduce binary parameters
p j

i, i = 1, . . . , n, j = 1, . . . , L3, for which we require that

� ∃ j1, j2 ∈ {1, . . . , L3} : p j1
i = p j2

i ∀i ∈ {1, . . . , n}. (16)

This way the position of the global minimizer (which is also the unique local minimizer
at level 3) is different for each Gj component but they all have the same global mini-
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mum value. Next we define a combination operator ⊗, similar to the one introduced
in Sect. 3.3.

Definition 4 Given two components Gj1 and Gj2 , then


 = Gj1 ⊗ Gj2

is a function of the n basic variables x = (x1, . . . , xn), of the auxiliary variables y =
(y1, . . . , yk) and of the further auxiliary variable z:


(x, y, z) =
⎧⎨
⎩


a(x, y, z) + OK̄,Gj1 +Gj2

−2.5,2.5 (z), if z ≤ 0,


b(x, y, z) + OK̄,Gj1 +Gj2

−2.5,2.5 (z), if z > 0,
(17)

where K is defined as in (12), O is the oscillation term defined in (1),


a(x, y, z) =
3∑

r=0

ηr(x, y)(z + 2.5)r,

and


b(x, y, z) =
3∑

r=0

τr(x, y)(z − 2.5)r.

Parameters ηr(x, y) and τr(x, y), r = 0, 1, 2, 3, are functions of the variables x and y and
can be obtained by the following equations, similar to (13) and (14):

d
a

dz
(x, y, −2.5) = 0,

d
a

dz
(x, y, 0) = 0,


a(x, y, −2.5) = Gj1(x, y) + 1/L3,


a(x, y, 0) = 2(Gj1(x, y) + Gj2(x, y)) + 2

and
d
b

dz
(x, y, 2.5) = 0,

d
b

dz
(x, y, 0) = 0,


b(x, y, 2.5) = Gj2(x, y),


b(x, y, 0) = 2(Gj1(x, y) + Gj2(x, y)) + 2.

Function 
 is built in such a way that


(x, y, −2.5) = Gj1(x, y) + 1/L3 ∀ (x, y),

and

(x, y, 2.5) = Gj2(x, y) ∀ (x, y),

Then, its global minimum value is the same as the one for Gj2 , while its global mini-
mizer has the same x and y coordinates as the global minimizer of Gj2 , and z = 2.5.
Let us denote by �1 the set of local minimizers at level 2 for Gj1 , and by �2 the set of
local minimizers at level 2 for Gj2 .
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Observation 7 It holds that function 
 has

(a) the 2L2 local minimizers at level 2

(x1, y1, −2.5) for any (x1, y1) ∈ �1
(x2, y2, 2.5) for any (x2, y2) ∈ �2

(b) two local minimizers at level 3, namely (x∗
1, y∗

1, −2.5) (where (x∗
1, y∗

1) is the global
minimizer for Gj1 ) and (x∗

2, y∗
2, 2.5) (where (x∗

2, y∗
2) is the global minimizer for Gj2 ).

Proof The proof of (a) is completely analogous to the proof of Observation 5. In
order to prove (b), we notice that, in view of Observation 6, the only possible local
minimizers at level 3 for 
 are the two points (x∗

1, y∗
1, −2.5) and (x∗

2, y∗
2, 2.5). Point

(x∗
2, y∗

2, 2.5) is the global minimizer so it must be a local minimizer at level 3. About
point (x∗

1, y∗
1, −2.5) we note that


(x∗
1, y∗

1, −2.5) = 
(x∗
2, y∗

2, 2.5) + 1/L3

and no local minimizer at level 2 for 
 different from (x∗
2, y∗

2, 2.5) has a better function
value (all other local minimizers at level 2 have a function value at least as large as
the global minimum value plus one). Then, (x∗

1, y∗
1, −2.5) is not a local minimizer at

level 3 for 
 only if
‖(x∗

1, y∗
1, −2.5) − (x∗

2, y∗
2, 2.5)‖≤ r2.

But, in view of (16), it holds that

‖(x∗
1, y∗

1, −2.5) − (x∗
2, y∗

2, 2.5)‖≥
√

(c2 − c1)
2 + 52 > r2,

where r2 is defined as in (10).

Similarly to Sect. 3.3, we can generalize the combination operation in such a way that
each of its two arguments can either be one of the basic component functions Gj (or
even better its modification G̃j completely analogous to (15) with z variables in place
of the y variables) or the result of previous combination operations.

Now, the following procedure, again similar to the one described in Sect. 3.3, returns
a function with L3 local minimizers at level 3.

Initialization Set 
 = G1 and h = 2.
Step 1 If h > L3, then STOP and return 
, otherwise go to Step 2.
Step 2 Set


 = 
 ⊗ G̃h, h = h + 1

and go back to Step 1.

Proof of Observation 7 can now be extended in order to prove that function 
 has L3
local minimizers at level 3 and L3L2 local minimizers at level 2. Its global minimum
value is the same as the one for GL3 and its global minimizer has the same x and y
coordinates as the global minimizer of GL3 , while the z1, . . . , zL3−1 coordinates are
all equal to 2.5.

4 A summary of the user-defined and random parameters

In this section, we summarize the parameters which have been employed to define
the test functions. Some of them have to be specified by the user, some others are
randomly chosen by the test generator.
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4.1 User-defined parameters

(1) n: the number of basic variables. Basic variables are those on which the basic
multidimensional functions Fm depend. Its lower bound is 1. Note that they
are not the unique variables of the test functions, other variables have been
introduced to combine different components of the test functions (the overall
number d of variables on which the test functions depend will be specified in
Observation (8)).

(2) L2: it is the parameter which controls the number of local minimizers at level 2.
It is constrained to belong to the interval [1, 2n+1 − 1].

(3) L3: the number of local minimizers at level 3. In view of the high difficulty intro-
duced by local minimizers at level 3, we set the upper bound

√
n for this value;

then, L3 is constrained to belong to the interval [1,
√

n].
(4) Ki, i = 1, . . . , n: the oscillation frequencies. They basically control the number of

local minimizers at level 1 in the one-dimensional components by which the test
functions are made up; they are constrained to belong to the interval [10, 20].
The user has the option of fixing them all equal to a given value K ∈ [10, 20]
or to let the value of each of them be randomly chosen in the above interval.
In order to guarantee a high-enough variability among the Ki values, these are
not uniformly sampled over the interval [10, 20] but each of them is sampled
with probability 0.5 in the interval [10, 12.5] and with the same probability in the
interval [17.5, 20]. We remark that the random choice of these values is a further
source of difficulty because it introduces an anisotropic behavior of the function,
i.e., a different behavior along distinct directions.

(5) H: the oscillation width. It controls the height of the barriers between neighbor
local minimizers at level 1 in the one-dimensional components; it is constrained
to belong to the interval [10, 30].

4.2 Random parameters

(1) c1 ∈ [−3.5, −2.0] defines the position of the first local minimizer at level 2 in the
one-dimensional components dp,K with two local minimizers at level 2 and of
the unique local minimizer at level 2 in the one-dimensional components s1,K
(see Sect. 3.1).

(2) c2 ∈ [2.0, 3.5] defines the position of the second local minimizer at level 2 in
the one-dimensional components with two local minimizers at level 2 and of the
unique local minimizer at level 2 in the one-dimensional components s0,K (see
Sect. 3.1).

(3) pj
i ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , L3: for each i corresponding to a one-dimen-

sional component of each function Gj introduced at the beginning of Sect. 3.5,
pj

i defines the position (c1 or c2) of the lowest local minimizer at level 2 if the
one-dimensional component has two local minimizer at level 2, or of the unique
local minimizer at level 2 if the one-dimensional component has a single local
minimizer at level 2 (see Sect. 3.1).

(4) A′ : it is the nonsingular matrix from which, through orthonormalization, matrix
A is generated (see Sect. 3.2). Matrix A defines the distance preserving trans-
formation (5) from the n-dimensional vector x of the basic variables to the
n-dimensional vector of variables w.
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The most important parameters from the point of view of the source of difficulty
discussed in Sect. 2 are L2 (controlling the number of local minimizers at level 2) and
L3 (controlling the number of local minimizers at level 3). But we remark that for
fixed L2 and L3 we can also increase the difficulty of the test problems by increasing n
(increase of the dimension d of the test functions), K (increase of the number of local
minimizers at level 1), H (increase of the height of the barriers separating different
local minimizers at level 1, thus making more difficult to jump over them).

The following observation returns the overall dimension d of the test functions as
a function of the three user-defined parameters n, L2 and L3.

Observation 8 The overall dimension d of the test functions is

d = n + ν(L2) + L3 − 2, (18)

where ν(L2) is the number of ones in the binary code of L2.

Proof This immediately follows from the procedures to build functions Gj,
j = 1, . . . , L3 in Sect. 3.4 and function 
 in Sect. 3.5.

Note that, according to (18) and recalling the bounds for the parameters, one-dimen-
sional test functions (d = 1) must have n = 1, L2 ∈ {1, 2}, L3 = 1, and they corre-
spond to the one-dimensional components described in Sect. 3.1 (two representatives
of which are displayed in Fig. 2); two-dimensional test functions (d = 2) must have
n = 1, L2 = 3, L3 = 1 (see the function displayed in Figs. 3 and 4) or n = 2,
L2 ∈ {1, 2, 4}, L3 = 1.

Here, we also prove the following observation which allows to restrict the search
region for the global minimizer.

Observation 9 The global minimizer of the proposed test functions lies in the interior
of a sphere centered at the origin and with radius 5

√
d.

Proof Let (x∗, y∗, z∗) be the d-dimensional vector corresponding to the global mini-
mizer of our test function. Let w∗ = Ax∗, where A is the distance-preserving trans-
formation defined in (5). From the definition of the test functions it holds that all the
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Fig. 3 A two-dimensional function with n = 1, L2 = 3, L3 = 1, K = H = 10, p = 1, c1 = −3, and
c2 = 3, over the box [−5, 5]2
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components of the vectors w∗, y∗ and z∗ lie in the interval (−5, 5). Then,

‖(x∗, y∗, z∗)‖ = √‖ x∗ ‖2 + ‖ y∗ ‖2 + ‖ z∗ ‖2

= √‖ w∗ ‖2 + ‖ y∗ ‖2 + ‖ z∗ ‖2 < 5
√

d,

where the last equality follows from the fact that the linear transformation A is dis-
tance-preserving.

In some cases, we also would like to define test functions of some given dimension
d. For this reason the user is also allowed to specify d as a parameter in place of n.
In these cases the user is first asked to introduce the values of the parameters L2, L3
(which, as explained above, control the source of difficulty discussed in Sect. 2), and
the dimension d; then, the value of n is computed through (18); if n is not lower than
1 and both L2 and L3 are within their prescribed upper bounds with respect to n
(respectively, 2n+1 − 1 for L2 and

√
n for L3) the user is finally asked to introduce

the values of the Ki, i = 1, . . . , n, and H parameters; otherwise, the assignment of
the parameter values is declared unsuccessful (the user is also reported the minimal
dimension d for which the given values of L2 and L3 are allowed) and the user is
asked to insert the parameters again.

5 Computational experiments

If we are given a class of global optimization problems, our aim is to find algorithms
which are able to solve them efficiently. If we want to propose a class of challenging
test functions the situation is somehow reversed: we are given existing algorithms and
we would like to find problems on which these algorithms are not efficient in order
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Fig. 4 Level curves for the function in Fig. 3
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to stimulate the search of new techniques. Of course, it is impossible to test all the
existing GO algorithms. Therefore, for those willing to test their GO algorithms on
the proposed test functions, we make a C++ class available, downloadable at the web
site (GOL 2006). In the same web site one can also find a link (RngStream 2004) to the
pseudo random number generator RngStream which has been employed to generate
the random parameters. Any feedback is more than welcome and at the same web
site all updates based on the received feedbacks will be indicated.

Although we can not test all GO algorithms, we think it is a good idea to present at
least some results as a basis for future comparison. Since the proposed test problems
are highly multimodal ones, we think that testing methods based on multiple local
searches is a good choice. Moreover, in the field of molecular conformation problems,
which inspired the definition of this test set, since the observations made in Wales
and Doye (1997) on the energy landscapes modified by local search procedures, it
has become a common practice to define methods where only local minimizers are
observed. We tested two simple GO algorithms, both based on multiple local searches,
on some test functions of increasing difficulty from the class proposed in this paper.
The first algorithm is the very simple Multistart algorithm. Following Observation 9, at
each iteration a random point within the sphere centered at the origin and with radius
5
√

d (d is defined in (18)) is sampled and a local search is started from it. We tested the
Multistart algorithm just to have an experimental confirm that for the proposed test
functions the large number of local minimizers at level 1 does not allow to detect the
global minimizer even when starting clever local search procedures (like the limited
memory BFGS employed in this paper) from many random initial points. The second
algorithm is Monotonic Basin Hopping (see Leary 2000), denoted by MBH in what
follows:

Initialization Let MaxNoImprove be a fixed parameter and X0 be a random initial
local minimizer at level 1; set h, k = 0.

Step 1 Let Zk+1 be obtained by random sampling in the sphere S(Xk, r), with center
Xk and radius r, and Yk+1 be the local minimizer at level 1 reached by starting a
local search from Zk+1;

Step 2 If f (Yk+1) < f (Xk), then set Xk+1 = Yk+1 and h = 0, otherwise set Xk+1 = Xk
and h = h + 1;

Step 3 If h ≥ MaxNoImprove, then STOP, otherwise set k = k + 1 and go back to 1.

In spite of its simplicity, MBH turned out to be extremely efficient for very challeng-
ing global optimization problems, like molecular conformation problems (see Leary
2000, Doye et al. 2004 for results on Lennard-Jones and Morse clusters), and some
highly multimodal test functions (see Locatelli 2005).

It can be viewed as a local search at level 2. In particular, Step 1 of MBH can be
viewed as a random move within the set of local minimizers at level 1 belonging to the
neighborhood of the current local minimizer Xk. We remark that the neighborhood
explored by MBH is slightly different from that in Definition 1. Indeed, in MBH the
neighborhood of a given local minimizer at level 1 is made up by all local minimizers
at level 1 whose basin of attraction is within the threshold distance r from it.

Tuning r is not trivial (we refer to Locatelli 2005 for a simple adaptive scheme to
tune it). In Table 1 we will always report the best results obtained with many different
choices of r (ranging from 10/K̄ and 20/K̄, K̄ defined as in (12)) just to show that
for the most difficult test functions even optimized choices of r do not lead to high
percentage of successes. The MaxNoImprove parameter has been set to a very large
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Table 1 Results of MBH over the seven proposed test functions

Function n Ki H L2 L3 d Successes Average #LS

Test 1 50 Ki = 10, i = 1, . . . , n 10 1 1 50 1000 1517
Test 2 50 Ki = 20, i = 1, . . . , n 10 1 1 50 1000 2393
Test 3 50 Ki random in [10, 20] 10 1 1 50 1000 5271
Test 4 30 Ki = 10, i = 1, . . . , n 10 10 1 31 82 1444
Test 5 30 Ki = 10, i = 1, . . . , n 10 25 1 32 30 1810
Test 6 30 Ki = 10, i = 1, . . . , n 10 25 4 35 15 1612
Test 7 30 Ki = 10, i = 1, . . . , n 10 100 4 35 5 1867

value (105) in order to be reasonably sure that a local minimizer at level 2 has been
reached.

Seven different test functions have been considered. The parameters defining these
functions can be downloaded at the web site (GOL 2006) (in order to guarantee the
possibility of repeating experiments, the software allows to save into a file all the user-
defined and random parameters defining a test function, and to read them later from
the same file). As expected, Multistart was unable to detect the global minimizer using
twice as many local searches with respect to MBH even in the easiest (with respect
to MBH) case (test function with L2 = L3 = 1, H = K = 10). Results for MBH are
reported in Table 1. On each test function 1,000 runs have been performed. For each
function we report the number of successes over the 1,000 runs and the average num-
ber of local searches per run (always excluding in each run those performed during
the last 105 iteration where no improvement is observed). Testing has been performed
on Pentium IV processors 2.4 GHz with 512 MB RAM running Linux.

Since MBH can be viewed as a procedure to detect local minimizers at level 2,
we show that it is an appropriate method to solve problems with a low number of
local minimizers at level 2 but often fails as the number of local minimizers at level 2
increases, thus pointing out the need for different strategies. MBH always solves the
problems with L2 = L3 = 1. It can be seen that increasing the number of local mini-
mizers at level 1 (i.e., increasing parameter K from 10 to 20) only slightly worsens the
performance of MBH, while modifying the frequency of oscillations along different
axes through the random selection (within the interval [10, 20]) of the Ki values, is
a more serious source of difficulty (the average number of local searches increases).
The reason for this is that the random generation of the point Zk+1 over a sphere
centered at the current record Xk (Step 1 of MBH) does not take into account the
anisotropic behavior of the function.

As the values L2 and L3 are increased, we observe a clear decrease of the perfor-
mance of MBH (MBH often gets trapped at a local minimizer at level 2 and is unable
to escape from it when this is not the global minimizer). Notice that in these cases
MBH always reaches in a relatively fast time (i.e., within a number of local searches
ranging from 1,500 to 2,000) a local minimizer at level 2 (it has been observed that
MBH always stops at a local minimizer at level 2) but then is unable to escape from it.

6 Conclusion

In this paper, we have proposed a class of test functions for unconstrained global
optimization problems. The difficulty of these problems can be controlled by an
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appropriate choice of some parameters. A web site (GOL 2006) is maintained where
users will be able to download a C++ class of the test functions, post their comments
and get the parameters defining a set of seven test functions with increasing difficulty
for which we also make available the results obtained by two simple GO algorithms
as a basis of comparison.
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