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SUMMARY

Global=multi-modal optimization problems arise in many engineering applications. Owing to the exis-
tence of multiple minima, it is a challenge to solve the multi-modal optimization problem and to identify
the global minimum especially if e;ciency is a concern. In this paper, variants of the multi-start with
clustering strategy are developed and studied for identifying multiple local minima in nonlinear global
optimization problems. The study considers the sampling procedure, the use of Hessian information
in forming clusters, the technique for cluster analysis and the local search procedure. Variations of
multi-start with clustering are applied to 15 multi-modal problems. A comparative study focuses on the
overall search e>ectiveness in terms of the number of local searches performed, local minima found and
required function evaluations. The performance of these multi-start clustering algorithms ranges from
very e;cient to very robust. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, the global optimization problem is considered subject to variable bound con-
straints (the box-constrained problem):

min
x∈D

f(x); D⊂Rn (1)

where f(x) is a multi-modal objective function and D is the feasible domain, deBned by
variable bounds. A point x∗ is a global minimum if f(x)¿f(x∗) ∀x∈D, or a local minimum
if f(x)¿f(x∗) ∀x∈D∩X , where X is the neighbourhood of x∗. If bounds are not tight

∗Correspondence to: Weizhen Tu, Educational Communications, SUNY Upstate Medical University, 766 Irving
Avenue, Syracuse, NY 13210, U.S.A.

†E-mail: tuw@upstate.edu
‡E-mail: mayne@eng.bu>alo.edu

Contract=grant sponsor: State of New York=UUP A;rmative Action Committee
Contract=grant sponsor: Computing and Information Technology of the State University of New York at Bu>alo

Received 5 February 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Revised 20 April 2001



2240 W. TU AND R. W. MAYNE

at the minimum, the problem can be considered as unconstrained. Traditionally, nonlinear
programming (NLP) methods have been developed to aim at a local minimum. Although
a global minimum must also be a local minimum, there is no mathematical criterion for
deciding whether a particular local minimum is indeed the global minimum. There may exist
several local minima and the corresponding function values may di>er substantially. It has
been proven that a general global optimization problem cannot be solved in a Bnite number
of steps [1]. It is a considerable challenge to solve the multi-modal optimization problem and
identify the global minimum from both mathematical and computational viewpoints especially
if e;ciency is a concern.

Global optimization algorithms can be broadly classiBed as deterministic or stochastic de-
pending on whether they incorporate any stochastic elements to solve the problem [2; 3]. The
multi-start approach [2] is one of the well-known stochastic methods and tries to Bnd multiple
local minima by starting local minimization procedures from a set of random starting points
distributed uniformly over the feasible domain. Several of its variants have been reported in
the literature such as multi-start with clustering [4–7], domain elimination [8], zooming [8],
and repulsion [9]. One of the advantages of multi-start is that it has the potential to Bnd all
local minima. But, the basic multi-start method has the tendency to be ine;cient because it
inherently causes extra executions of the local search procedure and particular minima may be
located several times. However, if sample points can be grouped into clusters that correspond
to regions of attraction, where a region of attraction R(x∗) of a local minimum x∗ is deBned
as a subset of the feasible domain within which a given local search procedure starting from
any point converges to x∗ [5], then ideally only one local search is required in each cluster.
This is the basic idea of multi-start with clustering.

In this work, variants of the multi-start with clustering approach for solving unconstrained
global optimization problems are studied, developed and implemented. They di>er from ex-
isting algorithms in the way that sample points are manipulated and clusters are identiBed.
SpeciBcally, the Hessian matrix is considered as a guide to clustering decisions, simulated
annealing is used in the sampling process and the ‘ISO-OCT’ technique is adapted from the
pattern recognition literature for use in cluster analysis. In the sections which follow: Sec-
tion 2 introduces the use of Hessian information in multi-start clustering; Section 3 discusses
sampling methods; Section 4 discusses clustering algorithms; Section 5 presents a multi-start
clustering strategy for unconstrained global optimization; Section 6 describes and summarizes
numerical studies of the algorithm character; and Section 7 reports on comparative results
with previously published algorithms.

2. USE OF HESSIAN INFORMATION IN MULTI-START CLUSTERING

Assume that the function to be minimized is smooth and twice di>erentiable. As known
from the necessary and su;cient conditions for local optimality, at a local minimum the
gradient of the objective function is zero and the Hessian matrix is positive deBnite. Intu-
itively, we can imagine that in the neighbourhood of local minima, the objective function is
convex and any two isolated local minima must be separated by a region where the func-
tion is non-convex, that is, the Hessian matrix is either negative deBnite or indeBnite. If we
process the sample points by discarding those points with non-positive deBnite Hessian matri-
ces, the resulting clusters should be well-deBned and more easily and accurately identiBable
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Figure 1. Contour plot of six-hump camel back.
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Figure 2. (a) Original sample distribution; and (b) Points with positive deBnite Hessian matrices.

(Figures 1 and 2, e.g.). The e;cient extraction of Hessian information is a natural concern
in this process.

The symmetric rank one (SR1) formula has been used to estimate the Hessian matrix,
because the SR1 update neither requires quasi-Newton directions nor an exact line search to
generate a reasonable Hessian approximation [10; 11]. Moreover, it has been demonstrated that
the SR1 update tends to converge to the true Hessian in terms of deBniteness and numerical
value regardless of the ‘deBniteness’ of the Hessian [10; 11]. The SR1 formula for the Hessian
estimation is as follows [10]:

Hk+1=Hk +
(Y k −HkSk)(Y k −HkSk)T

(Y k −HkSk)TSk
(2)

Bk+1= Bk − (BkY k − Sk)(BkY k − Sk)T

(Y k)T(BkY k − Sk)
(3)

where Y k=∇f(X k+1)−∇f(X k) and Sk =X k+1−X k . The approximation of the Hessian matrix
and its inverse at the (k+1)th and kth iterations are given by Hk+1; H k and Bk+1; Bk ; respec-
tively. For an n-dimensional quadratic function, it takes at most n+1 iterations to approximate
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the Hessian matrix. For each sample point, a sample-point-based approach to estimating the
Hessian uses its n closest points for n+1 iterations. Estimating the Hessian matrix for N
sample points requires N gradient evaluations, N sort operations and N × (N−1) distance
calculations. When function and gradient evaluations are expensive, the cost of computing
distances and sorting is negligible.

Eigenvalues are used to check the deBniteness of the Hessian matrix at each sample point.
Geometrically speaking, the eigenvalues of an Hessian matrix correspond to the lengths of the
axes of an ellipsoid. The largest eigenvalue corresponds to the shortest axis of the ellipsoid,
while the smallest eigenvalue corresponds to the longest axis. To make an e>ective compar-
ison of eigenvalues from point to point, scaled eigenvalues are used at each point. A scaled
eigenvalue for one point is deBned as the ratio of each original eigenvalue over the sum of
all the eigenvalues for that point, so that,

�si =
�i∑n
i=1 �i

(4)

Then the points with at least one negative eigenvalue or with relatively smaller scaled
positive eigenvalues are considered to be ‘not positive deBnite’ and may be discarded from
the clustering process of the continuing search.

3. SAMPLING METHODS

Two sampling methods are considered, a one-temperature simulated annealing (SA) algo-
rithm and a simple random search. Simulated annealing is a stochastic global optimization
method [12]. It iterates as a series of random search procedures performed at a decreasing
sequence of the control parameters (temperatures). At each iteration, a new point x′ is gen-
erated by randomly perturbing an existing point x. If f(x′)¡f(x) then the new point is
accepted. Otherwise, the new point is accepted according to a probability that is a function
of the temperature. The one-temperature SA algorithm uses one Bxed temperature and iterates
only once. It di>ers from a simple random search which accepts all points sampled.

Several methods for sample reduction and concentration have been reported in the litera-
ture, including: (1) eliminating sample points with larger function values [5]; (2) classifying
sample points based on a gradient criterion [6]; and (3) one or a few step local searches [4].
One strategy considered here processes sample points by eliminating points with non-positive
deBnite Hessian matrices.

The function value and gradient provide point-wise information, while the Hessian reQects
the nature of a function over a region. The objective function is expected to be convex in the
neighbourhood of a local minimum in unconstrained problems. Thus discarding points with
a non-positive deBnite Hessian matrix o>ers a potential for robust and e;cient behaviour
in Bnding all local minima, because it theoretically matches each cluster to the region of
attraction of each local minimum.

However, the region of attraction of a local minimum is very small for problems with a very
rough surface. Then depending on the scale of the roughness, the use of Hessian information
may not be e>ective, in which case, eliminating sample points with larger function values
may be a preferred approach to reducing sample size and to preparing the sample for cluster
analysis.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:2239–2252



MULTI-START CLUSTERING FOR GLOBAL OPTIMIZATION 2243

4. CLUSTER ANALYSIS

Generally speaking, cluster analysis is a mathematical method for generating classes without
a priori knowledge of prototype classiBcation. Cluster analysis is used in many applications
such as pattern recognition and image processing. Assume that there are M clusters in space
S. The process of clustering can be formally stated as seeking the regions S1; S2; : : : ; Sm, which
satisfy the following conditions [13]:

Si ∩ Sj =I for i �= j and S1∪ S2 : : : ∪ Sm= S (5)

Cluster analysis algorithms classify objects into clusters by natural association according to
similarity measures. Euclidean distance is the simplest and most frequently used measure and
is represented by

D2(xi ;xj)= (xi − xj)T(xi − xj)= ‖xi − xj‖2 =
n∑

k=1
(xik − xjk)2 (6)

where xi =[xi1; xi2; : : : ; xin]T. It is expected that the intraset distance (within clusters) should be
small, whereas the interset distance (between clusters) should be large. In this study, we use
the iterative self-organizing optimal clustering technique (ISO-OCT) which is a variant of the
iterative self-organizing data analysis technique (ISODATA) [13] and incorporates an optimal
cluster seeking criterion function to optimize the clustering process and obtain the natural
clusters of the sample points [14]. The algorithm assigns sample points to clusters according
to their distance from the initially chosen cluster centres. Then it reorganizes clusters by
splitting and merging clusters based on two criteria:

1. If the distance between two cluster centres is less than the minimum distance allowed
(�), then merge the two clusters into one;

2. If the largest standard deviation of a cluster (used as an intraset measure) is greater than
the maximum value allowed (�s) and if the average distance of the samples in a cluster
Sj from their corresponding cluster centre is greater than the overall average distance of
the samples from their respective cluster centres, then split that cluster.

The initial cluster centres are chosen in the following way: (1) sort function values of the
NP sample points in an ascendant order, that is, f(x1)6f(x2)6 · · ·6f(xNP); (2) choose
three points as the initial cluster centres: z1 =x1; z2 =xNP=2 and z3 =xNP. The values for �
and �s are computed as follows:

�=0:2
{
1
2

(
1
n

n∑
i=1

|ui − li|+ 1
n

n∑
i=1

|xmax
i − xmin

i |
)}

(7)

�s =0:5� (8)

where n is the dimension of the design space, ui and li (i = 1; 2; : : : ; n) are upper and lower
variable bounds, and xmax

i = max{x1i; ; x2i ; : : : ; xNP
i } and xmin

i = min{x1i ; x2i ; : : : ; xNP
i }.

The optimal cluster seeking criterion function (a similarity measure) is deBned as [14]:

Rij =
Dii +Djj

Dij
(9)
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where Dii and Djj are the dispersions for clusters i and j, respectively; and Dij is the distance
between clusters i and j. Dii and Dij can be computed as:

Dii =

[
1
Ni

Ni∑
j=1

‖xj − zi‖2
]1=2

and Dij =
[

n∑
k=1

(zki − zkj)2
]1=2

(10)

where zki is the kth component of cluster centre zi. For each cluster i, the similarity parameter
for its most similar cluster is designated as Ri = maxNc

j=1{Rij; j �= i}; where Nc is the number
of clusters. Equation (9) shows that the smaller the dispersion of a cluster or the larger the
distances among clusters, the lesser is the similarity of clusters. The average measure of the
most similar clusters RR, is then computed as:

RR=
1
Nc

Nc∑
i=1
Ri (11)

The cluster algorithm starts with an arbitrary number of clusters. Di>erent values of RR can
be obtained for di>erent cluster conBgurations in each iteration. The conBguration of clusters
corresponding to the smallest values of RR is the most appropriate conBguration [14].

Several cell-based clustering methods have been used in global optimization such as multi-
level single linkage (MLSL) [5], multi-level mode analysis (MLMA) [5] and vector quantiza-
tion (VQ) [6]. These methods identify clusters sequentially with the seed cells containing the
local minima found by local searching, and use Bayesian stopping rules [5] to terminate the
whole process of sampling, clustering and performing local searches. The di>erence among
them is that VQ uses Voronoi cells as polytopes for clustering, while MLSL and MLMA are
based on the spiral search technique which uses hypercubes. The ISO-OCT strategy identiBes
all clusters simultaneously before starting any local searches. It uses the ratio of the interclus-
ter distance vs dispersion within a cluster as a criterion function to guide the splitting and
merging of clusters to improve the cluster conBguration.

5. THE MULTI-START WITH CLUSTERING STRATEGY FOR
UNCONSTRAINED GLOBAL OPTIMIZATION

The multi-start with clustering strategy studied here begins by sampling the design domain
via a one-temperature SA algorithm based on Hsueh’s implementation [15] or alternatively
with a simple random search procedure. Then the sample points can be reduced in one of two
ways: (1) discarding points with non-positive deBnite Hessian matrices; (2) discarding points
with larger function values. After this reduction, the cluster analysis technique is applied to
the reduced sample points to identify clusters. Finally, a gradient-based quasi-Newton local
search procedure starts in each cluster to Bnd the local minimum and potentially the global
minimum. The strategy can be summarized in the following framework:

Step 0. Input the dimension n, sample size N , variable lower=upper bounds lj and uj (j=1;
: : : ; n) for the sample procedure. Specify the maximum number of clusters M ,
minimum number of samples in a cluster �, maximum number of pairs of cluster
centres that can be merged L, and the maximum number of iterations I for the
ISO-OCT procedure. If the one-temperature SA is used, input the temperature T0.
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Step 1. Generate N random points xi using the one-temperature SA algorithm or a simple
random search procedure, store Nsel accepted sample points (for random search
Nsel =N ) and their function values in arrays Xsel and Fsel.

Step 2. Compute the clustering parameters � and �s using Equation (7) and (8).
Step 3. If the Qag for using the Hessian is false, then discard 20 per cent of the sample

points with larger function values and go to Step 7. Otherwise, go to Step 4.
Step 4. Compute the gradient dg(xi) (i=1; : : : ; Nsel) using either a user supplied gradient

routine or the Bnite di>erence method.
Step 5. Find n closest points of xi and compute the Hessian matrix H (xi) (i=1; : : : ; Nsel)

using Equations (2) and (3).
Step 6. Compute the eigenvalues (using the subroutine EVLSF of the IMSL libraries [16]).

Then compute the scaled eigenvalues �ij; j=1; : : : ; n; i=1; : : : ; Nsel using Equa-
tion (4). If any �ij¡0, discard the point i, else store the largest �ij ( j=1; : : : ; n)
in an array �pd. Sort sample points by �pd in an ascending order and retain the
80 per cent of the points with the largest scaled eigenvalues.

Step 7. Identify clusters by applying the clustering analysis procedure ISO-OCT to the
reduced sample points.

Step 8. Perform a local search procedure (BCONG or BCONF of IMSL [16]) starting
from the point with the smallest function value in each cluster.

Step 9. Stop. The points with the smallest function values are candidate global minima.

The above strategy including Steps 4–6 has been implemented in FORTRAN 77 as an
‘H-based’ (Hessian-based) program. If the Steps 4–6 are skipped, the program is referred
to as ‘DC’ for direct clustering. No special stopping conditions are required, as the program
stops when all local searches terminate. The BCONF=BCONG routine of IMSL minimizes
a function of n variables subject to bounds on the variables using the BFGS quasi-Newton
method [16]. To save function evaluations in the Bnite di>erence gradient calculation, the
function value of each sample point accepted by the sample procedure is stored and passed
into the gradient computation subroutine. Thus, for a sample size of N points, only N×n not
(N+1)× n extra function evaluations are incurred for the Bnite di>erence gradient calculations.

6. NUMERICAL RESULTS

Variations of the multi-start strategy have been tested on 15 problems selected from the global
optimization literature. These problems represent a mixture of reasonably behaved functions
with a few minima and highly non-linear functions with many minima. Problems 13–15 are
extensions of the Shekel family [3] to ten dimensions. A summary of the test problems
is listed in Table I, where n is the dimension of the problem, NL=NGM is the number
of local=global minima, and FG=FL is the smallest=largest function value among all of the
minima. Full descriptions of the test problems can be found in Reference [18].

The multi-start variations considered include di>erent sampling methods (one-temperature
SA vs random search), and clustering strategy (using Hessian information before clustering or
direct clustering). All tests were performed on a 250MHz Sun Ultra Enterprise 3000 computer.

Complete numerical results were reported in Reference [18], including the number of
function evaluations in the sample process and local searches; and the number of gradient
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Table I. Summary of 15 multi-modal problems.

Problem n NL NGM FG FL Referred to as

1 2 4 1 3.0 840 Goldstein–Price (GP) [3]
2 2 3 1 0.0 0.298640 Three-Hump Camel back (CB3) [2]
3 2 6 2 −1:03163 2.104 Six-Hump Camel back (CB6) [8]
4 2 3 3 0.397887 0.397887 Branin (BR) [3]
5 2 4 4 0.0 0.0 Himmelblau (HM) [17]
6 3 3 3 −3:86278 −1:00082 Hartman-3 (H3) [3]
7 6 2 2 −3:32237 −3:20461 Hartman-6 (H6) [3]
8 4 5 1 −10:15319 −2:63047 Shekel-5 (S5) [3]
9 4 7 1 −10:40294 −1:83759 Shekel-7 (S7) [3]

10 4 10 1 −10:5364 −1:67655 Shekel-10 (S10) [3]
11 4 Unknown 1 0.0003075 0.002119 Kowalik (KL) [8]
12 6 Unknown 2 −1:00 −0:85219 Evtushenko (EV) [8]
13 10 5 1 −10:15320 −2:63047 Shekel-ten-5 (ST5) [18]
14 10 7 1 −10:40294 −1:83759 Shekel-ten-7 (ST7) [18]
15 10 10 1 −10:53641 −1:67655 Shekel-ten-10 (ST10) [18]

calculations in Hessian matrix estimation and local searches. A summary of the results is
given in Table II where analytical gradient evaluations are counted as N×n function evalua-
tions. The sample size for each method is included in parentheses. All results are the average
of Bve independent runs. However, the rows labelled lnf=tnf report the average and total
number (average=total) of local minima found in the Bve runs.

With the one-temperature SA, a sample size of 400 points was chosen as a reasonable
compromise between computational e>ort and the number of accepted sample points after
preliminary experiments were run with 1000, 400 and 100 samples. In columns 4 and 5 of
Table II, for problems with a few local minima and relatively large regions of attraction
such as Goldstein–Price (GP), Camel-3 (CB3) and Camel-6 (CB6), Himmelblau (HM), and
Hartman-3 (H3) and Hartman-6 (H6), the H-based approach is more e>ective at identifying
the regions of attraction of local minima. It found more local minima per run than direct
clustering (DC). The number of local searches it performed also represents the number of
local minima more closely than the DC approach. Although the H-based approach is associated
with increased function evaluations, it may be useful in cases where local minima are of
particular interest as perhaps in mechanical design applications. In cases where there are many
minima (rough surfaces, e.g. the Kowalik, KL, and Evtushenko, EV, functions designed for
global minimization testing) or where the region of attraction is very small (perhaps with
deep basins, e.g. the Shekel family of functions), it is di;cult to Bnd points with positive
deBnite Hessian matrices at a practical sampling scale. This makes the H-based method less
e>ective than the direct clustering method in locating multiple local minima. Both the H-based
and DC methods are able to locate the global minima for all problems. Overall, the H-based
method incurs more function evaluations than direct clustering because of the required function
evaluations for Hessian matrix estimation. This becomes more evident when the number of
design variables increases.

Columns 4 and 5 of Table II also show that the one-temperature SA procedure consumes
a signiBcant fraction of function evaluations. Based on this observation, an experiment with
a simple random search procedure has been considered to reduce the sample size. We have

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:2239–2252



MULTI-START CLUSTERING FOR GLOBAL OPTIMIZATION 2247

Table II. Summary of numerical results.∗

SA–H SA–DC RS–DC RSG–DC
Function NL Counter (400) (400) (40) (20)

GP 4 ls 3.2 2.8 5.2 2.6
lnf=tnf 3=4 2=3 3=4 2=4
tfe 744 455 193 91

CB3 3 ls 4.6 5.2 4.8 3.2
lnf=tnf 3=3 2:8=3 3=3 2.4/3
tfe 758 445 92 51

CB6 6 ls 6 5.2 5.4 3.2
lnf=tnf 4=5 3:8=4 4:2=6 2:6=4
tfe 757 455 94 52

BR 3 ls 4 4.8 5.2 3
lnf=tnf 3=3 3=3 3=3 2=3
tfe 742 437 88 44

HM 4 ls 4 4.4 4.8 3.2
lnf=tnf 3:8=4 3:6=4 3:6=4 3:2=4
tfe 716 451 100 60

H3 3 ls 3.2 7.4 5.2 2.6
lnf=tnf 2:8=3 2:6=3 2:4=3 2=3
tfe 832 513 124 64

H6 2 ls 4.6 6.8 6.2 2.4
lnf=tnf 2=2 1:8=2 2=2 1:4=2
tfe 1276 600 224 88

S5 5 ls 1.6 6.8 10 2.6
lnf=tnf 1:4=3 3:8=5 4:6=5 1:8=3
tfe 1027 573 344 103

S7 7 ls 2.6 8.6 10 2.6
lnf=tnf 2=6 4:6=6 5:4=7 1:8=4
tfe 1060 630 377 105

S10 10 ls 3.4 10 10.2 2.8
lnf=tnf 2:6=6 6=10 5=9 2:2=4
tfe 1097 655 379 123

KL Unknown ls 4.8 6.8 6.8 2.2
lnf=tnf 3:6=12 5:6=14 7=10 1:4=3
tfe 1190 708 312 240

EV Unknown ls 5.6 6.4 7.8 2.6
lnf=tnf 5:2=11 6:4=13 5:4=12 2=6
tfe 1218 510 191 72

ST5 5 ls NA 6.8 7.8 1.8
lnf=tnf 3:5=5 3:8=5 1:4=3
tfe 600 272 92
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Table II. Continued.

ST7 7 ls NA 10.6 10.8 2.2
lnf=tnf 4:2=6 4=5 1:8=4
tfe 736 378 92

ST10 10 ls NA 12.4 10 2.2
lnf=tnf 4:6=7 4:4=8 2=4
tfe 835 396 77

∗Note: NL=number of local minima; ls= number of local searches; lnf = average number of
local minima found; tnf = total number of minima found in Bve independent runs; tfe= total
number of function evaluations, including function evaluations in sampling, Hessian estimation
and local searches; SA–H=H-based method with SA (400 sample points), SA–DC=direct
clustering method with SA (400 sample points), RS–DC=direct clustering method with ran-
dom search (40 sample points), RSG–DC=direct clustering method with random search aimed
for the global minima only (20 sample points); NA=Not applicable=available.

experimented with 40 sample points (the same sample size as used in domain elimination [8])
and the results are summarized in column 6 of Table II. With a small sample size of 40,
sample points tend to be scattered, which makes Hessian estimation less likely to be useful.
Thus, only the direct clustering results are shown. Comparing columns 4, 5 and 6 shows that
on average the direct clustering method with random search has performed well with similar
e>ectiveness (in terms of local minima found) and with fewer function evaluations compared
to both the H-based and direct clustering methods using one-temperature SA.

It should also be noted that when the region of attraction is identiBed, the local search
procedure plays an important role in whether the corresponding local minimum can be found.
The local search procedure may have a tendency to jump to a better minimum even if it starts
from the region of attraction of a poorer minimum and is sensitive to the starting point. As can
be seen, for most test problems, more regions of attraction than local minima were identiBed.

If only the global minimum is of interest, the sample size can be further decreased. Column
7 of Table II shows the results for direct clustering with a sample size of only 20. The
e>ectiveness in terms of local minima found is somewhat reduced. But RSG-DC successfully
located the global minimum for all but one test problem with a considerable reduction in
function evaluations.

7. COMPARATIVE STUDIES

In general, it is very di;cult to compare the performance of di>erent global optimization
algorithms because the algorithms may have di>erent goals, termination criteria, test problems
and ways of reporting results. When reporting numerical results, most researchers have tended
to be concerned with only the number of function evaluations and excluded the number
of gradient evaluations even though analytical or numerical gradients were used in sample
preprocessing [6] or in local search procedures [5; 6; 8].

Tables III and IV present the results of comparative studies considering previous publica-
tions. All of these results are the average of Bve independent runs except the third column of
Table IV where both the average and total number (average=total) of local minima found in
Bve runs are reported. When conducting the comparative study, the number of gradient eval-
uations in Hessian matrix estimation is presented in terms of equivalent function evaluations,
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Table III. Comparative study I.∗

SA–H SA–DC RS–DC VQ† MLSL MLMA
Function NL Counter (400) (400) (40) (1000) (1000) (1000)

GP 4 ls 3 3 5 4 3 5
lnf 3 2 3 3 3 3
tfe 744 455 193 1068 1091 1117

BR 3 ls 4 5 5 NA 3 3
lnf 3 3 3 3 3
tfe 742 437 88 1065 1063

H3 3 ls 3 7 5 2 4 3
lnf 3 3 2 2 2 2
tfe 832 513 124 1034 1112 1106

H6 2 ls 5 7 6 3 10 5
lnf 2 2 2 2 2 2
tfe 1276 600 224 1149 1986 1454

S5 5 ls 2 7 10 5 5 5
lnf 1 4 5 5 5 4
tfe 1027 573 344 1179 1211 1214

S7 7 ls 3 9 10 6 6 5
lnf 2 5 5 6 6 5
tfe 1060 630 377 1192 1281 1224

S10 10 ls 3 10 10 7 8 5
lnf 3 6 5 7 8 5
tfe 1097 655 379 1198 1346 1238

∗Note: VQ=VQ-multi-start with clustering [6] (1000 sample points), MLSL=multi-level single linkage [5] (1000
sample points), MLMA=multi-level mode analysis [5] (1000 sample points), NA=Not applicable=available.

†The VQ multi-start with clustering method used the gradient in preprocessing the sample points but the number
of the gradient calculations was not reported.

but the number of gradient evaluations in local searches is excluded in order to compare the
algorithms in this work on the same basis as the numerical data shown in other researchers’
presentations.

In Table III, variations of strategies studied in this work are compared with three cell-
based clustering algorithms—VQ [6], MLSL [5], and MLMA [5]. It is noticeable that a
larger sample size is shown for the cell-based algorithms. This is required by the use of cells
and the Bayesian stopping rules.

The ISO-OCT employed in this study is relatively insensitive to the sample size. Bayesian
stopping rules are not needed in our strategy, as the program stops when all local searches
terminate. Thus, the direct clustering strategy with simple random search can use a small
sample size (40). However, for the H-based strategy with one-temperature SA, if the sample
size is too small (¡100), then the accepted sample points tend to be scattered, which would
result in inaccurate Hessian estimation, making the strategy ine>ective. If the sample size
is too large (¿1000), Hessian estimation would consume a large portion of the function
evaluations and make the strategy ine;cient.
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Table IV. Comparative study II.

SA–H SA–DC RS–DC DE∗ ZM∗

Function NL Counter (400) (400) (40) (40) (40)

CB6 6 ls 6 5 5 4 4
lnf=tnf 4=5 4=4 4=6 NA=2 NA=2
tfe 757 455 94 127 316

KL Unknown ls 5 7 7 16 2
lnf=tnf 4=12 6=14 7=10 NA=8 NA=1
tfe 1190 708 312 5886 5725

EV Unknown ls 6 6 8 19 10
lnf=tnf 5=11 6=13 5=12 NA=11 NA=6
tfe 1218 510 191 2703 3452

∗The number of local minima found reported in zooming and domain elimination are the total number found
in Bve independent runs, while the number of function evaluations is the average of Bve independent runs.
DE=Domain elimination [8]; ZM=Zooming [8].

Table V. Methods to be compared.

Method Name Reference

A Multi-start Rinnooy Kan and Timmer [19]
B Controlled random search Price [2]
C Density cluster Torn [4]
D Clustering with distribution function De Biase and Frontini [2]
E Multi-level single linkage Rinnooy Kan and Timmer [5]
F Simulated annealing Dekker and Aarts [20]
G Simulated annealing based on di>erential equations Alu;-Pentini et al. [21]
H Hybrid genetic algorithm Hussain and Al-Sultan [22]
I Integral global optimization Zheng and Zhuang [23]
J DC with simple random search (RSG–DC) This work

In Table IV, the multi-start clustering strategies are compared with the domain elimina-
tion (DE) and zooming (ZM) methods. Both are multi-start methods, but neither employs a
clustering algorithm.

As shown in Tables III and IV, the variations of strategies studied in this work appear
quite competitive or favourable in comparison to other multi-start (with or without clustering)
techniques in terms of the number of local searches performed, the number of minima found,
whether the global minimum is located and the number of the function evaluations required.

The comparative study of Table VI is for algorithms intended for only global minima.
Table V lists the methods considered and Table VI shows the number of function evaluations
reported by di>erent methods. Since most of these methods do not use gradient informa-
tion, for the purpose of the comparison, we count all gradient evaluations we have used in
terms of function evaluations. It can be seen from Table VI that the direct clustering method,
with a simple random search, consistently shows fewer required function evaluations in lo-
cating the global minimum compared to other methods shown with the exception of one
test problem (GP).
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Table VI. Number of function evaluations reported by di>erent methods.

Function GP BR H3 H6 S5 S7 S10

Dimension 2 2 3 6 4 4 4
A 4400 1600 2500 6000 6500 9300 11000
B 2500 1800 2400 7600 3800 4900 4400
C 2499 1558 2584 3447 3649 3606 3874
D 378 597 732 807 620 788 1160
E 148 206 197 487 404 432 564
F 563 505 1459 4648 365 558 797
G 5439 2700 3416 3975 2446 4759 4741
H 146 199 191 482 403 521 559
I 1051 1267 1150 3345 2453 3028 2735
J 151 88 127 274 315 313 383

(91+60∗) (44+40∗) (64+63∗) (88+186∗) (103+212∗) (105+208∗) (123+260∗)

∗This number is the number of equivalent function evaluations for computing gradient in local
searches.

8. CONCLUSIONS

In this paper, we have studied variants of the multi-start with clustering method. The multi-start
approach has been one of the most well-known two-phase (global=local) stochastic methods.
The random search used in the global phase o>ers an asymptotic guarantee to ensure the
reliability of the method [24] while the local search used in the local phase increases the
e;ciency of the method. The random search phase can be extended as necessary to provide
conBdence in convergence for speciBc applications.

The algorithm developed here can be very e;cient for locating the global minimum as
shown in Table VI where direct clustering with simple random search (RSG-DC, 20 sample
points) performed quite favourably. For identifying multiple minima, direct clustering with
simple random search (RS-DC, 40 sample points) also performed well with good results for
e;ciency and robustness in comparison with existing methods as indicated by Tables III
and IV. In comparison to other clustering algorithms, ISO-OCT does not require a large
sample size, is less sensitive to the dimension of the problem and identiBes clusters properly
when they are reasonably formed.

Figure 2 shows that Hessian information can be useful in cluster formation. The results
of Table II show that this is especially helpful in identifying regions of attraction of local
minima, which leads to robustness in locating multiple local minima. For problems with a few
local=global minima and relatively large regions of attraction (common in engineering design),
the H-based approach with simulated annealing (SA-H) is more e>ective and robust with
reasonable e;ciency as indicated in Table II. The Hessian calculation may require additional
function evaluations. These have been controlled here by using an SR1 approach for Hessian
estimation but can still be a limiting factor, in terms of computational e>ort, at a very Bne
sampling scale.

Overall, the use of Hessian matrix information tends to enhance robustness in identifying
multiple local minima for well-behaved problems. When there are many minima or the region
of attraction is very small, the H-based strategy becomes less e>ective. The direct clustering
strategy with random search is attractive in comparison to other multi-start techniques in
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terms of the number of local searches performed, local minima found and required function
evaluations. With substantial modiBcation, both the H-based strategy and direct clustering have
been extended to non-linear constrained global optimization problems [25].
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