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Abstract In several applications, underestimation of functions has proven to be a
helpful tool for global optimization. In protein–ligand docking problems as well as in
protein structure prediction, single convex quadratic underestimators have been used
to approximate the location of the global minimum point. While this approach has
been successful for basin-shaped functions, it is not suitable for energy functions with
more than one distinct local minimum with a large magnitude. Such functions may
contain several basin-shaped components and, thus, cannot be underfitted by a single
convex underestimator. In this paper, we propose using an underestimator composed
of several negative Gaussian functions. Such an underestimator can be computed by
solving a nonlinear programming problem, which minimizes the error between the
data points and the underestimator in the L1 norm. Numerical results for simulated
and actual docking energy functions are presented.

Keywords Gaussian functions · Underestimators · Nonlinear programming ·
Protein docking

1 Introduction

The problem of estimating the location of the global minimum point of a basin-shaped
energy function f (x) : �n → �, with a very large number of local minima, is important
in a number of computational biology applications, including protein–ligand dock-
ing and the prediction of protein structure from sequence. This problem has been
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considered in several earlier papers, where a set of m � n, local minima is computed
in an initial large search domain D in �n, and these data points are approximated
by a strictly convex quadratic function q(x, p) which underestimates all of them and
minimizes the error in the L1 norm [3,6,7,9,12,13]. In q(x, p), the variable p ∈ �s,
with s ≤ m, represents the parameters which are determined so as to minimize the
L1 distance between q(x, p) and f (x) at each data point. The unique minimum point
xpred ∈ D of q(x, p) is then a good prediction for the global minimum xgmin of the
true energy function f (x). A more detailed search is then carried out in a greatly
reduced domain with xpred at its center, to determine the actual global minimum of
f (x). The convex quadratic approximation has been successfully applied to a realistic
docking energy function, as well as a large number of simulated docking energy test
functions [8].

However, there are situations when an approximation by a single convex function
gives a poor prediction of the global minimum of the true energy function f (x). This
occurs when f (x) is not basin-shaped, but contains two, or more, local minima with
large magnitudes at distinct locations. In this situation the predicted global minimum
will be located at some point between the two large magnitude local minima, rather
than at the correct global minimum point. For this situation, a much better approach is
to use an underestimating function g(x, p) consisting of the sum of l negative Gaussian
functions, in effect, clustering the data points into distinct energy wells (see Fig. 1).
Specifically we define

Fig. 1 A sum of 2D negative Gaussian functions with l = 4
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g(x, p) ≡ α + cTx −
l∑

j=1

βje−ρj‖x−zj‖2
, βj ≥ 0, ρj > 0, (1)

where p represents the s parameters (α, c, βj, ρj, zj), to be determined. If βk > βj,
j = 1, 2, . . . , l, with k 	= j, then the approximate global minimum of g(x, p) will occur
at x = zk. The number of negative Gaussian functions, l, is typically between two
and five and can be estimated by considering how well the lowest data points are
clustered. For functions with more than five strong local minima that are well sep-
arated, l must be increased accordingly. From experience in our application, four
proved to be sufficient. Note that the function g(x, p) consists of radial basis func-
tions (negative Gaussian functions, in particular), which have been previously used
in global optimization (e.g., [2,5,10]). Other radial basis functions include thin-plate
splines and multiquadratics, for example. However, whereas these functions are used
to interpolate data points in global optimization, we use the Gaussian underestimator
to underfit these points. Underestimating such points ensures that the minimizer in
each Gaussian underestimator lies below each point in the Gaussian function, making
the minimizer a plausible predictor of the global minimum.

An algorithm based on Gaussian Underestimation has been developed and imple-
mented. We call this the GU algorithm. As in other underestimation methods, the
parameters (α, c, βj, ρj, zj) for defining the Gaussian underestimator are obtained by
solving an optimization problem that minimizes the L1 distance between the data
points f (x(k)) and the underestimator g(p; x(k)) subject to g(p; x) underfitting all the
data points. We describe the GU algorithm and its computational implementation
and testing in this paper, which is organized as follows. In Sect. 2, we formulate GU as
a two-phase optimization program, where the solution to a linear optimization prob-
lem is used as an initial estimate for the solution in the general nonlinear program
formulation in the second phase. We describe in Sect. 3 the problem type to which
we will apply the GU algorithm. We present numerical results in Sect. 4 and conclude
with some closing remarks in Sect. 5.

2 Formulation and solution as nonlinear program

In order to determine the parameters p in g(x, p) we formulate the problem as
a nonlinear programming problem which minimizes the error at the m data points
in the L1 norm, and requires that g(x, p) underestimates f (x) at every data point
xi, i = 1, 2, . . . , m (see Fig. 2). The number of such data points is usually m = 4s,
where s = (n + 2)(l + 1) − 1 is the number of parameters necessary to define the
Gaussian underestimator, and n and l are the dimension of x and the number of
Gaussian functions, respectively (see Eq. 1). Although this many data points are
sufficient to determine a Gaussian underestimator, it would be preferable to com-
pute significantly more points for the Gaussian underestimator to be a more accu-
rate approximation of the energy landscape and, therefore, a better predictor of
the global minima. Equally important is the quality of these data points. Coarse
uniform sampling over the domain space can be performed to obtain these points,
but the corresponding Gaussian underestimator might not necessarily capture the
“topographic” behavior of the function in regions of low energy conformations and
deeper basins containing better optima might be missed. Ideally, these initial data
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Fig. 2 Gaussian underestimation in 1D

points are local minima with low energy values. In our application, the potential
energy function is sufficiently smooth and differentiable so that local optimization is
viable.

Let yi = f (xi). Then we require g(xi, p) ≤ yi, i = 1, 2, . . . , m. The formulation is
then given by:
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minimize
p∈�s

G(p) ≡
m∑

i=1

yi − g(xi, p), g(x, p) given by (1)

subject to yi − g(xi, p) ≥ 0, i = 1, 2, . . . , m

All parameters in p bounded.

(GU)

This nonlinear programming problem (GU) is a key part of the GU algorithm. Note
that both the objective function G(p) and the constraints in (GU) are linear in the
parameters α, c, and βj, and nonlinear in ρj and zj. This formulation is similar to that
used in [13], except that g(x, p) is nonlinear in some of the parameters, whereas the
convex quadratic underestimator q(x, p) in [13] is linear in all the parameters.

Because the vectors zj occur in g(x, p) nonlinearly, it is possible to obtain solu-
tions to (GU) which do not give the smallest possible L1 error. That is, we may
get a local minimum of the error rather than the desired global minimum. This will
depend primarily on the initial values chosen for the zj at the start of the optimization.
Since zk represents the approximate minimum location of the kth Gaussian function,
k = 1, 2, . . . , l, we would like to start the solution of (GU) with a reasonable esti-
mate of these locations in the initial search domain D. Fortunately, such an estimate
is usually known from a coarse grid constructed on D, and an evaluation of f (x) at
each coarse grid point. This information is used to specify both the initial values of
zj, and also a lower and upper bound on each element of each zj. This coarse grid
evaluation will also permit an initial value, and bounds, on each of the parameters ρj,
j = 1, 2, . . . , l.

The solution to (GU) will give optimal values p̂ of the parameter vector p, including
ẑj and ρ̂j, j = 1, 2, . . . , l. One of the ẑj, say ẑk, is then a good predictor for the location
of the global minimum of the true energy function f (x). This ẑk is such that g(ẑk, p̂) is
its predicted value, and

g(ẑk, p̂) ≤ g(ẑj, p̂), j = 1, 2, . . . , l.

We then do a final search in a much reduced search domain, with its center at ẑk. This
final search uses a relatively large number of local minimizations in the reduced search
domain to determine the location of xgmin, the global minimum point, and its value
f (xgmin). In some cases it is possible that one of the other locations ẑj gives a function
value g(ẑj, p̂) close that to that of g(ẑk, p̂). If that occurs, then a similar detailed search
is also done in the neighborhood of this ẑj, and the point with the smallest value of
f (x) is then chosen as the global minimum point.

3 Docking energy functions

The true protein–ligand docking energy surface is represented by a function f (x),
x ∈ D ⊂ �n, which is assumed to have a very large number (possibly exponential in n)
of local minima. Typically the computation of the energy surface value at a single point
x, may require several minutes. Furthermore, many local minima are needed to insure
that the underestimating function gives a good prediction of the global minimum.
This means that m (the number of local minimum data points) may be large, and may
increase exponentially with n. The number of minimum will typically be O(n2), so that
using the true energy surface for test problems is not practical. Instead, we follow the
approach presented in [6,7] which simulates the energy landscape commonly found in
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protein docking problems. The majority of results presented here use this simulated
energy function. However, we also present results of the GU algorithm to a potential
energy function used in an actual docking software called Docking Mesh Evaluator
[8].

3.1 Simulated energy functions

In the prediction of the global minimum for a real docking energy surface we typ-
ically compute a relatively large number m of local minima of f (x), to obtain f (xi),
i = 1, 2, . . . , m. We then compute the underestimating function g(x, p) as described
earlier. The only information used by the GU algorithm in approximating the real
docking energy surface f (x), consists of the function values f (xi), i = 1, 2, . . . , m, at
the m local minimum points xi. For a real docking energy surface the computation
of the local minima is by far the most time consuming part of the calculation. In our
simulated test problems we replace this slow calculations as follows.

First we generate the sum of negative Gaussian functions (1), choosing l (the num-
ber of functions) and the parameters p = p̄, to represent the general surface of the
true f (x). We then simulate lm local minima by first generating (usually randomly) the
points xi, i = 1, 2, . . . , m, with function values g(xi, p̄), i = 1, 2, . . . , m. We then perturb
these values by a random perturbation ηi, −γ ≤ ηi ≤ γ , for selected values of γ , and
define

yi = g(xi, p̄) + ηi, i = 1, 2, . . . , m. (2)

We define a simulated energy surface Sf (x), as the function g(x, p̄), with m known
local minima yi, as given by Eq. 2. The set of points (xi, yi) is the only information
we use in (GU) to determine the underestimator. By an appropriate choice of the
parameter vector p̄, we can ensure that one of the z̄j, (say z̄1), is the global minimum
point, xgmin = z̄1, of g(x, p̄). This is done by choosing β > βj, j = 2, 3, . . . , l, and
ρj ≥ ρmin > 0, for some appropriate value of ρmin. We then assume that xgmin is
the global minimum point of the simulated energy surface Sf (x). In order to make
the test using Sf (x) as close as possible to the situation with a true docking energy
surface, we eliminate any random point xi which is close to z̄1. This makes Sf (x) a
better representation of f (x), since it is highly unlikely that any random point used
when applying (GU) to a true energy function f (x) will be very close to its true global
minimum point. Each point xi, with function value yi, is assumed to represent a local
minimum of f (x). Since yi is very easily computed, these simulated local minima of
f (xi) make it much faster to test the algorithm, than using f (x) would be.

Given the (xi, yi) values we apply (GU) exactly as we would with a true docking
energy surface f (x), using the data points (xi, f (xi)). The GU algorithm has been tested
on problems in �2 and �6. In both cases we used the sum of four negative Gaussians,
so that l = 4. In each case the initial search domain D, was a hypercube with edge
length equal to 10, so that its volume was 10n.

In order to evaluate the computation test results obtained with the simulated dock-
ing energy function, we need some measure of how well the underestimating function
g(x, p̂) predicts xgmin, the global minimum of Sf (x). The GU algorithm determines p̂,
so we know the point ẑ1. This will typically be very close to the global minimum point
of g(x, p̂). We let xpred = ẑ1, and call xpred the predicted global minimum of Sf (x). The
algorithm is therefore successful if ‖xpred − xgmin‖∞ is sufficiently small.
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Given xpred, we construct the smallest hypercube in �n, with xpred at its center,
that contains xgmin. This hypercube will have an edge length of d2, where d2 =
2‖xpred − xgmin‖∞. The initial search domain D, known to contain xgmin, will be a
hypercube of edge length d1, with a volume dn

1 . The new hypercube, given by xpred
and d2, will have a volume of dn

2 . The ratio of these two volumes is therefore (d2/d1)
n.

If the GU algorithm is successful, we will have reduced the search volume by the
volume reduction ratio:

VRR ≡
(

d2

d1

)n

� 1. (3)

The VRR is used to evaluate the success of the GU algorithm as shown in Tables 1–3
in the next section.

3.2 Docking Mesh Evaluator

The Docking Mesh Evaluator (DoME) is software for predicting the active site of
a protein to an ion, ligand, DNA, and other macromolecules upon binding. It de-
scribes the molecular interaction by defining a potential energy function whose global

Table 1 Results for a simulated energy function

γ = 0.0 γ = 0.1 γ = 0.2 γ = 0.4 γ = 0.8 γ = 1.6

G(p(0)) 106.1 112.3 122.9 136.0 186.7 285.4
G(p∗

f ) 0.0 5.7 11.9 24.7 53.5 128.7
LP NPSOL Iter 1 2 1 2 2 3
NLP NPSOL Iter 1 4 4 5 10 11
||ẑ1 − z̄1||2 0.0 0.053 0.144 0.175 0.356 0.841
VRR 0.00e-00 1.28e − 13 4.98e − 11 5.99e − 10 2.52e − 08 1.04e − 05

Table 2 Results for a simulated energy function

γ = 0.0 γ = 0.1 γ = 0.2 γ = 0.4 γ = 0.8 γ = 1.6

G(p(0)) 107.9 117.2 119.9 135.2 183.5 276.5
G(p∗

f ) 0.0 6.6 11.9 27.1 49.9 107.0
LP NPSOL Iter 2 2 2 3 1 1
NLP NPSOL Iter 1 7 6 7 5 8
||ẑ1 − z̄1||2 0.000 0.097 0.113 0.203 0.347 0.951
VRR 0.00e − 00 6.10e − 12 1.21e − 11 6.26e − 10 1.24e − 08 1.05e − 05

Table 3 Results for a simulated energy function

γ = 0.0 γ = 0.1 γ = 0.2 γ = 0.4 γ = 0.8 γ = 1.6

G(p(0)) 107.2 117.8 112.4 138.4 181.8 262.5
G(p∗

f ) 0.0 6.6 13.4 24.7 55.3 116.5
LP NPSOL Iter 1 2 2 3 4 2
NLP NPSOL Iter 1 4 6 11 8 16
||ẑ1 − z̄1||2 0.000 0.046 0.097 0.291 0.395 0.766
VRR 0.00e − 00 9.12e − 14 2.20e − 12 5.20e − 09 8.32e − 08 2.02e − 06
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minimum corresponds to the known docked configuration. This energy model takes
into account both long-range forces (electrostatic potential) and short-range forces
(hydrogen bonds, desolvation energy, and van der Waals interactions (dipole moments
and steric repulsion)). DoME uses an exhaustive scan for favorable configurations,
treating each molecule as a rigid body and allowing one to move and rotate in relation
to the other, inducing six degrees of freedom (three translational and three rota-
tional). DoME’s scanning method can be viewed as a tinker toy approach where the
receptor and ligand molecules, represented by spools, are connected by sticks of var-
ious lengths, and their orientations in relation to one another are determined by the
holes in the spool. The level of sampling coarseness (the lengths of the sticks and the
holes in the spools) can be specified by the user. In our application, about 2 million
sampling points, representing roughtly a spacing of 30◦ in the rotational variables and
2.5 Å in the translational variables, are used in the scanning. Such scanning can be
done in parallel to reduce the total CPU time. The lowest 900 points are used for local
minimization. Underestimation is used to reduce the search area, and the process is
iterated. Currently, a single convex quadratic approximation is used to underestimate
the best local minima obtained in the scanning. The GU algorithm improves on this
approach by allowing for the possibility of multiple funnels within the energy land-
scape, which is the more likely general shape of the potential energy function. Such
underfitting is thus a more reasonable approach.

4 Computational implementation and results

The computational implementation of GU consists of two phases: Phase-1 LP and
Phase-2 NLP. The first phase fixes the initial estimates for the nonlinear variables ρj
and zj so that (GU) reduces to a linear programming problem on the variables α, c,
and βj. The global minimum to this linear program is easily computed (often within a
few iterations) and is then used as an initial estimate for the nonlinear program (GU),
where the parameters ρj and zj are now allowed to vary. By solving the linear program
first, we obtain a reasonably good estimate for the global minimum of the nonlinear
program.

4.1 Algorithmic details

The Gaussian Underestimation approach is summarized by the following algorithm:

Algorithm. Gaussian Underestimation (GU) algorithm.
Define Phase-1 initial point p(0) = (α(0), c(0), β(0)

j , ρ(0)
j , z(0)

j ) and set

α(0) = min
k

⎧
⎨

⎩f (x(k)) −
⎛

⎝c(0)T
x(0) −

l∑

j=1

β
(0)
j e−ρ

(0)
j ‖x(k)−z(0)

j ‖2

⎞

⎠

⎫
⎬

⎭;

to ensure feasibility of GU.
Solve Phase-1 LP to obtain p∗ = (α∗, c∗, β∗

j , ρ(0)
j , z(0)

j );
Solve Phase-2 NLP using Phase-1 LP solution p∗ as initial estimate solution;
end;

Computational details. In the simulated docking energy function cases, we define Sf (x) :
�6 → �, whose domain D ∈ �6 is the six-dimensional hypercube [0, 10]×· · ·×[0, 10].
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Table 4 Results for 1TAB in
DoME

1TAB

G(p(0)) 1379.6
G(p∗

f ) 898.5
LP NPSOL Iter 3
NLP NPSOL Iter 727
||xpred − xg min||2 10.61
Dreduced 8.89e02

The function Sf (x) is a sum of four Gaussian functions, i.e., l = 4, with distinct local
minima. The bound γ on the perturbation has values 2.0r ×10−1, where r = 0, 1, . . . , 5.
The parameters zj are required to remain feasible in D. In the DoME test case, we
used the 1TAB system from the Protein Data Bank [1]. The 1TAB complex consists
of the enzyme trypsin and BBI, the Bowman–Birk trypsin-inhibitor, which is a poly-
peptide chain of 71 amino acids highly cross-linked by seven disulfide bridges [11].
Elevated levels of trypsin have been found in pancreatic tumors, and BBI, commonly
found in soybeans, has been shown to suppress this type of tumor in various animals.
In all test cases, m = 111 points were used to construct the Gaussian underestimator.

In our implementation, the Phase-1 LP and the Phase-2 NLP are solved using the
NPSOL software of Gill et al. (see [4]). All runs were made on a 1.33 GHz Mac OS X
PowerBook G4 with 768 MB of RAM. The algorithm was written in C. The C version
of NPSOL was generated using the f2c Fortran to C translator.

4.2 Results

The initial value of the objective function in Phase 1 and the final value of the objective
function in Phase 2 are given by G(p(0)) and G(p∗

f ), respectively. LP NPSOL Iter

is the iteration count for the Phase 1 linear program and NLP NPSOL Iter is the
count for the Phase 2 nonlinear program. The point z̄1 is the known global minimum
of the simulated docking energy function, and ẑ1 is the approximate global minimum
computed by GU. The GU algorithm were tested on several simulated energy func-
tions, and Tables 1–3 are representative of these runs. Table 4 contains the result for
the 1TAB complex using DoME.
Simulated energy function. From the number of iterations in Phase 1 for all three
examples, solving the linear program is relatively easy. This is to be expected since
Phase 1 is a linear problem in only 13 variables. On the other hand, the nonlinear
program Phase 2 requires more iterations, especially for the cases with larger per-
turbations. We note that even with significant perturbations (γ ≤ 0.8), the computed
approximate global minimum is within 0.5 in Euclidean distance from the known
global minimum.

These are representative examples of the results we get using different Sf (x) energy
functions to define a typical problem with different types of local minima. These results
show that the VRR is always less than 1.04 × 10−5 which then reduces the search do-
main from 106 down to approximately a single unit cube in the n-dimension space of zj.
DoME. As in the simulated energy function cases, the number of Phase-1 iterations
is smaller than the number for Phase-2 iterations. The high number of Phase-2 itera-
tions is consistent with the fact that the energy function in DoME is highly nonlinear,
which makes underfitting with a smooth function difficult. Although the GU algo-
rithm predicted a global minimum xpred that is 10.61 Å away from the known global
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minimum xgmin, the initial domain volume of 3.1×107 is reduced to Dreduced = 9.0×102

after the GU algorithm is applied. With the domain significantly reduced, an iterative
application of the convex quadratic approximation method [13] can then be applied
to further reduce the domain and more accurately predict the location of the global
minimum.

5 Conclusions

We have presented an approach for underfitting functions with more than one local
minima with a large function value in magnitude. This approach uses an underestimat-
ing function g(p; x) consisting of a sum of negative Gaussian functions. The parameters
needed to define g(p; x) are obtained by solving a two-phase optimization problem,
where the solution of the linear program in the first phase is used as an approximate
solution to the nonlinear program in the second phase. We demonstrated numerically
that this two-phase approach is effective in giving estimates for the location of the
global minimum of a protein docking function.
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