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Abstract Knowledge of the structure of biological specimens is critical to under-
standing their function. Electron crystallography is an electron microscopy (EM)
approach that derives the 3D structure of specimens at high-resolution, even at atomic
detail. Prior to the tomographic reconstruction, the images taken from the microscope
have to be properly aligned. Traditional alignment methods in electron crystallogra-
phy are based on a phase residual function to be minimized by inefficient exhaustive
search procedures. This work addresses this minimization problem from an evolution-
ary perspective. Universal Evolutionary Global Optimizer (UEGO), an evolutionary
multimodal optimization algorithm, has been applied and evaluated for the task of
image alignment in this field. UEGO has turned out to be a promising technique alter-
native to the standard methodology. The alignments found out by UEGO show high
levels of accuracy, while reducing the number of function evaluations by a significant
factor with respect to the standard method.

Keywords Evolutionary algorithms · Global optimization · Stochastic optimization ·
Image alignment · Electron microscope tomography · Electron crystallography

1 Introduction

High-resolution structural information is essential for understanding the function of
biological specimens. This is a crucial subject of research in molecular biology and
related biosciences. Electron microscope (EM) tomography allows the investigation
of structure of specimens over a wide range of resolutions, from subcellular level up
to atomic detail [2, 7, 14]. In EM tomography, a set of images taken from the specimen

P. M. Ortigosa (B) · J. L. Redondo · I. García · J. J. Fernández
Department of Computer Architecture and Electronics, University of Almería,
04120 Almería, Spain
e-mail: ortigosa@ual.es

J. J. Fernández
e-mail: jjfdez@ual.es



528 J Glob Optim (2007) 37:527–539

at different tilts and orientations is combined by tomographic reconstruction meth-
ods to yield the structure. Since the acquired EM images are not mutually aligned,
an alignment procedure has to be applied prior to the reconstruction process. This
work is focused on electron crystallography [16, 20, 21], currently the only approach
capable of reaching atomic resolution by EM of crystallized biological specimens [8,
10, 12]. In this approach, the problem is limited to translational alignment and the
standard alignment method is based on the minimization of a error function by means
of inefficient exhaustive search procedures [1, 5, 6, 9, 21].

In this work, image translational alignment in electron crystallography is addressed
in an evolutionary framework. The error function involved in this problem is used as
an objective function to be minimized by a stochastic optimizer. This is a multimodal
optimization problem as the number of local minima may be large. The optimizer must
thus find out the global optimum under the presence of many deceptive optima. In this
work, an evolutionary multimodal optimization algorithm, the Universal Evolutionary
Global Optimizer (UEGO, [13]), is evaluated.

In multimodal optimization, the optimizer should discover the structure of the
local optima to reach the global optimum. Time should thus be spent in discovering
new and promising regions rather than exploring the same region multiple times. The
UEGO uses a non-overlapping set of clusters, which define sub-domains of the search
space. As the algorithm progresses, the search process can be directed toward smaller
regions by creating new sets of non-overlapping clusters defining smaller sub-domains.
This process is a kind of cooling method similar to simulated annealing. A particular
cluster is not a fixed part of the search domain; it can move through the space as the
search proceeds. The non-overlapping property of the set of clusters is maintained
however. The UEGO is abstract in the sense that the ‘cluster-management’ and the
cooling mechanism has been logically separated from the optimization algorithm.
Therefore, any kind of optimizer can be used to work inside a cluster, and here a
stochastic hill climber [15] has been used.

2 Description of the evolutionary optimization algorithm: universal evolutionary
global optimizer

A key notion in UEGO is that of a species. A species is equivalent to an individual in
a usual evolutionary algorithm. A species can be thought of as a window (or cluster)
on the whole search space (Fig. 1).

This window is defined by its center, which is a solution, and a radius. The algo-
rithm evolves creating as many windows (with different radii values) as local optima
the objective function has. This set of clusters or species_list would be equivalent to
the term population in an classical evolutionary algorithm. The maximal length of the
species list is given by max_spec_num (the maximum population size).

This definition of species assumes a distance defined over the search space. In the
algorithm, any kind of distance can be defined depending on the properties of the opti-
mization problem. By default, UEGO uses the hamming distance for combinatorial
problems, and the euclidean distance for problems defined in real domains.

The mutation of an species consists in calling a local optimizer that will try to find
a solution better than the center of the species. When the optimizer is called by a
species, it can ‘see’ only the window of that species, in such a way that any single step
made by the optimizer in a given species is no larger than the radius of that species.
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Fig. 1 Concept of species
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Fig. 2 Radius values for the levels based on an exponentially decreasing function

If the value of a new solution found by the optimizer is better than that of the old
center, the new solution becomes the center and the window is moved while it keeps
the same radius value.

The radius of a species is not arbitrary; it is taken from a list of decreasing radii,
the radius list, that follows a cooling schedule (see Fig. 2). The first element of this
list is the diameter of the search space. If the radius of a species is the ith element of
the list, then the level of the species is said to be i. Given the smallest radius and the
largest one (rl and r1), the radii in the list are expressed by the exponential function

ri = r1

(
rl

r1

) i−1
l−1

, (i = 2, . . . , l). (1)
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The parameter levels indicates the maximal number of levels in the algorithm, i.e.
the number of different ‘cooling’ stages. Every level i (with i ∈ [1,levels]) has a radius
value (ri) and two maxima on the number of function evaluations (FE) namely newi
(maximum FE allowed when creating new species) and ni (maximum FE allowed
when optimizing individual species).

2.1 Input parameters

In UEGO the most important parameters are those defined at each level: the radii
(ri) and the maximum number of function evaluations for species creation (newi)
and optimization (ni). These parameters are computed from a set of input global
parameters:

(1) evals (N): The maximal number of function evaluations for the whole optimiza-
tion process. Note that the actual number of function evaluations is usually less
than this value.

(2) levels (l): The maximum number of levels, i.e. the number of cooling stages.
(3) max_spec_num (M): The maximum length of the species list or the maximum

allowed population size.
(4) min_r (rl): The radius that is associated with the maximum level, i.e. levels.

An in-detail description of these input parameters and their relationship to the
parameters at each level (ri, newi, ni) can be found in [13].

2.2 The Algorithm

The UEGO algorithm has the following structure:

Begin UEGO
Init_species_list
Optimize_species(n1)
for i = 2 to levels

Determine ri, newi, ni
Create_species(newi/length(species_list))
Fuse_species(ri)
Shorten_species_list(max_spec_num)
Optimize_species(ni/max_spec_num)
Fuse_species(ri)

end for
End UEGO

In the following, the different key stages in the algorithm are described as follows:

(1) Init_species_list: A new species list consisting of one species with a random center
at level 1 is created.

(2) Create_species(evals): For every species in the list, random trial points in the
‘window’ of the species are created, and for every pair of trial points the objec-
tive function is evaluated at the middle of the section connecting the pair (see
Fig. 3). If the value in the middle point is worse than the values of the pair, then
the members of the pair are inserted in the species list. Every newly inserted
species is assigned the actual level value (i).
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Fig. 3 Creation procedure

As a result of this procedure the species list will eventually contain several species
with different levels (hence different radii). The motivation behind this method is to
create species that are on different ‘hills’ so ensuring that there is a valley between
the new species. The parameter of this procedure (evals) is an upper bound of the
number of function evaluations. Note that this algorithm needs a definition of section
in the search space. In terms of genetic algorithms, it could be thought that, in this
procedure, a single parent (species) is used to generate offspring (new species), and
all parents are involved in the procedure of generating offspring.

(1) Fuse_species(radius): If the centers of any pair of species from the species list
are closer to each other than the given radius, the two species are fused (see
Fig. 4). The center of the new species will be the one with the better function
value while the level will be the minimum of the levels of the original species (so
the radius will be the largest one).

(2) Shorten_species_list(max_spec_num): It deletes species to reduce the list length
to the given value. Higher level species are deleted first, therefore species with
larger radii are always kept. For this reason one species at level 1 whose radius
is equal to the diameter of the search domain always exists, making it possible
to escape from local optima.

(3) Optimize_species(budget_per_species): It executes the optimizer for every spe-
cies with a given number of evaluations (budget_per_species) (see Fig. 1). At level
i, the budget_per_species is computed as ni/max_spec_num, i.e., it depends on
the maximum species number or maximum population.
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Note that UEGO may terminate simply because it has executed all of its levels. The
final number of function evaluations thus depends on the complexity of the objective
function. This is qualitatively different from genetic algorithms, which typically run
up to a limit on the number of function evaluations.

3 Image alignment in electron crystallography

The combination of information from different EM images taken with the specimen
at distinct tilts and orientations is central to the process of 3D reconstruction [2].
These starting EM images are not, in general, mutually aligned as a result of the
particular orientation of each specimen and the scanning process. This involves that
the initial images have arbitrary phase origins in the Fourier domain. An essential
prior step before the reconstruction is a proper alignment so that the images have a
common phase origin. Only then, the 3D reconstruction process can be carried out
to derive the 3D structure of the specimen under study. The alignment stage is thus
paramount. In practice, EM images are severely corrupted by noise, deformations and
other measurement errors which turn the alignment into an optimization problem.

This work is focused on electron crystallography, the only approach in electron
microscopy capable of reaching atomic resolution [7, 8, 10, 12]. In this approach, bio-
logical specimens are crystallized to form 2D crystals [16, 20, 21]. These crystals are
made up of tens of thousands of units of the same specimen arranged in a regular
manner [4]. When processing images of such objects, Fourier transformation is usu-
ally employed. So, in electron crystallography, the images are processed and combined
using a discrete number of indexed Fourier components [1, 9, 17]. Figure 5 sketches
the process of extraction and indexing of the Fourier components of an image in elec-
tron crystallography. Figure 5 (upper left) shows an image of a 2D crystal composed
by a ordered repetition of a specimen. This can be considered as the convolution of
a lattice with a specimen. Therefore, the Fourier transform (FT) of the image is the
product of the FT of the specimen with the FT of the lattice, and the latter proves to
be another lattice: the Fourier lattice. Consequently, there only are a discrete set of
Fourier components that are meaningful from the structural point of view: those ones
located in the Fourier lattice (Fig. 5, upper right). They are then extracted and indexed
(same figure, lower left). They turn out to be the Fourier components of the average
unit that is repeated across the 2D crystal [9]. This average unit can be computed by
Fourier synthesis from the corresponding indexed Fourier components (Fig. 5, lower
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Fig. 5 Analysis of crystal images into Fourier components. The FT of the image has the meaningful
components located at the Fourier lattice. These components are then extracted and indexed with
indices (h, k). In the figure, the components with indices (2, 0), (4, 0), and (4, 4) are marked with circles.
The average unit in the crystal is obtained by Fourier synthesis from the extracted components

right). The images shown hereafter represent the average specimen computed by
synthesis from the Fourier components of the corresponding crystal.

The need of image alignment in electron crystallography is limited to translational
alignment. This simplification comes from the fact that the Fourier components of all
the images are accordingly indexed [9] and hence the rotational alignment is implicitly
carried out.

There is a wealthy literature about image alignment methods (for instance, see
[3, 11] for reviews of registration techniques). For image translational alignment, the
classic methods are based on cross-correlation functions [3, 11]. However, the fact that
the cross-correlation function is, in general, strongly influenced by low-resolution fre-
quency components makes it inappropriate for high-resolution structural analyses by
EM. As electron crystallography is aimed to reach ultrahigh—even atomic—resolu-
tion, those methods were discarded long time ago in favor of methods that ignore the
relative weighting among the frequency components [1, 5, 6, 9]. In electron crystallog-
raphy, image translational alignment has been traditionally performed by minimizing
a phase residual function which is directly derived from the spatial shift property of
the FT [1, 5, 9, 6]:

PR(x, y) = 1
n

∑
i

|(φref(ui, vi) − (φ(ui, vi) − (uix + viy))) MOD 360◦| (2)

where x and y are the phase shifts (in degrees) along X and Y-axes, respectively;
φref(ui, vi) the phase of the frequency component (ui, vi) the reference image(s);
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Fig. 6 Traditional alignment method in electron crystallography. (a) Reference image. (b) Image to
be aligned. (c) Phase residual map. (d) Average image resulting from the alignment of image in (b)
and merging with the image in (a).

φ(ui, vi) the phase of the frequency component (ui, vi) the image to be aligned to the
reference; and n the total number of frequency components in this comparison. Note
that the frequency terms ui and vi are computed from the corresponding indexes h
and k after the corresponding conversion index-to-frequency (Å−1).

The alignment of a new image with respect to a reference image essentially consists
of determining the global minimum of the phase residual function. This minimization
is traditionally carried out by means of an inefficient exhaustive search procedure that
evaluates all the possible shifts in a discrete search space [1, 5, 6, 9, 21]. The alignment
of the new image is then accomplished by applying the phase shift (x, y) with the
lowest phase residual.

Figure 6 shows an example of alignment with images from φ29-phage connector
[18] obtained by electron microscopy of 2D crystals. The reference image is shown
in Fig. 6a and an image to be aligned in Fig. 6b. These images represent the average
specimen in the crystals, and were computed by Fourier synthesis. The phase residual
map in Fig. 6c shows the PR function with 361×361 samples at intervals of 1◦ in either
direction X or Y. The upper left corner of the map corresponds to a shift of (x, y) =
(−180◦, −180◦). The lower right corner corresponds to (x, y) = (+180◦, +180◦). White
levels in the error map represent low-values, whereas black levels denote high values.
The search of the global minimum was performed with a precision of 0.1◦, and was
found at (162.5◦, −113.1◦). Fig. 6d shows the average image resulting from the merging
of the aligned image and the reference.

In practice, this exhaustive search process is carried out hierarchically. First, the
whole search space (360◦ in X and 360◦ in Y) is discretized at intervals of 3◦ and
the minimum is sought in that discrete space. Afterward, the search is progressively
refined around that minimum with decreasing resolutions (1.0◦, 0.1◦, etc). At the
end, this approach is able to yield the global optimum with a precision of 0.01◦ using
43, 200 evaluations. This heuristic multi-level search approach works because the local
minima exhibited by the phase residual function are not, in general, extremely sharp.

4 Experiments

This work is intended to evaluate the application of UEGO to the translational image
alignment problem in electron crystallography. Essentially, our approach for align-
ment consists of minimizing the phase residual function PR(x, y) by means of UEGO.
The hypothesis to test is that our approach is able to reach the global minimum of the
error function using less function evaluations than the standard approach.
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Fig. 7 EM images of φ29 connectors that have been used in this work

The proposed approach was tested and evaluated over five EM images of φ29-
bacteriophage connectors obtained from 2D crystals. Bacteriophage connectors, which
play an essential role in viral morphogenesis, are typically used to study the protein–
protein and protein–nucleic acid interactions in structural biology [18, 19]. The five
images of φ29-bacteriophage connectors were already used in previous structural
analyses of this specimen, in particular in the determination of its 3D structure [18].
These images had significant structural information up to 10 Å resolution, as assessed
by [18]. Figure 7 shows the average specimens repeated across the corresponding
crystals. These averages were obtained by means of Fourier synthesis from the Fou-
rier components of the crystals, as described above. Due to the stochastic nature
of UEGO, all the numerical results given in this work are average values of a hun-
dred executions, obtaining an statistic ensemble of experiments. From this data set,
average values of the different metrics (number of function evaluations, phase shifts,
phase residual, etc.) and the corresponding confidence intervals at 95% were com-
puted.

Our experimental methodology can be split into two stages: the first stage of training
was intended to determine the values of the free parameters of UEGO which produce
good solutions for the translational alignment problem in electron crystallography;
the second stage of testing was designed for evaluating the efficiency and effective-
ness of UEGO in finding the global solution, and for comparing to the traditional
method.

4.1 Training universal evolutionary global optimizer

This stage was intended to determine the optimal parameters of UEGO for this prob-
lem. [13] introduced UEGO and stated that a robust parameter setting consists of a
large enough number of levels (l), a relatively small minimum radius (rl), a sufficient
maximum number of species (M) and a large value of N in order to get a minimum
budget per species, which is sufficient in the optimization process.

The five EM images just presented were used. Each test image was subjected to
random shifts to generate an ensemble of five synthetic shifted images. The experi-
ments were designed to find out the UEGO parameters that yielded the alignment of
the synthetic images with respect to the corresponding original image in an optimal
way, in terms of number of evaluations and phase residual. The values of the param-
eters tested are shown in Table 1. Experiments were performed for all combinations
of these parameter settings. Every set of parameters was evaluated 2,500 times (25
synthetic images, 100 executions).

The experiments in this stage showed that UEGO does not get trapped in local
optima when the number of levels is high-enough (l = 10), hence the cooling process
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Table 1 Values of the UEGO parameters that were tested in the training stage

Max_No_funct-_evals (N) Levels (l) Max_spec_num (M) Min_r (rl)

100,000, 300,000 5, 8, 10 20, 30 1, 3, 5
500,000, 1,000,000 15 50, 100 8, 10

allows the algorithm to escape from local optima. When the number of levels is too
high, the process is too slow and the algorithm does not finish the optimization process,
so it requires a larger value for N.

For fixed values of l and rl, the results showed that there is a tendency to find
more species (optima) as M increases. This increment of species can be explained by
the fact that a larger population size is allowed and hence, it turns out to be easier to
explore the search space. However, for those fixed parameters, the number of function
evaluations decreases as M increases, owing to the decrease in the budget per species
(ni/M) in the optimization process.

With regard to the final radius, it was observed that the smaller radii, the more
accurate solutions. However, there is a higher risk of being trapped in local minima.
The results showed that for a fixed value of M and l, the number of detected species
(optima) increases as the radius (rl) decreases. This growth of species lies in the fact
that the number of fused species decreases when the radii are smaller. Since each
species had been assigned a certain maximum of function evaluations (budget per
species) in the optimization process, the more species there are, the more function
evaluations are consumed. Consequently, the number of function evaluations also
increases as the radius decreases. In summary, there is a tradeoff among high accuracy
in the solutions, the risk of being trapped in local minima and the number of function
evaluations.

The optimal parameters that were finally found consisted of N = 300, 000, l = 10,
M = 30, and rl = 8. This set of parameters yielded an average number of function
evaluations of 23730 ± 163, and a negligible average phase residual of 0.00051◦ ±
0.000058◦.

4.2 Assessment of UEGO in electron microscope tomography

This stage was aimed to evaluate UEGO for experimental alignment problems in elec-
tron crystallography. The robust parameter settings deduced above were used. The
five experimental EM images from φ29 connectors above presented were used. All
possible alignments between pairs of images were carried out, resulting in 20 tests. For
the sake of comparison, both methods, UEGO and the traditional one, were evaluated
in terms of number of function evaluations and phase residual.

Average results and confidence intervals for UEGO were computed considering the
20 tests and 100 executions per test. The average number of evaluations resulted in
24, 930 ± 217. The heuristic rule for the standard method was used, resulting in 43,200
evaluations in all the alignments. The differences in phase residual between the results
of both methods were negligible. Accordingly, the phase origins found by both proved
to be very close, with differences in the order of 0.001◦. Therefore, these experiments
have shown that UEGO is able to reduce the number of function evaluations by a
factor around 43% while maintaining the same levels of phase residual.
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Table 2 Results for alignment using UEGO

Ref 1 2 3 4 5

FE PR FE PR FE PR FE PR FE PR

1 – – 24,311 25.36 24,607 34.42 25,436 40.05 25,576 31.92
2 24,457 25.36 – – 24,407 39.30 25,201 46.73 24,683 33.06
3 24,527 34.42 24,357 39.30 – – 24,942 45.29 24,595 41.14
4 25,423 40.05 24,995 46.73 25,042 45.29 – – 25,549 20.15
5 25,566 31.92 24,589 33.06 24,687 41.14 25,650 20.15 – –

Table 3 Phase residual of the aligned images with respect to the average aligned image

Image No 1 Image No 2 Image No 3 Image No 4 Image No 5

P.R.: 20.92◦ 17.48◦ 23.96◦ 30.39◦ 19.64◦

Table 2 summarizes the results obtained with UEGO. The first row of the table
indicates the index of the image (see Fig. 7) that was used as a reference in the tests.
The corresponding column then presents the results of the alignment of the remaining
images with respect to the reference. The results consist of the number of FE that
was finally required (‘FE’), and the value (in degrees) of the phase residual function
found at the global minimum (‘PR’). Note that the alignment of two images should
yield the same results, whatever image is used as the reference. However, as UEGO
is a stochastic algorithm, the number of function evaluations may not be exactly the
same. That can be seen in that table. For instance, see the alignment of image No 1
with respect to image No 2, and the one of image No 2 with respect to image No 1.
The phase residual at the global minimum is 25.36◦ in both cases, but the number of
evaluations is slightly different.

An additional test was then carried out in order to further compare both alignment
methods. The best of the five EM images was selected. This selection was accom-
plished based on the average phase residual in the tests above. The fifth image was
selected, as its four tests (see column labelled with ‘5’ in Table 2) yielded the low-
est average PR, an average value of 31.57◦. This image was then centered according
to symmetry criteria [18] as Fig. 8a shows. The remaining images were then aligned
with respect to it (Figs. 8b–e) and then averaged all together (Fig. 8f). The resulting
average aligned image had better signal-to-noise ratio than the images by themselves,
hence it represented a more reliably projection of the specimen. So, this test consisted
of comparing all the independent aligned images (Fig. 8a–e) with the average image
(Fig. 8f) in terms of phase residual. This scheme was applied for both alignment meth-
ods for comparison’s sake. The same results in terms of phase residual were obtained.
These results are presented in Table 3. With regard to the number of function evalu-
ations, UEGO required 24575 ± 173 for each alignment whereas the standard method
used 43,200. Therefore, this test confirmed that UEGO succeeds in reducing the num-
ber of function evaluations by a factor around 43% with no changes in the phase
residual.
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Fig. 8 Tests based on average aligned image. (a) The best image was centered and used as the ref-
erence. (b–e) the remaining images were then aligned with respect to it. (f) Average aligned image
resulting from the average of (a–e).

5 Conclusions

In this work the application of UEGO to image translational alignment in electron
crystallography has been evaluated and compared to the standard methodology. The
results have shown that UEGO succeeds in reducing the number of evaluations by a
factor around 43% with respect to the traditional method.

The value and the precision of the phase origins found by UEGO are essentially the
same as obtained by the standard method, hence the differences in phase residual are
negligible. Therefore, we can conclude that UEGO exhibits the same performance as
the standard method in terms of phase residual.

As far as the number of evaluations and the computation time are concerned,
UEGO clearly outperforms the traditional method. This proves to be a significant
advantage in electron crystallography since there may be several hundreds of images
involved in a 3D reconstruction or any other typical structural analysis. Therefore,
there is a substantial computation time spent in mutual image alignment and UEGO
could then help to considerably reduce this burden.

The fact that UEGO must have its free parameters tuned to be fully exploited may
imply a disadvantage. Fortunately, the optimal parameter setting has to be found
only once for the problem at hand. Moreover, there exist some general guidelines
for tuning UEGO parameters that were stated when the algorithm was introduced.
Although the optimal values depend on the particular problem and a fine-tuning of
the parameters is thus advizable, these general rules could be used to avoid this effort
and get sub-optimal values of the parameters that yield good performance.
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