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Abstract A new deterministic method for solving a global optimization problem is
proposed. The proposed method consists of three phases. The first phase is a typi-
cal local search to compute a local minimum. The second phase employs a discrete
sup-local search to locate a so-called sup-local minimum taking the lowest objective
value among the neighboring local minima. The third phase is an attractor-based
global search to locate a new point of next descent with a lower objective value. The
simulation results through well-known global optimization problems are shown to
demonstrate the efficiency of the proposed method.

Keywords Global optimization · Dynamical systems · Deterministic methods

1 Introduction

Computation of the global optimal solutions for non-linear programming is important
in a very broad range of applications. As its importance alone may suggest, global
optimization is generally an extremely hard problem. From the complexity point of
view, global optimization problems belong to the class of NP-hard problems ([30]),
which means that the computational time required to solve the problem is expected
to grow exponentially as the input size of the problem increases.

Despite such difficulties, however, numerous algorithms for solving global optimi-
zation problems have been developed during the last two decades due to increasing
needs of most engineers and scientists to solve complex real-world systems. Most exist-
ing methods can be classified into two categories as in [12, 17]: stochastic methods and
deterministic methods. Stochastic methods sample the objective function for a small
number of points and include genetic algorithms, simulated annealing, clustering
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methods, bayesian methods, etc. This class of methods does not need derivative
information, but the required number of samples to arrive at a desired solution is often
not admissible for large problems. On the other hand, deterministic methods typically
provide a mathematical guarantee for convergence to an ε-global minimum in a finite
number of steps for optimization problems involving certain mathematical structures.
Branch and bound methods, cutting planes, decomposition-based approaches, cover-
ing methods, interval methods, interior point methods, and tunnelling methods are all
deterministic in nature.

In this paper, a new deterministic methodology for global optimization is presented.
This method consists of three-phases: Phase I for approaching a new local minimum
in terms of a gradient system-based local search, Phase II for locating a sup-local
minimum in terms of a discrete local search, and Phase III for approaching a feasible
solution with a lower objective value than those of previously obtained solutions in
terms of an attractor-based global search.

The proposed method was stimulated by the study of neural optimization network
([8, 9, 29]) and recent progress in tunnelling methods ([2, 24, 31]), for example, by
a code called TRUST proposed by Barhen and co-workers ([2, 7]). Their algorithm,
employing a descent-tunnelling methodology characterized by non-Lipschitzian ter-
minal repeller and 1-Dimensional (1-D) search, has made a significant improvement
in solving a variety of global optimization problems. For 1-D problems, the TRUST
algorithm is designed to sweep the whole search space and thus find the global min-
imum. However, a direct extension of the 1-D scheme to multi-dimensional global
optimization problems does not guarantee that the global optimum will always be
found since it cannot capture a trajectory that tunnels near the periphery of the basin
of attraction of a global minimum if the surface gradients are weak.

Our proposed method overcomes the above weakness of the tunnelling strategy
by employing two innovative ideas. First, it builds a so-called optionally scaled sys-
tem, which enables an attractor-based trajectory search to capture a trajectory that
traverses near a feasible region with lower objective values. Second, it introduces a
novel concept of neighboring local minima adjacent to a local minimum based on
dynamical characterization, which enables a discrete sup-local search to speed up the
search process.

2 Basic idea

A general global optimization problem is defined as follows:

min
x

f (x) (1)

where f : D ⊂ �n → � is assumed to be smooth and the set D will be referred to as
the set of feasible points (or search space). A point x∗ ∈ D is called a local minimum
if f (x∗) ≤ f (x) for all x ∈ D with ‖x − x∗‖ < δ for some δ > 0.

The proposed method consists of three-phases:

• Phase I is a continuous local search and looks for a local minimum.
• Phase II is a discrete sup-local search and looks for a sup-local minimum with the

lowest objective value among the neighboring local minima.
• Phase III is an attractor-based global search and looks for a feasible solution with

a lower objective value than those values obtained in Phase II.
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Fig. 1 Illustration of the proposed method for 1-D case

To illustrate the basic idea of the proposed method, consider a 1-D example shown
in Fig. 1. Starting from a given initial point x0, Phase I searches for a local minimum,
say x1, using a local search solver (see Fig. 1a). Next, Phase II iteratively generates a
set of neighboring local minima starting from x1, each of them is “locally” improved
with respect to its neighboring local minima until it gets stuck at a locally optimal
solution, say x2, which we will call a sup-local minimum (see Fig. 1b). At a sup-local
minimum x2, Phase II is no longer helpful to find a new local optimal solution with
lower objective value. Phase III is then invoked to escape from x2 and to move on
toward another point, say x3, with lower objective value than f (x2). From x3, Phase
I is invoked to find a local minimum, say x4, followed by Phase II, which locates a
sup-local minimum, say x5. In this way, the three phases are repeated alternatively
in the search space until a global minimum is found or a stopping condition is met.
In the next section, we describe a detailed procedure to handle a multi-dimensional
global optimization problem where we specifically focus on the unconstrained case.

3 The proposed method

3.1 Phase I: local search phase

The aim of Phase I is to find a (first-order) local minimum. To this end, we build a
generalized negative gradient system described by
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dx
dt

= −gradRf (x) ≡ −R(x)−1∇f (x), (2)

where R(x) is a positive definite symmetric matrix for all x ∈ �n. Such an R is called
a Riemannian metric on �n [19]. It is interesting to note that many local search algo-
rithms can be considered as a discretized implementation of process (2) depending
on the choice of R(x). For example, if R(x) = I, it is the naive steepest descent
algorithm; if R(x) = Bf (x) where Bf is a positive definite matrix approximating the
Hessian, ∇2f (x), then it is the Quasi–Newton method; if R(x) = [∇2f (x) + µI], it is
the Levenberg–Marquardt method, and so on [27]. Otherwise specified, we assume
that f is twice differentiable to guarantee the existence of a unique solution (or tra-
jectory) x(·): � → �n for each initial condition x(0). Note that it can be shown that
the trajectory x(·) is defined on all t ∈ � for any initial condition x(0) under a suitable
re-parametrization [14].

A state vector x̄ satisfying the equation ∇f (x̄) = 0 is called an equilibrium point (or
critical point) of system (2). We say that an equilibrium point x̄ of (2) is hyperbolic
if the Hessian of f at x̄, denoted by Hf (x̄), has no zero eigenvalues (i.e., Hf (x̄) is
positive definite). Note that all the eigenvalues of the Jacobian of a gradient system
are real since they are symmetric matrices. A hyperbolic equilibrium point is called a
(asymptotically) stable equilibrium point (or an attractor) if all the eigenvalues of its
corresponding Jacobian are positive and an unstable equilibrium point (or a repellor)
if all the eigenvalues of its corresponding Jacobian are negative. A hyperbolic equi-
librium point x̄ is called an index-k equilibrium point if the Jacobian of the hyperbolic
equilibrium point has exactly k negative eigenvalues. The basin of attraction of a stable
equilibrium point xs is similarly defined as

A(xs) :=
{

x(0) ∈ �n : lim
t→∞ x(t) = xs

}
.

From a topological point of view, the basin of attraction A(xs) is an open and
connected set.

One nice property of this formulation is that every local minimum of the opti-
mization problem (1) corresponds to a (asymptotically) stable equilibrium point of
system (2), i.e., x̄ is a stable equilibrium point of (2) if and only if x̄ is an isolated
local minimum for (1) [19]. Hence, the task of finding the local minima of (1) can be
achieved via locating corresponding stable equilibrium points of (2). Another nice
property is that all the generalized gradient system have the equilibrium points at the
same locations with the same type [19], i.e., if R1(x) and R2(x) are Riemannian metrics
on �n, then the locations and the types of the equilibrium points of gradR1

f (x) and
gradR2

f (x) are the same. This convenient property allows us to design a computation-
ally efficient algorithm to find stable equilibrium points of (2), and thus to find local
optimal solutions of (1).

Phase I can be simply implemented by numerically integrating system (2) or by a
steepest-descent method. However, since we are primarily concerned with finding a
stable equilibrium point, which is a limit point of a trajectory, rather than the trajec-
tory itself, we have the freedom to choose any robust local search algorithm if it can
locate a local minimum nearby an initial guess [5]. For example, a hybrid local search
algorithm such as trust region-based methods, BFGS methods, or SQP methods using
second-order information [1, 11, 27] (or line search methods, simplex methods or
their modifications when no derivative information is available [21, 26, 27]) can be
employed for computational efficiency. Notice that from the ‘locality’ of search in



J Glob Optim (2007) 38:61–77 65

Phase I, to avoid jumping out of the current basin of attraction, it is important not to
take too large steps initially for the line search employed by a local search method.

3.2 Phase II: discrete sup-local search phase

When we get stuck at a local minimum in Phase I, one important issue is how to escape
from a local minimum and move on toward another neighboring local minimum. For a
1-D case, a neighboring local minimum adjacent to a local minimum, xs, can be simply
defined as the local minima nearest to xs in each direction of �. In multi-dimensional
cases, we define a neighboring local minimum adjacent to a local minimum as follows.

Definition 1 Let xs be a local minimum of (1). We say that a local minimum ys is adja-
cent to xs if there exists an index-one equilibrium point x1 such that the 1-D unstable
manifold Wu(x1)

1 of x1 converges to both xs and ys with respect to system (2).

Note that such an index-one equilibrium point x1 is on ∂A(xs) ∩ ∂A(ys). (See Fig. 2.)
From a theoretical viewpoint, this definition enables us to build a graph G = (V, E)

describing the connections between the local minima with the following elements:

1. The vertices V of G are local minima x1
s , . . . , xp

s of (1), where p is the total number
of local minima

2. The edge E of G can only connect two local minima adjacent to each other; xi
s is

connected with xj
s if, and only if, xi

s is adjacent to xj
s.

It can be shown that the graph G is connected under some mild conditions.
The original optimization problem (1) can now be transformed into the following

combinatorial optimization problem

min
xs∈L1

f (xs), (3)

where L1 is the set of all the local minima.
Utilizing the concept of a neighboring local minimum, Phase II uses a discrete

local search strategy on L1 to solve problem (3). Specifically, we first construct a user-
defined neighborhood N where the neighborhood N (xs) ⊂ L1 of xs ∈ L1 is defined as
the set of multiple neighboring local minima adjacent to (or near) xs. With respect to
the neighborhood N , we will call a point x∗ ∈ L1 a sup-local minimum if f (x∗) ≤ f (ys)

whenever ys ∈ N (xs). (It should be noted that the sup-local optimality depends on
the neighborhood function that is used and the neighborhood should guarantee the
connectedness to be solvable. See Fig. 3.) Then we perform a discrete local search
strategy to locate a sup-local minimum.

There are two widely-used discrete local search strategies for solving problem (3):
best-neighboring and hill-climbing, each involving a search in N (xk) of the current
xk. In a best-neighboring strategy, the point leading to the maximum decrease in
the objective function value is selected to update the current point. Therefore, all
points in N (xk) need to be searched every time, leading to computation complex-
ity of O(m), where m is number of points in N (xk). In hill-climbing, the first point
leading to a decrease in the objective function value is selected to update the current
point. Most often, best-neighboring strategies are more computationally expensive
than hill-climbing.

1 An unstable manifold Wu(x̄) is defined as the set of all points such that limt→−∞ x(t) = x̄.
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Fig. 2 A phase portrait of the negative gradient system corresponding to a six-hump camelback
function (CA). The index-1 equilibrium point x1 is a type-one equilibrium point connecting two local
minima xs and ys

To locate a neighboring local minimum adjacent to a given local minimum, we may
apply the following direct strategy: in order to escape from a local minimum, say xs,
we first move in reverse time from xs to an index-1 equilibrium point, say x1. Then,
starting from x1, we advance time to approach an adjacent local minimum, say ys (see
Fig. 2). The latter step can also be implemented using a local search algorithm as in
Phase I. The former step, although it is hard to perform directly and time-consuming,
can also be accomplished by adopting some of the techniques suggested in [19, 23].
This direct strategy can, however, be inefficient since we are only interested in locat-
ing an adjacent local minimum and do not need to find an exact index-1 equilibrium
point, which is computationally intensive.

The following indirect strategy can instead be used to speed up the search of neigh-
boring local minima: Choose an initial straight ray r(λ), emanated from r(0) = xs
and follow the ray r(λ), with increasing λ, (or employ a mixed cubic and quadratic
interpolation line search algorithm) until it reaches its first local minimum (or it hits
the boundary of search space) of f (r(·)). (The objective function f would increase,
pass a local maximum, and reach a local minimum along the ray.) Starting from
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Fig. 3 User-defined neighborhood structure

the obtained point, locate a neighboring local minimum using a local search algo-
rithm as in Phase I. (If a neighboring local minimum cannot be found, try another
ray.) (see Fig. 3).

3.3 Phase III: attractor-based global search phase

When Phase II arrives at a sup-local minimum in L2, it stops and no longer proceeds
to find a new feasible or local optimal solution with lower objective value than those
of previously obtained solutions. One important issue is now how to escape from a
sup-local minimum, say x∗, and to find a new point of next descent in the lower level
set given by

S(x∗) =
{

x ∈ �n : fx∗(x)
def= f (x) − f (x∗) < 0

}
. (4)

In general, the set S(x∗) can be decomposed into several disjoint connected compo-
nents, i.e.,

S(x∗) =
m⋃

j=1

Cj,

where Cj are disjoint connected components and will be called a feasible component
of (4).

Phase III aims at locating a point in a feasible component of (4) and is based on the
following idea: if it is possible to find a nonlinear dynamical system such that all the
feasible components are attractors (whose nearby trajectories approach it asymptot-
ically) of the corresponding dynamical system, then it is possible to to find a feasible
component of (4) by finding an attractor of the corresponding dynamical system.
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To implement this idea, we build the following optionally scaled attracting
dynamical system associated with fx∗ :

dx
dt

= −ρ(fx∗(x))∇f (x), (5)

where ρ(·) denotes a quasi-max zero function of one variable given by

ρ(s) =
{

0, if s ≤ 0,
m(s), if s > 0

and m(s) is a strictly increasing differentiable function of s ≥ 0 such that m(0) = 0
(hence, m(s) > 0 if s > 0).

Remark 1

(1) System (5) has a Lyapunov function given by E(x) := 1
2ρ(fx∗(x))2 since

dE(x)

dt
= −ρ(fx∗(x))2‖∇f (x)‖2 max{m′(fx∗(x)), 0} ≤ 0

(2) In general, a quasi-max zero function ρ(s) need not be differentiable at s = 0,
but can be approximated by a differentiable function. One possible candidate
for such a differentiable function is

ρ(s) = 1
α

ln(1 + exp(αm(s))) � max{m(s), 0},

where α > 1 is a constant that affects the asymptotic behavior of the transforma-
tion. This choice of ρ combined with the assumption that f is twice differentiable
guarantees the existence of a unique solution (or trajectory) x(·): � → �n for
each initial condition x(0).

The next theorem establishes a result showing the relationship between feasible com-
ponents of (4) and attractors of (5), which is a distinguished feature of system (5).

Theorem 1 Every feasible component of (4) corresponds to an attractor of (5), i.e., if
C is a feasible connected component of (4), then C is an attractor of system (5).

Proof See Appendix.
��

Theorem 1 asserts that the task of finding a new point in a feasible component of
(4) can be achieved via locating its corresponding attractor of system (5). It should
be, however, pointed out that the attractors of system (5) may not always be feasible
component of (4). It is due to the fact that there is a possibility that the numerical
integration of system (5) stops at a point x̄ where the Lyapunov function E(x̄) > 0.

Despite this fact, introducing system (5) endows the proposed method with a much
wider convergent regions than the tunnelling algorithm suggested in ([2, 7]). To illus-
trate this, let us consider TRUST or its variants that employ a descent-tunnelling
methodology characterized by non-Lipschitzian terminal repeller and 1-D search
where the tunnelling is performed by integrating a dynamical system given by:

dxi

dt
= (xi − x∗

i )
1
3 θ(fx∗(x)) (6)
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from the initial condition x∗
i +δi where θ(·) is the Heaviside function, which is equal to

1 for positive values of the argument and zero otherwise. This system dynamics trans-
forms a local minimum x∗ into a terminal repeller x∗ violating the Lipschitz condition
and escapes this local minimum starting from any initial point nearby x∗ in a finite
time ([2, 7]). This method, however, fails to find a new region of next descent unless
a system trajectory of (6) during tunnelling reaches a feasible component of (4), i.e.,
inside an attractor of system (5). Therefore, a large number of search directions are
required to find a proper trajectory that tunnels the region, resulting in very high-
computational complexity for higher dimensional cases. In contrast, the proposed
method can capture a trajectory outside this attractor, or more exactly in the basin
of attraction of this attractor, thereby, leading the captured trajectory to a feasible
component of (4) (see Fig. 4).

3.4 Algorithm and implementation

We are now in a position to present a conceptual algorithm for the proposed method
as follows.

Algorithm 1 Proposed Method

1. (Initialization)
1.1. Initialize x̄ and a tolerance ε > 0;
1.2. Set V = ∅; // a set of local minima

2. (Phase I: Local Search Phase)
2.1. Compute a local minimum xs starting from x̄; set V = V ∪ {xs};
2.2. if xs satisfies the termination conditions, then stop; xs is a desired solution;

3. (Phase II: Discrete Sup-Local Search Phase)
do
3.1. Compute a neighboring local minimum ys ∈ N (xs) of xs
3.2. if f (ys) < f (xs), then set xs := ys and V := V ∪ {xs};
until no neighboring local minimum is found that improves the current
local minimum
Set x∗ := xs; // x∗ is a sup-local minimum //

4. (Phase III: Attractor-based Global Search Phase)
for i = 2 to l do
4.1. choose a escaping point xi from x∗
4.2. Locate an attractor of (5) starting from xi (e.g., by numerically integration

of (5));
Set the obtained point by x̄;

4.3. if f (x̄) − f (x∗) < ε, then goto Phase I;
end

Remark 2

1. Any local search algorithm designed to locate a limit point of a trajectory of (5)
starting from xi can also be used in step 4.2 as discussed in Sect. 3.1.

2. The issue of how to choose an appropriate point xi in step 4.1 of Phase III is not
easy to address. This issue is raised since, as pointed out in the previous section, an
attractor of system (5) may not always be a feasible component of (4). A simple
heuristic strategy is to divide the search space into several rectangle regions and
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Fig. 4 a shows a landscape of an 2D-objective function. The regions below the plane z = f (x∗) for
a local minimum x∗ represent feasible components of (4). b shows a phase portrait of system (5)
associated with fx∗ . Each feasible component in (a) is represented by an attractor of system (5). The
marks ‘•’ represent some escaping points generated by the repelling step and the solid lines represent
the trajectories of system (5) starting from the points marked by ‘•’. These trajectories are attracted by
the attractors of system (5), most of which converge to the feasible components of (4). The dotted lines
represent the terminal repelled trajectory of system (6), most of which bypass feasible components
of (4)
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to choose a random point in a region that does not contain previously obtained
local minima listed in V. Another strategy, we will call a double repelling step, is
as follows: Choose an initial straight ray r(λ), emanated from r(0) = xs and follow
the ray r(λ), with increasing λ, (or employ a mixed cubic and quadratic interpo-
lation line search algorithm) until it reaches its 2nd (or ith, i ≥ 2) local minimum
(or it hits the boundary of search space) of f (r(·)). (The objective function f would
increase, pass a first local maximum, and reach a first local minimum along the
ray, then pass a second local maximum, and reach a second local minimum and
so on.)

4 Simulation results and discussion

4.1 Simulation Benchmark problems

The algorithm described in the previous section has been tested on several benchmark
problems we have found in the literature ([2, 6, 7, 16]). The descriptions of the test
examples are given in Appendix-B.

Tables 1 and 2 show the performance of our proposed algorithms compared to other
global optimization methods for low-dimensional problems and high-dimensional
problems, respectively. The following abbreviations are also used: PRS is the pure
random search; MS the multistart; SA the simulated annealing method of ([22]); EA
denotes the evolution algorithms of ([32]); GA refers the genetic algorithms of ([4,
16, 25]); MLSL is the multiple level single linkage method of ([20]); IA is the interval
arithmetic technique of ([28]); TS refers to the tabu search methods of ([3, 6, 10]);
MCS is the multilevel coordinate search method of ([18]); TN refers to the tunneling
methods such as the TRUST algorithm in ([2, 7]). The criterion for comparison is
the number of function evaluations. The results of some compared algorithms (PRS,
MS, EA, MLSL, IA, TN in Table 1) are taken from ([2, 7]). The simulation results
demonstrate that the proposed method works successfully in producing high-quality
solutions (some of them are benefited from employed hybrid local search algorithms
in Phase I) and is competitive with these state-of-art methods.

Table 1 Number of function evaluations required by different methods to reach a global minimum
of low-dimensional test functions

CA GP SH BR H3,4

PRS – 5,125 6,700 4,850 5,280
MS – 4,400 – 1,600 2,500
EA – 460 – 430 –
MLSL – 148 – 206 197
IA 326 – 7,424 1,354 –
GA 176 191 742 173 201
SA 1,903 – 780 505 1,459
TS 246 230 274 212 438
MCS – 81 141 45 224
TN 31 103 72 55 58
Proposed 38 199 67 26 22
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Table 2 Number of function evaluations required by different methods to reach a global minimum
of high-dimensional test functions

S4,5 S4,7 S4,10 H6,4 RT10 R10 RT20 R20 DP25 L30

GA 1,086 1,087 1,068 973 1,2078 6,340 – – – –
TS 841 833 840 – 5,107 7,062 24,485 34,139 39,374 65,367
SA – – – – 1,08,243 1,05,137 81,454 74,512 – 1,06,798
MCS 298 178 384 146 1,963 1,233 5,957 4,247 30,376 1,661
TN 298 533 469 963 – – – – – –
Proposed 443 480 328 65 343 723 1,045 1,743 1,863 324

4.2 Large-scale simulation

To evaluate the performance of the proposed method for a large-scale practical appli-
cation, we have performed a simulation with a sonar data set. This is the data set
used by Gorman and Sejnowski [13] in their study of the classification of sonar signals
using a neural network. The data consists of sonar returns collected from two sources:
a metal cylinder and a similarly shaped rock. Both objects were lying on a sand surface,
and the sonar chirp projected at them from different angles produced the variation
in the data. The data contains 111 patterns obtained from the metal cylinder, and 97
patterns obtained from the rock. Each pattern is a set of 60 continuous numbers in the
range 0.0 – 1.0. For the simulation, a three layer network of size 60-5-1 is considered.
This one consists of an input layer, a hidden layer, and an output layer, interconnected
by modifiable weights, represented by links between layers. For each input x(n) ∈ �60,
n = 1, . . . , 208, the output of this neural network model is given by

zk(n) = φ

⎛
⎝

5∑
j=1

wj+1φ

⎛
⎝

60∑
i=1

w5i+j+6xi(n) + wj+6

⎞
⎠ + w1

⎞
⎠ ,

where w = (w1, . . . , w311)
T is a synaptic weight vector and φ: � → � is a nonlinear

activation function (e.g. φ(s) = 1/(1 + exp(−ay)) for a positive gain a). The supervised
training of a neural network is then viewed as an unconstrained minimization problem
as follows:

min
w

f (w),

where the objective function f: �311 → � is a highly nonlinear mean squared training
error (MSE) function.

Figure 5 shows the performance of our proposed algorithm compared to error
back-propagation algorithm (EBP) [15], TRUST algorithm or its variant (TR), genetic
algorithm (GA) and simulated annealing algorithm (SA). The result demonstrates a
significant performance improvement of the proposed method compared with other
algorithms.

5 Concluding remarks

In this paper, a new deterministic method for global optimization has been developed.
The proposed method consists of three-phases: Phase I is a typical continuous local
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search and looks for a local minimum. Phase II is a discrete sup-local search and looks
for a sup-local minimum with the lowest objective value among the neighboring local
minima. Phase III is an attractor-based global search and looks for a feasible solution
with a lower objective value than those values obtained in Phase II.

The method has several features: first it does not require a good initial guess
(although such a guess would of course reduce the number of steps needed). Second,
it is better than stochastic methods such as multi-start methods since it can avoid
many unnecessary efforts in re-determining already known minima. Third, it is very
general and could be extended to any global optimization problem. An application of
the method to more large-scale real-world problems remains to be investigated.

Appendix

Proof of Theorem 1

Proof Let C be a feasible connected component of the set S(x∗) and x ∈ C̄ where C̄
is the closure of C. Since

fx∗(x) = f (x) − f (x∗) ≤ 0 or ρ(fx∗(x)) = 0
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the Jacobian of F(x) ≡ −ρ(fx∗(x))∇f (x) at x is

JF(x) = −ρ(fx∗(x))∇2f (x) − ∇f (x)∇f (x)Tρ′(fx∗(x))

= −∇f (x)∇f (x)Tρ′(fx∗(x)).

If x ∈ C, then ρ′(fx∗(x)) = 0 and so we have JF(x) = 0. Next if x ∈ ∂C, then
ρ′(fx∗(x)) > 0. Here we assume that ∂C is an (n − 1)-dimensional manifold, which is
a generic property by Morse–Sard Theorem. To show that the set C̄ is an attractor
of (5), we will show that vTJF(x)v = 0 for all v ∈ Tx(C) and vTJF(x)v < 0 for all
v ∈ Tx(C)⊥ where Tx(C) is an (n − 1)-dimensional tangent space of C at x and can be
described by

Tx(C) = ∇f (x)⊥ = {v : ∇f (x)Tv = 0}.
(1) For any vector v ∈ ∇f (x)⊥ = {v : ∇f (x)Tv = 0}, we have vTJF(x)v = 0.
(2) For any vector v �∈ ∇f (x)⊥, i.e., v = c∇f (x) where c is a scalar, we have

vTJF(x)v = −ρ′(fx∗(x))‖∇f (x)Tv‖2 < 0

Therefore, C is an attractor of system (5). ��
Test functions

(CA) or (HM) Hump Function (or Six-hump Camelback 2-D Function
Definition: HM(x) = 1.0316285 + 4x2

1 − 2.1x4
1 + 1

3 x6
1 + x1x2 − 4x2

2 + 4x4
2

Search space: −5 ≤ xi ≤ 5, i = 1, 2
Global minimum: x∗ = (0.0898, −0.7126), (−0.0898, 0.7126); HM(x∗) = 0

(GP) Goldstein and Price Function
Definition: GP(x) = (

1 + (x1 + x2 + 1)2(19 − 14x1 + 13x2
1 − 14x2 + 6x1x2 + 3x2

2)
)(

30 +
((2x1 − 3x2)

2(18 − 32x1 + 12x2
1 − 48x2 − 36x1x2 + 27x2

2)
)

Search space: −2 ≤ xi ≤ 2, i = 1, 2
Global minimum: x∗ = (0, −1); GP(x∗) = 3

(SH) Shubert Function

Definition: SH(x) =
( ∑5

i=1 i cos
(
(i + 1)x1 + i

))(∑5
i=1 i cos

(
(i + 1)x2 + i

))

Search space: −10 ≤ xi ≤ 10, i = 1, 2
Global minimum: 18 global minima and SH(x∗) = −186.7309

(BR) Branin RCOS Function
Definition: RC(x) = (x2 − 5

4π2 x2
1 + 5

π
x1 − 6)2 + 10(1 − 1

8π
) cos(x1) + 10

Search space: −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15
Global minimum: x∗ = (−π , 12.275), (π , 2.275), (9.42478, 2.475); RC(x∗) = 0.397887

(H3,4) Hartmann Function
Definition: H3,4(x) = −∑4

i=1 αi exp
[ ∑3

j=1 Aij(xj − Pij)
2], α = [1, 1.2, 3, 3.2]T

A =

⎡
⎢⎢⎣

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎤
⎥⎥⎦ , P = 10−4

⎡
⎢⎢⎣

6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎤
⎥⎥⎦ .
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Search space: 0 ≤ xi ≤ 1, i = 1, 2, 3
Global minimum: x∗ = (0.114614, 0.555649, 0.852547); H3,4(x∗) = −3.86278

(H6,4) Hartmann Function
Definition: H6,4(x) = −∑4

i=1 αi exp
[ ∑6

j=1 Bij(xj − Qij)
2], α = [1, 1.2, 3, 3.2]T

B =

⎡
⎢⎢⎣

10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎤
⎥⎥⎦ ,

Q = 10−4

⎡
⎢⎢⎣

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎤
⎥⎥⎦ .

Search space: 0 ≤ xi ≤ 1, i = 1, . . . , 6
Global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);
H3,4(x∗) = −3.32237

(S4,m) Shekel Function
Definition: S4,m(x) = −∑m

j=1
[∑4

i=1(xi − Cij)
2 +βj

]−1, β = 1
10 [1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T

C =

⎡
⎢⎢⎣

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎤
⎥⎥⎦

Search space: 0 ≤ xi ≤ 10, i = 1, . . . , 4
Global minimum: x∗ = (4, 4, 4, 4); S4,5(x∗) = −10.1532, S4,7(x∗) = −10.4029,
S4,10(x∗) = −10.5364

(RTn) Rastrigin Function
Definition: RTn(x) = 10n + ∑n

i=1(x
2
i − 10 cos(2πxi))

Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0); RTn(x∗) = 0

(Rn) Rosenbrock Function
Definition: Rn(x) = ∑n−1

i=1

[
100(x2

i − xi+1)
2 + (xi − 1)2]

Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n
Global minimum: x∗ = (1, . . . , 1); Rn(x∗) = 0

(DPn) Dixon & Price Function
Definition: DPn(x) = (x1 − 1)2 + ∑n

i=2 i(2x2
i − xi−1)

2

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n

Global minimum: x∗
i = 2

−
(

2i−2

2i

)
, i = 1, . . . , n; DPn(x∗) = 0

(Ln) Levy Function

Definition: Ln(x) = sin2(πy1)+∑n−1
i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1)

)]+ (yn − 1)2(1 +
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10 sin2(2πyn)
)

yi = 1 + xi−1
4 , i = 1, . . . , n

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n
Global minimum: x∗ = (1, . . . , 1); Ln(x∗) = 0
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