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Abstract. This paper presents a general approach that combines global search strategies with
local search and attempts to find a global minimum of a real valued function of n variables.
It assumes that derivative information is unreliable; consequently, it deals with derivative free
algorithms, but derivative information can be easily incorporated. This paper presents a non-
monotone derivative free algorithm and shows numerically that it may converge to a bet-
ter minimum starting from a local nonglobal minimum. This property is then incorporated
into a random population to globalize the algorithm. Convergence to a zero order stationary
point is established for nonsmooth convex functions, and convergence to a first order sta-
tionary point is established for strictly differentiable functions. Preliminary numerical results
are encouraging. A Java implementation that can be run directly from the Web allows the
interested reader to get a better insight of the performance of the algorithm on several stan-
dard functions. The general framework proposed here, allows the user to incorporate vari-
ants of well known global search strategies.
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1. Introduction

This section proposes a nonmonotone derivative-free algorithm that con-
verges to a point x satisfying the zero order necessary minimality con-
ditions ZONC for nonsmooth convex functions f (·): S ⊆ IRn → IR . We
assume that derivative information is either nonexistent or unreliable; how-
ever, convergence to a first order necessary point x is established when f (·)
happens to be strictly differentiable at x, but not necessarily convex; that is

�Research done under the cooperation agreement between Universidade de Vigo and Universidad
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lim
xi →x

di →d

η→0

f (xi +ηdi)−f (xi)

η||di || =∇f (x)T d.

Let X1 be the set of first-order stationary points of f (·), which is char-
acterized by X1 = {x ∈ S : ∇f (x) = 0}, and let X0 be the set of points that
satisfy the zero-order necessary condition (ZONC) for functions with direc-
tional derivatives f ′(x, d) everywhere defined.

ZONC: (Zero-order necessary condition)
Let D={d1, . . . , dm} be a finite set of unit vectors that positively spans
IRn. We say that x satisfies ZONC if it belongs to the set X0 defined
as:

X0 ={x ∈S :f ′(x, d)≥0, for all d ∈D}. (1)

Let us remark beforehand that the first order necessary condition,
namely, ∇f (x) = 0, holds if x ∈ X0 and f (·) is strictly differentiable at x

(Garcı́a-Palomares and Rodrı́guez, 2002, Lemma 4.2).
An ultimate goal is to find all global minima of f (·), i.e., find all x ∈X∗

defined as

X∗ ={z∈X0 :f (z)≤f (x) for all x ∈S}. (2)

Diener (1994) proposed to find X∗, the set of global minimizers, as the
solution trajectories of ordinary differential equations of first and second
order. He explicitly states that he proved no convergence results. Indeed,
most researchers in this field agree that even the simpler problem of find-
ing a single element of X∗ without assuming a structured problem, may
be intractable, mainly because a practical mathematical characterization of
a global optimum is lacking (Groenwold and Snyman, 2002), and because
Törn and Z̆ilinskas (1989) proved that a sequence of iterates must be dense
to ensure that it converges to the global minimum. On top of this, X∗ may
not be a countable set, or |X∗|, the cardinality of X∗, may be so large as
to render impractical any algorithm that tries to determine all of its ele-
ments. These impediments may persist on X1. Another major hindrance
is that derivative information may be absent, so an element of either X∗

or X1 must be determined on the basis of function evaluations only. This
excludes the use of efficient gradient based methods to carry out a local
search; so the paper’s objectives are restricted to find some element(s) in X0

or X1 without computing nor approximating derivatives.
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Despite (or due to) the cited shortcomings a flood of articles on global
optimization strategies continues to appear and its pace does not seem to
slow down. It looks a formidable task to cite all pertinent references that
have appeared in the open literature. Good surveys and many references
are included in the volumes of handbook of global optimization edited by
Horst and Pardalos (1994), and Pardalos and Edwin Romeijn (2002). Gray
et al. (1997) wrote a survey of algorithms that can be accessed in the Web.
Haim et al. (1999) compare different software packages and Pintér (1995)
describes a good range of real world applications.

The decision maker is often interested in finding the best minima in a
compact set S. We could assume that this set is given by bounds on the
variables or by constraints that can be easily handled with straightforward
modifications of the basic ideas presented in this paper. To avoid additional
technicalities that could stray the reader’s attention from the main ideas,
we will assume for the sake of simplicity of the presentation that our algo-
rithms generate a sequence of points that remain in S. This is valid, at least
theoretically, if we assume that f (x)→∞ whenever ||x||→∞.

This paper is organized as follows: Next section points out the role that
local search algorithms play in several global optimization strategies and
gives the convergence proof of a nonmonotone variant of the derivative-
free local search algorithm for nonsmooth functions recently proposed by
Garcı́a-Palomares and Rodrı́guez (2002). Section 3 describes an algorithm
that combines this nonmonotone search with different global minimization
strategies. It is proved that the proposed scheme generates (sub)sequences
with limit points in X0(X1) if f (·) is locally convex (strictly differentiable).
Section 4 discusses implementation issues and reports encouraging numer-
ical results. Section 5 states the conclusion and additional remarks.

We end this section by pointing out some peculiarities of our notation,
which is otherwise standard: {·}∞i=1 is an infinite sequence of iterates, and
{·}i∈I is a subsequence. IRn is the n-dimensional Euclidean space; IR+ is
the set of nonnegative real scalars. Small Latin letters i, . . . , q are inte-
gers. All other Latin letters are vectors in some Euclidean space. Subscripts
denote different entities, and superscripts denote components; e.g., xk

i is the
k-component of vector xi . Capital Latin letters denote sets and lower case
Greek letters denote elements in IR . The notation o(τ) denotes a function
from IR+ → IR with the property limτ↓0 o(τ)/τ =0.

2. Local Search

Gradient-like algorithms using first and second order derivative informa-
tion are often used in the local search phase of deterministic global opti-
mization algorithms of smooth functions. An obvious approach is to start
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a local search on the best point given by a global optimization algorithm
(Isenor et al., 2003 and references therein). In general, a local search is
combined with heuristics and/or strategies that augment the chances of
finding a global minimum. Known strategies that include local search are:

Multistart + local search. A local search is applied on multiple starting
points randomly generated. We can see Smith et al. (1990), Pintér
(1995), and references therein.

Local search + splitting of the search space. The search space is split in
boxes (intervals) and a local search is carried out in smaller boxes
(intervals). These interval-like techniques have been proposed by Jones
et al. (1993), Csendes and Ratz (1997), Huyer and Neumaier (1999),
and others.

Local search + bypass. Local searches of f (·) and/or auxiliary functions
are carried out to obtain a local minimum. Once a local minimum x∗

of f (·) is detected, descent steps are carried out on an auxiliary func-
tion f̃ (·) until theoretically a point x is found with a functional value
lower than f (x∗). Some examples are the tunneling function (Levy and
Gómez, 1985), the fill function (Ge, 1990; Liu and Xu, 2004) and the
cutting angle function (Bagirov et al., 2002). A typical tunneling func-
tion is:

f̃ (x)= (f (x)−f (x∗)+ δ)

(
1+ 1

||x −x∗||2
)

. (3)

Local search of approximating functions. Locatelli and Schoen (2002) find
x̃, a local minimum of a function f̃ (·) that shares some properties with
f (·), but at the same time, it is more amenable to work with. Then a
local search on f (·) is carried out, starting at x̃.

Combine local search and stochastic optimization. Yiu et al. (2004) proposed
to perform alternatively local search and simulated annealing. A switch
between both techniques will occur when the function value f (·)
strictly decreases.

This brief survey reveals that a local search algorithm; i.e., an algo-
rithm devised to locate a local minimum, is the core of several deterministic
approaches in global optimization. Conceivably, the better the local search,
the faster the algorithm. A major drawback of these strategies (except Yiu
et al. 2004) is that many local minima must be found, which is com-
putationally expensive. This paper is closer in spirit to Yiu’s, because it
combines an incomplete local search with a global strategy, but it differs
from his because the stochastic optimization is replaced by an evolution-
ary approach, and the local search does not require strict decrease of func-
tion values. It works with a population of individuals at each iteration, an



A COMBINED GLOBAL & LOCAL SEARCH 413

incomplete nonmonotone local search is carried out from each individual
and the search results are used to update the population.

This paper assumes that gradient-like search may become impractical
and must be replaced by a derivative-free search, even though the latter is
not necessarily endowed with the well established superlinear rate of con-
vergence of quasi Newton methods; nonetheless, it is nowadays accepted
that derivative-free methods are essential for solving real problems (Wright,
1996; Kolda et al., 2003). Recent global optimization approaches that do
not compute or approximate gradients by difference of function values
have been proposed by Jones (2001), who locates the global minimum as
a sequence of local minima of interpolating functions made up by a lin-
ear combination of basis functions. In a series of papers, Price (1977, 1983,
1987) introduced the Controlled Random Search (CRS) algorithms that
have been later modified and tested numerically with encouraging results
(Ali et al., 1997; Ali and Törn, 2004). The main drawback of these algo-
rithms is that no theoretical convergence proof is provided.

We now prove convergence of a nonmonotone version of the derivative-
free algorithm proposed by Garcı́a-Palomares and Rodrı́guez (2002). It will
be the core of the Combined Global and Local Search (CGLS) optimiza-
tion approach described in the next section. Let us mention in passing that
nonmonotone strategies used with gradient information have been intro-
duced in both unconstrained and constrained optimization. Numerical tests
show that they are competitive with conventional gradient-like monotone
techniques. Furthermore, it has been observed that nonmonotone strate-
gies may avoid convergence to local nonglobal solutions of the problem
(Grippo et al., 1986; Toint, 1997; Ulbrich, 2001). Section 4 (Table VI) sup-
ports these results.

Tables I and III describe, respectively, the conceptual and the actual
implementation of the nonmonotone algorithm. Theorem 2 shows that it
generates a (sub)sequence of iterates that converges to x ∈ X0 if f (·) is
nonsmooth and locally convex around x, or converges to x ∈X1 if f (·) is
strictly differentiable at x. The key idea of the algorithm is the nonmono-
tone sufficient decrease (NMSD) condition (4). Given a solution estimate
xi ∈S,αi ∈ [0, 1], ν(τi) satisfying A4 below, and ϕi satisfying A5 below, any
point y ∈S is a potential candidate to become a new solution estimate if

f (y)≤f (xi)+αi(ϕi −f (xi))−ν(τi). (4)

Every time we pinpoint y ∈S that fulfills (4) we say that the iteration has
been successful. Otherwise, we declare that xi is temporarily blocked and
reduce ν(τi) to try to unblock it. Theorem 2 below shows that the reduc-
tion of ν(·) will eventually unblock x, unless this point satisfies ZONC.
In a sense this is reminiscent of trust region approaches. The monotone
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Table I. Local nonmonotone algorithm

Input: 0<ε,0<µm ≤µM <1≤γ Constants

i =0 iteration counter
Pick x1 ∈S,0<τ1 ∈ IR initial values
do i = i +1 iteration

Update Di,ϕi , αi ∈ [0, 1] satisfying A3,A5
φi =f (xi)+αi(ϕi −f (xi))

if ∃(d ∈Di) :f (xi + τid)≤φi −ν(τi )

Find η≥ τi :f (xi +ηd)≤φi −ν(τi ) local search
xi+1 =xi +ηd move
ν(τi )≤ν(τi+1)≤γ ν(τi ) may expand ν

else xi is blocked
xi+1 =xi no move
µmν(τi )≤ν(τi+1)≤µMν(τi ) reduce ν

end if
while (τi >ε) no convergence

algorithm is derived if p=1, ϕi =f (xi) in (6). Fortunately, theorem 2 needs
no specialized material to prove convergence. It closely follows the argu-
ments given by Garcı́a-Palomares and Rodrı́guez (2002) and the reader is
advised to look at that reference for further details.

In the sequel we will assume:

A1. f (·) : IRn → IR is bounded below, and {xi}∞1 remains in the compact
set S.

A2. f (·) has directional derivatives f ′(x, d) everywhere defined, and

η>0⇒
{

f ′(x, ηd) =ηf ′(x, d),

f (x +ηd) =f (x)+ηf ′(x, d)+o(η).
(5)

A3. The finite set D = {d1, . . . , dm} of unit search directions positively
spans IRn, and f (·) is strictly differentiable or locally convex at all
limit points of the sequence {xi}∞1 generated by the algorithm.

A4. The function ν(·) : IR+ → IR+ is strictly increasing and limτ↓0 ν(τ)/

τ =0.

A5. The sequence of reference values {ϕi}∞1 is a nonincreasing sequence
of upper bounds of the functional values {f (xi)}∞1 and decreases
sufficiently every bounded number of iterations; specifically
(a) ϕi+1 ≤ϕi for all i,
(b) f (xi)≤ϕi , for all i, and
(c) If the number of successful iterations is infinite then there exist
an infinite subset of iteration indices K and a finite p>0 such that
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∀(k ∈K) ∃(i ∈K)⇒
⎧⎨
⎩

ϕk+1 ≤ϕk −ν(τj )for somej : i <j ≤k

No more than p successful iterations
between i and k.

(6)

Assumptions A1–A5 are rather mild. In particular A2 holds for nonsmooth
functions with directional derivatives everywhere defined, like convex func-
tions, norm of differentiable functions, the maximum and/or minimum of
a group of differentiable functions, and continuous differentiable functions.
We are now ready to prove convergence of the algorithm framework shown
in Table I.

LEMMA 1. {τi}∞1 →0.
Proof. If the number of successful iterations is finite, then ν(τi+1) ≤

µMν(τi) for all i large enough, and by A4 the lemma is true. Let us
now assume that the number of successful iterations is infinite, and let
k, i ∈ K,k < i be two consecutive indices in K as defined by (6); hence
ϕi ≤ ϕk+1 ≤ ϕk − ν(τj ) for some j ≤ k. We assert that {ν(τj )}j∈J → 0, where
J is the index set of ν values satisfying (6); for otherwise {ϕk}k∈K would
decrease without bounds, and A5b implies that {f (xk)}k∈K is unbounded,
contradicting A1.

Given any two consecutive elements j, k ∈J there are at most 2p success-
ful iterations between them; hence ν(τi)≤γ 2pν(τj ), for j ≤ i <k and we thus
assert that {ν(τi)}→0. The validity of the lemma follows from A4.

COROLLARY. There is an infinite number of blocked points.

The algorithm is well defined, in the sense that if xi is permanently
blocked, then f ′(xi, d)≥0 for all d ∈Di . Note that f (xi + τd)>φi −ν(τ)>

f (xi)− ν(τ) for all d ∈D,τ > 0. The result now follows from Garcı́a-Palo-
mares and Rodrı́guez (2002, lemma 3.1).

THEOREM 2 (Convergence). Let {Di}∞1 →D, and let x be any limit point
of blocked points of the sequence {xi}∞1 . If f (·) is locally convex around x

then f ′(x, d) ≥ 0 for all d ∈ D. Moreover, if f (·) is strictly differentiable at
x, then ∇f (x)=0.

Proof. Let xi be a blocked point and d ∈ Di . By construction we have
that

f (xi + τid)>φi −ν(τi)≥f (xi)−ν(τi).

The rest of the convergence proof follows from Garcı́a-Palomares and
Rodrı́guez (2002, theorems 3.4, 3.5, 4.1, lemma 4.2 and the comment below
theorem 4.1).
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It is worth mentioning that this convergence result only ensures conver-
gence to stationary points, unless f (·) enjoys some particular properties,
like smoothness and convexity. To the author’s knowledge there is no gen-
eral derivative-free algorithm that ensures convergence to a local minimum
for nonsmooth convex functions, a quest that has been so far elusive.

3. Global Optimization Algorithm

The previous section was concerned with the problem of locating a station-
ary point. Numerical experiments reported in the next section show that
the nonmonotone feature of the local search algorithm may occasionally
make it jump over small hills; but this effect could be offset with a careless
implementation. A major drawback of any local algorithm is that it does
not search the whole domain, which is evidently necessary in global opti-
mization (Stephens and Baritompa, 1998).

An early attempt to consider global information is multi start, and the
NonMonotone (NM) algorithm could be used on a set of random start-
ing points. Locatelli and Schoen report several difficulties with the use of
this approach (2002); so we decided to work on an initial population P of
p individuals randomly chosen in S and combine global and local search
as follows. We identify xb as the best point in P if f (xb) ≤ f (x), x ∈ P .
We also identify xw as the worst point in P if f (xw) ≥ f (x), x ∈ P . Ties
are broken arbitrarily. The algorithm attempts to find some y ∈S that ful-
fills the (NMSD) condition (4). Genetic-like, simulated annealing or deter-
ministic techniques that have been proposed in the open literature can be
used, as long as they provide a point y ∈S satisfying (4). If this is the case,
it replaces xw by y; otherwise it picks x ∈ P and carries out a local NM
search as described in Tables II and VII.

As ϕi = max(f (x)), x ∈ Pi , and the worst point is always replaced by a
better point at all successful iterations, A5ab trivially holds. Convergence
would follow if we can identify a set K satisfying (6). Note that after p

successful iterations the population P has evolved to a completely different
set of individuals. Let i, k, i < k be two consecutive indices in the set K if
i is the biggest iteration index for which Pi �= Pk, but Pj ∩ Pk �= ∅ for all
i <j <k. Hence, by construction

ϕk+1 ≤ϕk −ν(τj ), for some j : i <j ≤k. (7)

Convergence follows almost verbatim from lemma 1 and theorem 2 if
in the local search phase we reduce ν(·) only if f (x + τd) > ϕi − ν(τi)

for all d ∈ D. The following propositions are therefore valid and are
merely given to collect the convergence results. We recall that assumptions
A1 – A5 hold.
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Table II. i-th Iteration of the CGLS algorithm

Input: 0<ε,0<µm ≤µM <1≤γi , τi ,Di,Pi

Identify xw , and let ϕi =f (xw)

Select Qi ⊆Pi , αi ∈ [0, 1]
success =f alse, φi =f (x)+αi(ϕi −f (x))

for all x ∈Qi

Generate xi+1 ∈S with a global strategy
if f (xi+1)≤φi −ν(τi )

success = true
end if

end for
if NO success

Choose x ∈Pi to start the local search
if xi+1 =xi +

∑m
k=1 ηkdk, ηk ≥ τi and f (xi+1)≤φi −ν(τi )

success = true
end if

end if
if success

Pi+1 =Pi +{xi+1}−{xw}, recompute xw

ν(τi )≤ν(τi+1)≤γiν(τi )

else
µmν(τi )≤ν(τi+1)≤µMν(τi )

end if

PROPOSITION 3. {τi}∞1 →0.

PROPOSITION 4. Let Di = {di1, . . . , dim} → D = {d1, . . . , dm}. If the algo-
rithm gets stuck at xi and f (·) is locally convex around xi , then f ′(xi, dk)≥0,
for dk ∈D. Moreover, ∇f (xi)=0 if f (·) is strictly differentiable at xi .

PROPOSITION 5. Let Di = {di1, . . . , dim} → D = {d1, . . . , dm}, and let x be
a limit point of a (sub)sequence of blocked points. If f (·) is locally convex
around x, then f ′(x, dk) ≥ 0, dk ∈ D. Besides, if f (·) is strictly differentiable
at x, then ∇f (x)=0.

Note that the last proposition only states that there must be at least
one limit blocked point x ∈ P that satisfies the zero or first order neces-
sary condition. Had we regularly chosen xb in the local phase, it would
have been obvious to prove that a subsequence of the best points con-
verges to x. However, the numerical experiments suggest that this is not the
best strategy, because the algorithm can terminate prematurely at a local
minimum, which is a limit point of the best ones. CGLS should therefore
end with a local search starting at xb. The next section deals with these
practical implementation issues and reports preliminary numerical results
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on a moderately difficult and on a difficult test problem. We emphasize
that CGLS subsumes any strategy that admits (NMSD) in function values
(Equation (4)).

4. Implementation and Numerical Results

A lot of variants can be derived from the algorithmic descriptions given
in Tables I and II, and deep insight will be an asset to secure an effi-
cient implementation. In general, sic: a number of heuristic enhancements
are needed to obtain a high quality model (Huyer and Neumaier 1999). In
addition, parameter values seem to be problem dependent in all derivative
free methods.

The actual implementation of the (NM) algorithm (Table III) pro-
ceeds along the guidelines suggested by Garcı́a-Palomares and Rodrı́guez
(2002). We keep in mind that a proper updating of D satisfying A3 is of
utmost importance to improve the performance of the algorithm; so D =
{±u,±d1, . . . ,±dn},where u ∈ IRn is a unit direction generator vector, and
d1, . . . , dn are the n orthogonal directions taken from the columns of the
Householder orthogonal matrix (I − 2uuT ). In this implementation (Table
III) the direction generator u is a descent direction that is updated after
the algorithm cyclically searches all directions. This is reminiscent of Hooke
and Jeeves (1961) and has worked well when coupled with the interpo-
lation procedure explained below. The generator u is randomly generated
at all temporarily blocked points to give the algorithm extra directions to
search on. This latter feature is particularly convenient for nonsmooth con-
vex functions, since f ′(x, d) ≥ 0 may hold on a larger number of search
directions. Table III shows the list of parameters that can be set by the
user. We used ετ = εf = 1e − 6, γ = 1.3,µ = 0.3, τ = 0.1, and ϕ = 200 for
the Rosenbrock function. We set ϕ = f (x) if a successful move appears
after a local search is carried out on all directions. We expand τ when
(NMSD) holds on more than n/2 directions of search and reduce τ when
(4) is not fulfilled on any d ∈ Di . We also chose ν(τ) = 0.1τ 2 and termi-
nate the algorithm under two normal convergence conditions: τ < ετ , or
f (xw)≤f (xb)+εf (|f (xb)|+1). As a safeguard (not explicitly given in Table
III) we also terminate the algorithm when the number of function eval-
uations exceeds 106. The common discrete local search procedure, often
used in search methods, was replaced by a quadratic interpolation proce-
dure (Table IV) to try to find a better f value on the direction d, and it
is roughly as follows: Given x ∈ S, d ∈ IRn, τ > 0, the procedure computes
zright = x + τd, zleft = x − τd and defines y = arg min(f (zright), f (zleft)). If
f (y)>f (x) the procedure considers that x is blocked along d and returns
f (y) and the corresponding y point; otherwise, it enters into the proper
interpolation procedure, which first detects a region of positive curvature,
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Table III. Local nonmonotone implementation

Parameters: ετ , εf , γ,µ, τ, ϕ

Get x, vk ∈ [xk − τ, xk + τ ], k =1, . . . , n random v

do u=x −v, v =x, success =0
if ||u||<τ , let uk ∈ [−τ, τ ], k =1, . . . , n random u

Set d0 =u, dj = ej −2uju, j =1, . . . , n

for j =0 to n

y = interpolate (x, dj , τ ) table IV
α =min(τ, α), φ =f (x)+α(ϕ −f (x))

if (f (y)≤φ −0.1τ 2)

success = success +1
x =y move

endif
endfor
if (success =0)

τ =µτ

else ϕ =f (x)

endif
if (success >n/2)

τ =γ τ

endif
while (τ >ετ ) and (f (v)>f (x)+ εf (|f (x)|+1))

i.e., it searches for 3 points where it makes sure that f (·) will be interpo-
lated by a convex quadratic, it then finds the minimum of the latter and
returns the lowest f (·) value observed. Note that the interpolation is only
carried out when f (x +ηd)≤f (x), when η= τ or η=−τ (See Table IV).

We should advise the reader that the choice of α may influence the per-
formance of the algorithm significantly; α = 1 and a large initial ϕ value
gives more diversity, and helps the algorithm escape from local minima;
but this implies more function evaluations. On the contrary, a value of
α =0 emphasizes points that improve f (x). It tends to find the local min-
imum closest to the initial estimate. Table VI reports the number of times
the global minimum was found and the number of function evaluations
required by the algorithm for α = 0, α = min(τ, α) and α = 1, on the 10-
dimensional Rosenbrock banana function (8), which is considered as a
moderately difficult problem by Törn et al. (1999). The Rosenbrock func-
tion is defined by:

f (x)=
n−1∑
k=1

[
100

(
xk+1 − (xk)2)2 + (1−xk)2

]
. (8)
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Table IV. y = interpolate(x, d, τ )

Input: x, d ∈ IRn, τ >0 Comments

d = τd, zright =x +d, zleft =x −d

y =arg min(f (zright), f (zleft))

if (f (y)>f (x)) no interpolation
return f (y) and its argument y

elseif f (y)=f (zlef t ) change sense
d =−d

endif
γ =2, z=x +d, zlef t =x, zright = z+2d

while 2f (zleft)+f (zright)−3f (z)≤0 no convexity
γ =2γ

zleft = z, z= zright, zright = z+γ d

endwhile

zmin = z+ 4f (zleft)−f (zright)−3f (z)

4f (zleft)+2f (zright)−6f (z)
d

y =arg min(f (zmin), f (z), f (zright))

return f (y) and its argument y

The test was carried out on 3 different initial points:

xs = (−1.2,1,−1.2,1, . . . ,−1.2,1),

xg = (1,1,1, . . . ,1,1,1),

xl = (−0.9933,0.9966,0.9982,0.9990,0.9992,0.9991,0.9985,0.9971,

0.9942,0.9884),

which are respectively the standard initial point, the global minimum and
a local minimum with 4 digits of precision. Each case was run 100 times.
The results shown on table VI reveal that the nonmonotone feature may
become quite useful for global minimization. It converged with a suitable
number of function evaluations to the global minimum in 46% of the cases
when it started at the local minimum xl. Likewise, the algorithm escaped
from the global minimum over 20% of the cases. Safeguards should be
included to recover the best minimum found.

A similar test was repeated for the 5-dimensional Shekel’s Foxhole function
(Equation (9), Table V), which is considered as a difficult problem by Törn
et al. (1999).

f (x)=−
30∑

j=1

1

cj +∑5
i=1(xi −Aji)2

· (9)
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Table V. Data for Shekel’s function (9)

c A
0.806 9.681 0.667 4.783 9.095 3.517
0.517 9.400 2.041 3.788 7.931 2.882
0.100 8.025 9.152 5.114 7.621 4.564
0.908 2.196 0.415 5.649 6.979 9.510
0.965 8.074 8.777 3.467 1.863 6.708
0.669 7.650 5.658 0.720 2.764 3.278
0.524 1.256 3.605 8.623 6.905 4.584
0.902 8.314 2.261 4.224 1.781 4.124
0.531 0.226 8.858 1.420 0.945 1.622
0.876 7.305 2.228 1.242 5.928 9.133
0.462 0.652 7.027 0.508 4.876 8.807
0.491 2.699 3.516 5.874 4.119 4.461
0.463 8.327 3.897 2.017 9.570 9.825
0.714 2.132 7.006 7.136 2.641 1.882
0.352 4.707 5.579 4.080 0.581 9.698
0.869 8.304 7.559 8.567 0.322 7.128
0.813 8.632 4.409 4.832 5.768 7.050
0.811 4.887 9.112 0.170 8.967 9.693
0.828 2.440 6.686 4.299 1.007 7.008
0.964 6.306 8.583 6.084 1.138 4.350
0.789 0.652 2.343 1.370 0.821 1.310
0.360 5.558 1.272 5.756 9.857 2.279
0.369 3.352 7.549 9.817 9.437 8.687
0.992 8.798 0.880 2.370 0.168 1.701
0.332 1.460 8.057 1.336 7.217 7.914
0.817 0.432 8.645 8.774 0.249 8.081
0.632 0.679 2.800 5.523 3.049 2.968
0.883 4.263 1.074 7.286 5.599 8.291
0.608 9.496 4.830 3.150 8.270 5.079
0.326 4.138 2.562 2.532 9.661 5.611

Shekel’s function exhibits multiple local minima and its global minimum is

x = (8.0249,9.1517,5.1139,7.6209,4.5641), f (x)=−10.406.

The global minimum for the Shekel function was rarely found (1–3%
in several runs) and convergence to more than 12 different minima was
observed regardless of the α value used. However, when the method started
on a local minimum and α =0 it could not escape from that minimum.

We now turn our attention to the CGLS described in Table II and imple-
mented as shown in Table VII. We chose Q= (P −{xb, xw}). For each x ∈Q
the algorithm fuses a global strategy with the local NM search. By the
use of a finite number of iterations of NM it exploits the property that
NM has of escaping from a local nonglobal minimum. To also take into
account a global strategy it uses the downhill direction u=x −xw as direc-
tion generator of the search set D = {±u,±d1, . . . ,±dn} and attempts to
find some y ∈{z∈S :z=x +ηd, η≥ τ, d ∈D} satisfying (4). This set D tends
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Table VI. Global minimum and function evaluations

Report on the 10-dimensional Rosenbrock function (8)
(ε =10−8, τ =1, ϕ =200,100 runs each case)

starting
point α =0 αi+1 =min(αi , τi ) α =1

standard 70 80 87
global 100 75 87
local 0 46 46

Global minimum found (%)
starting
point α =0 αi+1 =min(αi , τi ) α =1

standard 7180 7378 87710
global 353 4690 66329
local 374 4780 74165

Function evaluations (Average)

to spread the population on points away from the worst point and success-
fully introduced the necessary global character to the algorithm. We also
tried the downhill direction u = xb − x, but results not reported here were
rather discouraging. It seems that this generator has the undesirable effect
of attracting the population towards xb. Numerically it was also worthwhile
to exclude xb from the set Q. As xb and its offspring may all eventually
belong to the population, they may cause a cluster of points akin to xb,
which is undesirable when xb is close to a local nonglobal minimum. This
seems to occur quite often for Shekel and other functions with multiple
local minima. The worst point xw was left out for mere convenience. This
simply avoids to set u = x − xw = 0 when x = xw. As a safeguard though
we generate u randomly when ||x − xw|| < τ . The rest of the algorithm is
sketched in Table VII. To end the algorithm we perform a complete local
NM search starting at xb. The convergence theorem justifies this final step.
We ran some numerical tests for the Rosenbrock and the Shekel functions
with an initial population randomly generated. As previously commented,
α = 0 works better for Shekel and αi+1 = min(αi, τi) is better for Rosen-
brock. Table VIII shows the number of function evaluations and the per-
centage of times that the global minimum is attained for both functions.
Each case was run 100 times. The results are highly competitive when com-
pared with numerical tests that have been recently reported in the open lit-
erature (Ali et al., 1997; Ali and Törn, 2004). Research is ongoing to test
the CGLS approach on a wider range of academic and practical problems
and different global strategies.
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Table VII. CGLS actual implementation: Local NM to x ∈Q with global D

Input: ε =10−6,µ=0.3, γ =1.3, τ =0.1,0≤α ≤1, random P
for x ∈ (P −{xb, xw})

u=x −xw . If ||u||<τ , generate u randomly
d0 =u, dj = ej − (2uj )u, j =1, . . . , n

success =0
for j =0 to n

y = interpolate(x, dj , τ ), α =min(α, τ )

if f (y)≤f (x)+α(f (xw)−f (x))−0.1τ 2

x =y, success = success +1
endif

endfor
if success =0

τ =µτ

else
Pi+1 =Pi +{x}−{xw}
Recompute xw, xb

if success >n/2
τ =γ τ

endif
endif

endfor
repeat until (τ <ε) or (f (xw)<f (xb)+ ε(|f (xb)|+1))

Perform a final local NM search starting at xb

Table VIII. Average CGLS function evaluations(% Global minimum found)

Population size
function 20 50 100 500

Rosenbrock 25358(99%) 55310(100%) 111340(100%)
Shekel 2065(21%) 4124(46%) 7109(74%) 24718(100%)

This paper includes a companion Java implementation (Burguillo et al.,
2004) that can be accessed and run directly from the Web

http://www.det.uvigo.es/˜jrial/Proyectos/Global/Global.html

and the interested scholar may analyze the influence of the parameter val-
ues on the performance of our implementation on various test functions,
including an easy 2-dimensional quadratic function, the moderately diffi-
cult Rosenbrock banana function (8) with an adjustable number of vari-
ables, and the difficult 5-dimensional Shekel’s Foxholes function (Equation
(9) and Table V) taken from Ali and Törn (2004), which has multiple local
minima.
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5. Final Remarks

The key factor in our convergence analysis was the nonmonotone sufficient
decrease (NMSD) condition, which does not force a monotone decrease in
function values. It was observed numerically that the nonmonotone (NM)
algorithm may converge to a global minimum, even when the starting point
is a local nonglobal minimum. Based on this property we propose to use
(NM) on individuals in a population P randomly generated in the domain
of f (·). Preliminary numerical results obtained on a modrately difficult
function (Rosenbrock) and on a difficult function (Shekel) are remarkable
when the number of function evaluations and the number of times the
global minimum is attained are taken as the performance indices. We sup-
pose that nonmonotone algorithms for differentiable functions should be
explored in this context.

As it has been stated, there is in general no theoretical way to ensure
convergence to a global minimum; however, the numerical experiments
carried out so far may imply that our approach satisfies key features
(Khompatraporn et al., 2004). It is

general, because the global minimum may be attained under mild con-
ditions,
reliable, because the global minimum may be located with better per-
formance indices than those found in the literature,
easy to use, because novice users can readily implement the algorithm,
and
efficient, because the nonmonotone derivative-free algorithm for uncon-
strained minimization, which is the core of our study, seems to be
highly competitive among those that do not admit gradient evaluation
nor approximation.

We end this section with a remark on constrained problems. It is
straightforward to prove that convergence theorem 2 holds when S is the
bound constraint convex set S ={x ∈ IRn : s ≤x ≤ t},D is the set of unit vec-
tors along the coordinate axes and at blocked feasible points we require
that

d ∈D ⇒f (PS(xi + τid))>φi −ν(τi)≥f (xi)−ν(τi), (10)

where PS(x) is the projection of x onto S. The next step in this line
of research is to analyze if (10) is sufficient for solving convex systems.
Penalty functions, that transform a constrained model into an uncon-
strained problem might also be useful for solving more difficult constrained
optimization problems. Another approach that will deserve our attention in
future research is to evaluate f (·) at feasible random points close to one
individual x. If no success is obtained after a predetermined number of
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trials we search on another individual. If no individual generates a point
not too much worse than himself we decrease ν(·). The population is
updated as described for the unconstrained case.
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