
J Glob Optim (2007) 37:513–525
DOI 10.1007/s10898-006-9059-3

O R I G I NA L A RT I C L E

Speed-up for the expectation-maximization algorithm
for clustering categorical data

F.-X. Jollois · M. Nadif

Received: 17 June 2006 / Accepted: 23 June 2006 / Published online: 5 August 2006
© Springer Science+Business Media B.V. 2006

Abstract In model-based cluster analysis, the expectation-maximization (EM) algo-
rithm has a number of desirable properties, but in some situations, this algorithm
can be slow to converge. Some variants are proposed to speed-up EM in reducing
the time spent in the E-step, in the case of Gaussian mixture. The main aims of such
methods is first to speed-up convergence of EM, and second to yield same results (or
not so far) than EM itself. In this paper, we compare these methods from categorical
data, with the latent class model, and we propose a new variant that sustains better
results on synthetic and real data sets, in terms of convergence speed-up and number
of misclassified objects.

Keywords Mixture model · Expectation-maximization algorithm · Clustering ·
Acceleration · Categorical data

1 Introduction

Many clustering methods used in practice are based on a distance or a dissimilarity
measure. However, basing cluster analysis on mixture models has become a classical
and powerful approach. In fitting a mixture model to a data by maximum likelihood via
the expectation-maximization (EM) algorithm (Demspter et al. 1977), the partition is
derived from the conditional probabilities in using the maximum a posteriori (MAP)
principle. Recently the clustering of categorical data has attracted much attention.
One example includes the popular tool in the data mining field, Autoclass, developed

F.-X. Jollois (B)
CRIP5, Université Paris Descartes, 45 rue des Saint-Pères, 75270 Paris Cedex 06, France
e-mail: jollois@univ-paris5.fr

M. Nadif
LITA – UFR MIM, Université Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz Cedex 1, France
e-mail: mohamed.nadif@univ-metz.fr

514 J Glob Optim (2007) 37:513–525

by Cheeseman and Stutz (1996). Note that, in this case the latent class model is in
common use for its simplicity and its performance.

In a mixture component analysis context, classical optimization techniques such
as Newton–Raphson or gradient methods can be used but the EM algorithm is com-
monly employed. Unfortunately, the most documented problem occuring with EM is
its possible poor rate of convergence in some situations. Different alternatives have
recently been considered that guarantee a monotonic increase in the objective func-
tion. These methods can usually be cast as variants of the generalized EM (GEM)
algorithm (Demspter et al. 1977), in which the M-step improves rather than maxi-
mizes the expected complete data log-likelihood. Such work includes the Expectation
Conditional Maximization (ECM) algorithms and generalizations (Meng and van
Dyk 1997). Other variants replace the M-step with a faster (conjugate) gradient step
(Jamshidian and Jennrich 1993) or (quasi) Newton type step (Meilijson 1989).

These kinds of techniques are unsuited for large quantities of data. The time spent
in the E-step is linearly dependent of the number of objects. Consequently, some vari-
ants seek to reduce the cost of EM by reducing the time spent in the E-step (Moore
1999; McCallum et al. 2000). These methods do not maintain the convergence guar-
antees of EM. In this paper, we consider only the algorithms that are guaranteed to
converge to a local maximum. We focus here on the variants known as Sparse EM
(SpEM) and Lazy EM (LEM). These versions, which are based on a partial E-step,
provide encouraging results for Gaussian mixtures (Neal and Hinton 1998; Thiesson
et al. 2001). The main objectives of this article are to extend these works to the case
of categorical data by using the latent class model and to propose an interesting vari-
ant, called eLEM, which gives much better performance than these methods. But the
major disadvantage of these kinds of methods is that they depend on the number of
iterations of the partial E-step and a threshold used to select the objects for this step.
Then, we propose an efficient strategy, eLEM (*), that permits us to avoid this crucial
choice of these parameters, and which yields very good results to speeding-up the EM
algorithm.

The outline of the remaining sections is as follows. In Sect. 2, we first introduce
the mixture model and cluster analysis concepts. Then, we describe both approaches
based on the EM and the Classification EM algorithms. In Sect. 3, which is devoted
to the speed-up of EM, we review the SpEM and LEM variants and propose a new
version called eLEM. To study the behavior of these methods, we present detailed
experimental results on synthetic and real data in Sect. 4. Finally, some concluding
remarks are made in the last section.

2 Model-based cluster analysis

2.1 Finite mixture model

In the mixture approach, it is assumed that the objects x1, . . . , xn to be clustered are
from a mixture of s component densities in some unknown proportions p1, . . . , ps.
That is, each object xi is taken to be a realization of the mixture probability density
function (pdf.)

f (xi; θ) =
s∑

k=1

pkϕk(xi; αk),

J Glob Optim (2007) 37:513–525 515

where ϕk(xi; αk) denotes the density of xi from the kth component and αk is the corre-
sponding mixture component parametric description. Here, the vector θ of unknown
parameters consists of the mixing proportions (p1, . . . , ps−1) = p (with the constraint∑s

k=1 pk = 1) and the parameters of each component (α1, . . . , αs) = α. From the
observed data x = (x1, . . . , xn), the log-likelihood is given by

L(x, θ) = log f (x; θ) =
n∑

i=1

log

(
s∑

k=1

pkϕk(xi; αk)

)

assuming that the observations x1, . . . , xn are independent. In the clustering context,
each xi is conceptualized as being generated by one of the components of the mixture
model being fitted. Thus, let zi be a s-dimensional vector with zik = 1 or 0, accord-
ing to if xi was or was not produced by the kth component. The complete data is
therefore declared to be (x1, z1), . . . , (xn, zn). From this formulation the complete data
log-likelihood is given by

L(x, z; θ) = log f (x, z; θ) =
n∑

i=1

s∑

k=1

zik log (pkϕk(xi; αk)) . (1)

2.2 Cluster analysis

In order to find an optimal partition in s clusters ẑ = (ẑ1, . . . , ẑs), we generally use
two approaches: the maximum likelihood (ML) approach (Day 1969) and the clas-
sification maximum likelihood (CML) approach (Symons 1981). The ML approach
includes estimating the parameters of the mixture and the partition is derived from
these parameters using the MAP principle. An iterative solution is provided by the
EM algorithm of Demspter et al (1977). The EM algorithm maximizes L(θ ; x) itera-
tively maximizing the conditional expectation of the complete log-likelihood given a
previous current estimate θ(q) and x:

Q(θ |θ (q)) =
n∑

i=1

s∑

k=1

t(q)

ik {log(pk) + log ϕk(xi; αk)}, (2)

where

t(q)

ik = p(q)

k ϕk(xi; α
(q)

k)
∑s

�=1 p(q)

� ϕ�(xi; α
(q)

�)

denotes the conditional probability, given x and θ (q), that xi arises from the mixture
component with density ϕk(xi; αk). Each iteration of EM uses the following steps.

• E-step: compute the conditional expectation of the complete log-likelihood. Note
that in the mixture case this step reduces to the computation of the conditional
density of the t(q)

ik .

• M-step: compute θ (q+1) maximizing Q(θ |θ (q)). This leads to p(q+1)

k = 1
n

∑n
i=1 t(q)

ik and

the exact formulae for the α
(q+1)

k will depend on the involved parametric family of
distribution probabilities.

The second approach, sometimes called the classification approach, is based on
the complete data. With this approach, θ and the unknown component-indicator vec-
tors z1, . . . , zn of the observed data x1, . . . , xn are chosen to maximize the complete

516 J Glob Optim (2007) 37:513–525

data log-likelihood L(x, z; θ). This optimization can be done by the Classification EM
(CEM) algorithm (Celeux and Govaert 1992), a variant of EM, which converts the
probabilities tik to a discrete classification in a Classification step before performing
the Maximization step.

• C-step: Each cluster z(q+1)

k is defined with z(q+1)

ik = argmaxk t(q)

ik .

Note that when the data are continuous, using the Gaussian mixture model, the stan-
dard k-means can be shown to be a simple version of the CEM algorithm. Simplicity,
fast convergence and the possibility to process large data sets are the major advanta-
ges of the CEM algorithm. These virtues suggest to combine CEM and EM in order
to obtain a solution quickly. Instead of running EM r times from random centers, it
suffices to run CEM r times from random centers, and when it provides no empty
cluster partition (the number of obtained clusters is equal to the number of required
clusters), the EM algorithm is initialized with the parameter values derived from the
best partition. Unfortunately, from an estimation point of view, CEM is not expected
to converge to the ML estimate of the parameters and yields inconsistent estimates
especially when the mixture components are overlapping or are in disparate propor-
tions (see McLachlan and Peel 2000, Sect. 2.21 and Govaert and Nadif (1996)). Then,
in these situations, as it will be observed in Sect. 4, the strategy of applying CEM
followed by EM (CEM-EM) can give disappointing results in term of quality of the
partition.

2.3 Latent class model

This section provides a focus on categorical data. The model commonly used is the
latent class model, which was proposed by Lazarfeld and Henry (1968). With this
model, the association between any pair of attributes should disappear once the
latent attribute is held constant. This is the basic model of latent class analysis with its
fundamental assumption of local independence. This hypothesis is commonly chosen
when the data are categorical or binary (Celeux and Govaert 1992; Cheeseman and
Stutz 1996). In the following, each variable j has cj categories, and xj

i ∈ {1, . . . , cj}.
Then one has ϕk(xi, αk) = ∏d

j=1 ϕk(xj
i, α

j
k) where α

j
k = (α

j1
k , . . . , α

jcj
k). The category e

can be associated with a binary variable noted je and defined by xje
i = 1 if xj

i = e and
0 otherwise. Assuming the multinomial distribution for xj

i, it follows that

ϕk(xi, αk) =
d∏

j=1

cj∏

e=1

(α
je
k)xje

i , with
cj∑

e=1

α
je
k = 1, (3)

where α
je
k = Pr(xj

i = e|zi = k) is the probability that object xi belonging to component
k has category e in categorical variable j.

The assumption of local independence, sometimes called the naive Bayes, allows
one to estimate the parameters separately; this hypothesis greatly simplifies the com-
puting, especially when the number of attributes is large. Although this assumption is
clearly false in most real data, naive Bayes often performs clustering very well. This
paradox is explained by Domingos and Pazzani (1997).

J Glob Optim (2007) 37:513–525 517

3 Acceleration

In this section, we are interested in speeding-up the convergence of EM. For that,
many variants were proposed and some reduce the computational cost of the M-step.
Here, with the latent class models, the M-step is easy to compute, and do not need
to be accelerated. Then, we chose to study large database adapted versions of EM,
which use a partial E-step instead of a complete one. As pointed by Neal and Hinton
(1998), the kind of these methods is justified theoretically by noticing that the for-
mulation of EM by the authors is applicable for an arbitrary and not necessarily an
exhaustive set of data blocks, as long as the data are visited regularly. Two versions
of this formulation, known as SpEM (Neal and Hinton 1998) and LEM (Thiesson et
al. 2001), described hereafter, are very efficient for Gaussian models. We propose to
apply them on categorical data and discuss their behavior.

3.1 Sparse and Lazy expectation-maximization

The SpEM algorithm minimizes the computational cost of the E-step by choosing
which computations to perform, with a given threshold (th). The SpEM searches very
small conditional probabilities (less than th), and does not recompute them until a
given number of iteration it. The main idea is that an object, which has a small prob-
ability to be in a cluster, has a small chance of growing quickly in only one iteration.
Then, these probabilities can be fixed during a certain period, and recomputed during
a complete (standard) E-step. Therefore the update concerns only the set of objects
and the components with t(q)

ik > th, noted ysparse. More precisely, for the ith object,
if yi

sparse (the complement of yi
sparse) is not the null set, then update the conditional

probabilities is given by

∑

�∈yi
sparse

t(q−1)

i�

 t(q)

ik∑

�∈yi
sparse

t(q)

i�

for the components belonging to yi
sparse; otherwise do not update the conditional

t(q−1)

ik .
With the same purpose as SpEM, the LEM algorithm reduces the time spent in the

E-step. For that, it attempts to periodically identify significant (important) objects,
and focuses attention on them for a given number of iterations. The significance crite-
rion is defined as follows: each object will be said significant if it has all its conditional
probabilities tik less than a given threshold th. Then, if an object has a high conditional
probability to be in a cluster, it is not appropriated to assess it in another cluster.

3.2 eLazy expectation-maximization: a new variant of expectation-maximization

In LEM, the significance criterion of an object is reduced to a simple comparison
between a conditional probability and a specified threshold. But, this criterion can
be expressed from the change (or evolution) of its conditional probabilities. Then,
if an object has similar probabilities between two following steps, it indicates that
this object is not important, and we can fix its probabilities during a certain number
of iterations. Thus, instead of focusing only on significant probabilities associated to
the components, we consider here all these probabilities. For that, we compute the

518 J Glob Optim (2007) 37:513–525

differences between the conditional probabilities of iterations before and after the
standard E-step and suggest the following criterion

1/s
s∑

k=1

∣∣∣t(q)

ik − t(q−1)

ik

∣∣∣ < th, (4)

where th is a threshold to be defined. Thus an object is significant if the change in the
average deviation is large. As the threshold must be necessarily small, in our experi-
ments, the tests were performed with different values, and the choice of th less than
0.025 was empirically selected. Our new variant of EM is called eLEM.

Let ylazy be the set of significant objects, and ylazy the set of other objects. Each
iteration uses a standard (complete) E-step or a lazy (partial) E-step, with a standard
M-step. The complete E-step computes conditional probabilities for all objects, and
sets the list of significant objects. A partial E-step updates only conditional probabil-
ities for objects in ylazy. The steps become

• Standard E-step: Compute conditional probabilities t(q)

ik and identify ylazy as the set
of non-significant objects to ignore in lazy E-step. The formulae is

t(q)

ik =
p(q−1)

k ϕk

(
xi; α

(q−1)

k

)

∑s
�=1 p(q−1)

� ϕ�

(
xi; α

(q−1)

�

) .

• lazy E-step: In this step, compute conditional probabilities t(q)

ik for all objects in the

block ylazy. For all other objects in ylazy, we have then t(q)

ik = t(q−1)

ik , for k = 1, . . . , s.
Only the conditional expectation associated to block ylazy noted as Qlazy is updated.
Then, the global quantity that we search to maximize in the M-step will be

Q(θ |θ (q)) = Q(θ |θ (q−1)) − Qlazy(θ |θ (q−1)) + Qlazy(θ |θ (q)). (5)

• M-step: Compute θ (q+1), which maximizes Q(θ |θ (q)). This leads to

p(q+1)

k =
∑n

i=1 t(q)

ik

n

concerning the updating of αk, it can be seen from (2) that α
(q+1)

k is obtained as an
appropriate root of

n∑

i=1

s∑

k=1

t(q)

ik
∂ log ϕk(xi, αk)

∂αk
= 0. (6)

One nice feature of the EM algorithm is that the solution of (6) exists in closed
form and each component of αk is given by

(α
je
k)(q+1) =

∑n
i=1 t(q)

ik × xje
i

∑n
i=1 t(q)

ik

.

This algorithm starts with a standard iteration of EM (with a standard E-step), and
computes it iterations with a lazy E-step before performing the M-step. This process is
repeated until convergence. Note that, eLEM does not tend to sacrifice the simplicity
EM usually enjoys.

J Glob Optim (2007) 37:513–525 519

4 Numerical experiments

4.1 Synthetic data

In order to efficiently compare the three different methods of speeding-up EM, we
study their performances on simulated data sets. Using the latent class model with
three components, n = 5000, d = 10, p = (0.5, 0.2, 0.3), cj = 3, ∀j = 1, . . . , 10, we
generated data sets with different degrees of overlap. We have randomly generated
a finite set of values for α1 and obtained α2 and α3 by adding two constant values to
have different level of separation of components. We varied the constant values and
by using Monte Carlo simulations, we estimated the degree of overlap by the mean of
percentages of misclassified objects computed by comparing the partitions simulated
with those obtained by applying a C-step of the CEM algorithm starting from true
parameters. Three situations of overlap were considered: well separated clusters (+),
moderately separated clusters (++), and ill-separated clusters (+++), corresponding,
respectively, to around 5%, 12%, and 20% of misclassified objects. For each situation
with α1, α2, and α3 fixed, we generated 30 data sets.

For each algorithm, we selected the most relevant parameter settings after sev-
eral tests. For SpEM: it = 1, 2, 3, 4 and th = 0.001, 0.005, 0.010, 0.050, for LEM: it =
1, 2, 3, 4, and th = 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99, and for eLEM: it = 1, 2, 3, 4, and
th = 0.001, 0.005, 0.010, 0.015, 0.020. Starting with the same random parameters (20
times), we have run each method and selected the best solution. We report in Table 1
the means recorded by EM, SpEM, LEM and eLEM in total running time (on the 20
runs), speed-up = timeEM

timemethod
and percentage of misclassified objects obtained over the

30 simulated data sets. Then, we observe that

• The eLEM is always the fastest method with a speed-up coefficient of three for
situation (+), 4.12 for (++) and 4.76 for (+++). To confirm this performance, in
Tables 2 and 3. are displayed the best and worst results obtained by SpEM, LEM
and eLEM by varying it and th. It appears clearly that eLEM remains the best in
all situations.

Table 1 Total running times (on the 20 runs), speed-up and percentage of misclassified objects: means
and standard deviations (in parentheses) over the 30 simulated data sets (All the experiments are run
on a Pentium 933 MHz computer)

Degree of Type Time Speed-up Percentage of
mixture misclassified

objects

+ EM 275.62 (±7.62) 1.00 (−) 4.54 (± 0.24)
SpEM 212.31 (±23.66) 1.31 (±0.13) 4.54 (±0.24)
LEM 241.13 (±49.49) 1.19 (±0.23) 4.54 (±0.24)
eLEM 91.00 (±6.47) 3.04 (±0.21) 4.66 (±0.23)

++ EM 476.15 (±62.07) 1.00 (−) 13.21 (± 0.67)
SpEM 403.82 (±46.48) 1.19 (±0.18) 13.21 (±0.67)
LEM 467.89 (±109.99) 1.07 (±0.27) 13.21 (±0.67)
eLEM 116.19 (±9.17) 4.12 (±0.62) 14.12 (±0.75)

+++ EM 612.97 (±43.37) 1.00 (−) 19.17 (± 0.19)
SpEM 534.78 (±51.66) 1.16 (±0.13) 22.19 (±8.03)
LEM 609.76 (±145.48) 1.06 (±0.23) 21.04 (±6.78)
eLEM 129.39 (±9.74) 4.76 (±0.39) 20.69 (±3.53)

520 J Glob Optim (2007) 37:513–525

Table 2 Total running times (on the 20 runs), speed-up and percentage of misclassified objects : best
run among the 30 simulated data sets

Degree of Type (th,it) Time Speed-up Percentage of
mixture - best run - misclassified

objects

+ EM 262.95 – 4.38
SpEM (0.001,2) 179.81 1.53 4.46
LEM (0.990,2) 154.63 1.78 4.46
eLEM (0.010,2) 74.77 3.69 4.46

++ EM 417.13 – 12.66
SpEM (0.005,1) 333.96 1.43 12.66
LEM (0.990,1) 303.62 1.57 12.66
eLEM (0.001,3) 97.52 4.88 13.16

+++ EM 573.79 – 19.34
SpEM (0.005,1) 460.28 1.33 18.84
LEM (0.990,2) 419.07 1.46 18.84
eLEM (0.005,2) 109.35 5.61 20.32

Table 3 Total running times (on the 20 runs), speed-up and percentage of misclassified objects: worst
run among the 30 simulated data sets

Degree of Type (th,it) Time Speed-up Percentage of
mixture - worst run - misclassified

objects

+ EM 287.51 – 4.32
SpEM (0.050,4) 304.00 0.91 4.32
LEM (0.600,4) 406.58 0.68 4.86
eLEM (0.015,4) 118.99 2.32 4.64

++ EM 648.55 – 13.54
SpEM (0.001,2) 564.66 0.84 12.70
LEM (0.600,4) 788.41 0.60 12.32
eLEM (0.010,4) 142.70 3.34 14.90

+++ EM 779.56 – 34.06
SpEM (0.001,1) 823.42 0.74 35.28
LEM (0.600,4) 1275.25 0.48 50.62
eLEM (0.020,2) 170.30 3.60 34.58

• In terms of object classification, for (+) and (++), eLEM is less effective than EM
and the other variants but the loss is marginal (0.12% for (+) and 0.91% for (++)).
In the third situation (+++), even if eLEM is slightly less effective than EM (20.69%
vs 19.17%), it is better than LEM and SpEM.

These results show clearly that eLEM outperforms the other variants but the cru-
cial problem of the choice of parameters (number of iterations and threshold for all
methods) seems open to debate. Nevertheless, as our main objective is the clustering,
our intensive experiments allow us to propose some answers. Then we report in Figs.
1 and 2 the evolution of speed-up and of the percentage of misclassified objects, for
each parametrization (th, it), for each situation (+, ++ and +++). From these numerical
experiments, the main points arising are the following:

• The number of iterations it equal to 1 provides a low percentage of misclassified
and an interesting speed-up.

J Glob Optim (2007) 37:513–525 521

0

0.01

0.02

1

2

3

4
4.6

4.65

4.7

4.75

4.8

4.85

th

+

it

%
 m

is
cl

as
si

fie
d

0

0.01

0.02

1

2

3

4
13.9

14

14.1

14.2

14.3

14.4

14.5

14.6

th

++

it

%
 m

is
cl

as
si

fie
d

0

0.01

0.02

1

2

3

4
19
20
21
22
23
24
25
26
27
28

th

+++

it

%
 m

is
cl

as
si

fie
d

Fig. 1 Evolution of the percentage of misclassified objects for eLEM

0

0.01

0.02

1

2

3
4

2.95

3

3.05

3.1

3.15

3.2

th

+

it

S
pe

ed
-u

p

0

0.01

0.02

1

2

3
4

3.9

4

4.1

4.2

4.3

4.4

th

++

it

S
pe

ed
-u

p

0

0.01

0.02

1

2

3
4

4.5

4.6

4.7

4.8

4.9

5

5.1

th

+++

it

S
pe

ed
-u

p

Fig. 2 Evolution of the speed-up for eLEM

Table 4 Total running times (on the 20 runs), speed-up and percentage of misclassified objects: means
and standard deviations (in parentheses) over the 30 simulated data sets

Degree of Time Speed-up Percentage of
mixture misclassified

objects

+ 89.68 (± 6.46) 3.09 (± 0.22) 4.63 (± 0.21)
++ 115.18 (± 7.71) 4.15 (± 0.28) 14.04 (± 0.74)
+++ 132.78 (± 10.15) 4.64 (± 0.35) 21.10 (± 3.60)

• The threshold th in {0.001, 0.005, 0.010, 0.020} provides good results for each situa-
tion.

From that, we suggest then running eLEM 5 times for each threshold in order to have
the same global number of runs (equal to 20) than the standard EM, SpEM, LEM,
eLEM. We call this strategy eLEM(*) and the results on simulated data are reported
in Table 4. In comparing these results and those of Table 1, it appears clearly eLEM(*)
is a good way to avoid the problem of tuning parameters. Next, we evaluate all the
EM variants on real data.

4.2 Real data

In this section, to illustrate the behaviors of SpEM, LEM, eLEM and the strategy pre-
viously called as eLEM(*), we apply them on three real data sets whose the clusters

522 J Glob Optim (2007) 37:513–525

are known. These data which are commonly used in the machine learning community
are described hereafter. The algorithms SpEM, LEM and eLEM are run 20 times. The
strategy eLEM is the same than before.

The ADN data set1 consists of 3186 genes, described by 60 DNA sequence ele-
ments, called nucleotides or base pairs, with four possible modalities (A, C, G or T).
These genes are distributed into three different clusters: ‘intron → exon’ or ie (some-
times called donors, 767 objects), ‘exon → intron’ or ei (sometimes called acceptors,
765 objects), and neither, noted as n (1,654 objects). From this data set, and according
to the indications of the creators of the data, we choose to retain only the attributes
21–40, which represent nucleotides closest to the gene junction.

The Mushroom data set2 consists of the description of 8,124 mushrooms, by 22
nominal attributes (color, shape, population, habitat, …). There are two clusters of
mushrooms: edible (4,208) and poisonous (3,916).

The Congressional Votes data set consists of the votes for each of the U.S. House
of Representative Congressmen3, for 16 key votes, on different subjects (handicap,
religion, immigration, army, education, …). For each vote, three answers are possible:
yes, nay, and unknown. The individuals are separated into two clusters: democrats
(267) and republicans (168).

The Titanic data set4 gives the values of four categorical attributes for each of the
2,201 people on board the Titanic when it struck an iceberg and sank. The attributes
are social class (first class, second class, third class, or crewmember), age (adult or
child), sex, and whether or not the person survived.

In Table 5 we report the results of EM, CEM-EM (CEM followed by EM), and
from the best parametrization of SpEM, LEM, eLEM, and eLEM(*). As mentioned
before, the CEM-EM is an interesting methodology primarily but only when the clus-
ters are well separated ADN. This performance decreases when the degree of overlap
increases (Mushroom, Votes) and can be dramatically disappointing in term of quality
of the partition when the clusters are ill-separated (Titanic).

On the contrary, the eLEM remains clearly the most performant. We note that in
most situations the eLEM algorithm outperforms the EM, SpEM, and LEM algo-
rithms, and the results on real and simulated data are approximatively the same,
except for mushroom data for which the speed-up is very high. That is due to the
sequence of likelihood values which was trapped at some saddle point (Fig. 3). It is a
disadvantage of EM and therefore the obtained speed-up is more due to EM than to
eLEM.

Furthermore, even if eLEM seems to be concerned only with the cost per itera-
tion, the rate of convergence appears to be a consequence as, we illustrated in Fig. 3.
Hence, the number of iterations which depends on the degree of overlap seems to be
reduced with eLEM. It is possible that when, we focus only on the important objects,
we deal with better the overlapping of the classes and therefore the convergence is
accelerated. This remark is an empirical result whose internal mechanism deserves
further investigation.

1 ftp://genbank.bio.net
2 http://www.ics.uci.edu/~mlearn/MLRepository.html
3 Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL: Congressional
Quarterly Inc. Washington, D.C., 1985
4 http://www2.ncsu.edu/ncsu/pams/stat/info/jse/homepage.html

J Glob Optim (2007) 37:513–525 523

Table 5 Comparison between EM, CEM-EM, SpEM, eLEM, and eLEM(*) on real data sets: total
running times (on the 20 runs), speed-up and percentage of misclassified objects

Data Methods (th, it) Time Speed-up Percentage of
- best run - (sec) misclassified

objects

ADN EM 485.68 1.00 4.8
CEM-EM 89.50 5.43 4.8
SpEM (0.050,1) 292.20 1.66 4.8
LEM (0.99,1) 321.80 1.51 4.8
eLEM (0.005,1) 141.39 3.44 4.9
eLEM (*) 155.30 3.13 4.8

Mushroom EM 19028.05 1.00 10.0
CEM-EM 1080.89 17.60 12.6
SpEM (0.001,1) 475.65 40.00 10.6
LEM (0.99,3) 557.04 34.16 10.6
eLEM (0.005,1) 226.53 84.00 10.6
eLEM (*) 265.20 71.75 11.0

Votes EM 25.27 1.00 13.1
CEM-EM 9.79 2.58 13.1
SpEM (0.005,1) 16.28 1.55 13.1
LEM (0.60,1) 6.78 3.72 13.1
eLEM (0.001,3) 3.78 6.69 12.9
eLEM (*) 4.13 6.12 13.1

Titanic EM 21.27 1.00 22.4
CEM-EM 2.73 7.79 54.0
SpEM (0.050,3) 13.07 1.63 22.7
LEM (0.50,3) 1.65 12.89 22.7
eLEM (0.010,1) 9.65 2.20 22.7
eLEM (*) 10.55 2.02 22.7

Fig. 3 Evolution of likelihood for the best run of EM and eLEM on the four real data sets

524 J Glob Optim (2007) 37:513–525

Finally, note that from these experiments it is evident that the use of the eLEM(*)
strategy is beneficial to avoid the crucial choice of the parameters of the method.

5 Conclusion

The most documented problem occurring with EM is its possible low-speed in some
situations. In the mixture context, some variants are proposed to accelerate this algo-
rithm by reducing the time spent in the E-step. They consist of starting with a standard
iteration of EM (with a standard E-step), and computing it iterations with a partial
E-step before performing the standard M-step. This process is repeated until conver-
gence.

From Gaussian mixtures, the SpEM and LEM methods have been studied. In this
paper, we have extended these works to categorical data by using a latent class model,
and we have presented a new variant of EM, called eLEM which preserves the sim-
plicity of implementation of EM in its standard form. From several Monte–Carlo
simulations, we have compared these methods and it appears clearly that our method
eLEM outperforms the other ones. Unfortunately, as for SpEM and LEM, this perfor-
mance depends primarily on the parameters of the method. Then in order to avoid the
choice of these parameters, we have developed a simple and really efficient strategy,
eLEM (*). This one consists in fixing the number of iterations with partial E-step and
taking the threshold belonging to a set of known values.

Acknowledgements The authors would like to thank the anonymous referees for their useful com-
ments to this work.

References

Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions.
Comput. Stat. Data Anal. 14, 315–332 (1992)

Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): theory and results. In: Fayyad, U., Pit-
esky-Shapiro, G., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining.
pp. 61–83 AAAI Press, CA (1996)

Day, N.E.: Estimating the components of a mixture of normal distributions. Biometrika 56, 464–474
(1969)

Dempster, A., Laird, N., Rubin, D.: Maximum likelihood for incomplete data via the EM algorithm.
J. Roy. Stat. Soc. 39(B), 1–38 (1977)

Domingos, P., Pazzani, M.: Beyond independence: Conditions for the optimality of the simple bayesian
classifier. Mach. Learn. 29, 103–130 (1997)

Govaert, G., Nadif, M.: Comparison of the mixture and the classification maximum likelihood in
cluster analysis with binary data. Comput. Stat. Data Anal. 23, 65–81 (1996)

Jamshidian, M., Jennrich, R.: Conjugate gradient acceleration of the EM algorithm. J. Am. Stat. Associ
88(421), 221–228 (1993)

Lazarfeld, P., Henry, N.: Latent Structure Analysis. Houghton Mifflin, Boston (1968)
McCallum, A., Nigam, K., Ungar, L.: Efficient clustering of high-dimensional data sets with applica-

tion to reference matching. In: Ramakrishnan, R., Stolfo, S. (eds.) Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 169–178.
ACM, NewYork (2000)

McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New-York (2000)
Meilijson, I.: A fast improvement to the EM algorithm on its own terms. J. Roy. Stat. Soc. Ser B 51(1),

127–138 (1989)
Meng, X.-L., van Dyk, D.: The EM algorithm – an old folksong sung to a fast new tune (with discus-

sion). J. Royal Stat. Soc. Ser B 59, 511–567 (1997)

J Glob Optim (2007) 37:513–525 525

Moore, A.: Very fast EM-based mixture model clustering using multiresolution kd-trees. In: Kearns,
M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems 11:
Proceedings of the 1998 Conference, pp. 543–549. MIT Press, Cambridge, MA (1999)

Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other variants.
In: Jordan, M. (ed.) Learning in Graphical Models, pp. 355–371. Kluwer Academic Publishers,
Dordrecht (1998)

Symons, M.: Clustering criteria by multivariate normal mixtures. Biometrics 37, 35–43 (1981)
Thiesson, B., Meek, C., Heckerman, D.: Accelerating EM for large databases. Mach. Learn. 45, 279–

299 (2001)

