
Durable Graph Pattern Queries on Historical Graphs

Konstantinos Semertzidis
Computer Science and Engineering Department

University of Ioannina, Greece
Email: ksemer@cs.uoi.gr

Evaggelia Pitoura
Computer Science and Engineering Department

University of Ioannina, Greece
Email: pitoura@cs.uoi.gr

Abstract—In this paper, we focus on labeled graphs that evolve
over time. Given a sequence of graph snapshots representing the
state of the graph at different time instants, we seek to find
the most durable matches of an input graph pattern query,
that is, the matches that exist for the longest period of time.
The straightforward way to address this problem is by running
a state-of-the-art graph pattern algorithm at each snapshot
and aggregating the results. However, for large networks this
approach is computationally expensive, since all matches have
to be generated at each snapshot, including those appearing
only once. We propose a new approach that uses a compact
representation of the sequence of graph snapshots, appropriate
time indexes to prune the search space and a threshold on the
duration of the pattern to determine the search order. We also
present experimental results using real datasets that illustrate the
efficiency and effectiveness of our approach.

I. INTRODUCTION

Recently, increasing amounts of graph structured data are
getting available from a variety of sources, such as social,
citation, computer and biological networks. Almost all such
real-world networks evolve over time. Analysis of their evolu-
tion finds a wide spectrum of applications, ranging from social
network marketing to virus propagation and digital forensics.

In this paper, we assume that we are given the history
of a node-labeled graph in the form of graph snapshots
corresponding to the state of the graph at different time
instants. Given a user query pattern, we address the problem
of efficiently finding those patterns that persist over time,
that is, those patterns that exist for the largest time interval,
either continuously (i.e., in consecutive graph snapshots) or
collectively (i.e., in the largest number of graph snapshots).
We call such queries durable graph pattern queries. We also
report the time instants during which each durable pattern
(continuously of collectively) appeared.

Finding durable patterns in the evolution of large graphs
is important for our understanding of the network, and it may
be crucial for many applications. For example in collaborating
or social networking sites such as DBLP and Facebook, we
may seek for the most persistent research collaborations or
friendships. In a protein-protein network, we may ask for
the protein complex that is durable through the evolution of
species, where a protein complex is represented as a graph
with nodes labeled by Gene Ontology1 terms. In a large
biological network, scientists may be interested in predicting
viral evolution, for example, finding the durable chain of
nucleotides of virus RNA for predicting which genes are prone
to mutations. Furthermore, it is key to effective marketing, to

1http://www.geneontology.org

be able to identify for a product, an idea or a person, the
durable patterns of supporters among specific demographic
groups labeled by their age, location or other characteristics.

Although, there has been considerable interest in process-
ing graph pattern queries in static graphs (e.g., [1], [2], [3],
[4], [5], [6], [7], [8], [9]), we are not aware of any study on
searching for durable graph patterns in the history of a graph.
There has also been some recent work on historical graph
processing but the focus has been on how to efficiently store
and reconstruct the snapshots relevant to a query by exploiting
among others clustering, operational deltas, and efficient data
versioning [10], [11], [12], [13]. Finally, indexes have been
proposed for reachability [14] and shortest path [15] queries on
non-labeled graphs. Instead, in this paper, we propose efficient
algorithms and indexes targeting graph pattern queries.

For processing durable graph pattern queries, we start by
revisiting the baseline approach, where by using a state-of-
the-art graph pattern algorithm, we find the matches at each
snapshot and aggregate the results. However, even an efficient
implementation of this approach incurs large computational
costs, since all matching patterns in each snapshot must be
identified, even patterns that appear only once. To avoid the
computational cost of applying the algorithm per snapshot,
we propose a DurablePattern algorithm that identifies durable
patterns by traversing a compact representation of the graph
snapshots, termed labeled version graph.

In a labeled version graph (LVG), each node, edge and
label is annotated with the set of time intervals during which
the corresponding node, edge and label existed in the graph,
called its lifespan. An efficient in-memory layout of the LVG
allows fast retrieval of neighboring nodes at each snapshot. The
DurablePattern algorithm is driven by a ϑ-threshold, where ϑ
indicates the current (continuous or collective) duration of the
time intervals for the patterns to be matched. We exploit an
approach that uses the lifespans to efficiently set the maximum
value of ϑ at each iteration of the algorithm. Furthermore, to
further prune the space of candidate patterns, we introduce
time and neighborhood indexes on labels and nodes.

We have experimentally evaluated our approach on dif-
ferent datasets and graph pattern queries. Our results show
the effectiveness of the various aspects of the DurablePattern
algorithm and indicate that it can efficiently process durable
queries. We also present example results of pattern queries
representing durable co-authorships in the DBLP graph.

In summary, in this paper, we make the following contri-
butions:

• We formulate the problem of durable graph pattern

queries.

• We propose a new DurablePattern algorithm that ex-
ploits an LVG-based representation, ϑ-threshold graph
exploration search and appropriate time indexes to
process durable graph pattern queries efficiently.

• We perform extensive experiments on various datasets
that show that DurablePattern algorithm is able to
efficiently answer durable pattern queries.

The rest of this paper is structured as follows. In Section II,
we formally define the durable graph pattern matching problem
and the labeled version graph. In Section III, we present the
DurablePattern algorithm and in Section IV the results of our
experiments. Section V provides a comparison with related
work, while Section VI offers conclusions.

II. PROBLEM DEFINITION

In this section, we first present some preliminary definitions
and then introduce the durable graph pattern queries and the
labeled version graph.

A. Preliminaries

Let Σ be a set of labels. We consider directed (node)
labeled graphs G = (V,E, L) where V is the set of nodes,
E the set of edges and L : V → Σ∗ is a labeling function
that maps a node to a set of labels. Our algorithms are also
applicable to undirected and single labeled graphs.

Most real world graphs evolve over time. New nodes or
edges are added, and existing nodes or edges are deleted. In
addition, new labels may be associated with nodes, or existing
labels may be deleted. We assume that time is discrete and
use successive integers to denote successive time instants. Let
Gt = (Vt, Et, Lt) denote the graph snapshot at time instant t,
that is, the sets of nodes, edges and the labeling function that
exist at time instant t.

Definition 1 (Evolving Graph): An evolving graph G[ti,tj]
in time interval [ti, tj] is a sequence {Gti , Gti+1, . . . , Gtj}
of graph snapshots.

An example is shown in Fig. 1 which depicts an evolving
graph G[0,3] consisting of four graph snapshots {G0, G1, G2,
G3}, where in each snapshot, each node has a label that may
change during the evolution of the graph.

Note that there are various possible interpretations of time.
One interpretation is that of physical time, for example, time
instant t may correspond to say October 19, 2015, 11:59pm
PST. Another view is operational, where time is related to
graph operations, for example, a new time instant is created
when a graph operation, i.e., an insert or delete of a node,
edge, or label, occurs. In all interpretations, there is also a
notion of granularity. For instance, in the case of physical
time, successive time instants may correspond for example,
to successive minutes, days, or months, whereas in the case of
operational time, a new time instant may be created after m
graph operations for different values of m.

Let us now define the notion of lifespan [14]. The lifespan
of a node u, edge e and label l of some node v in an evolving
graph is the set of time intervals during which u, e, and

u1

u4u3u2

u6u5 u7

G0

u6

u1

u4u3u2

u5 u7

l1G1

u6

u1

u4u3u2

u5 u7

G3

u6

u1

u4u3u2

u5 u7

G2
l1

l1

l1

l1 l1

l1 l1

l2 l2

l2 l2

l2 l2

l2l2

l1 l3

l3 l1

l3

l1l1

l1

l2 l2

l1l1

Fig. 1: Example of an evolving labeled graph

l existed in the graph. We model lifespans as sets of time
intervals to capture the general case of graph evolution, where
nodes, edges and labels may be deleted and then re-inserted
at subsequent snapshots. For example, the lifespan of edge
(u7, u4) in the evolving graph depicted in Fig. 1 is the set
{[0, 0], [2, 3]} Set of time intervals are also known as temporal
elements [16]. In the following, we use I to denote a time
interval and I to denote a set of time intervals.

To achieve efficient representations of a set of time intervals
I, we ask that I is minimum, that is, the sets of time intervals
in I are disjoint and non-continuous. Two time intervals I =
[ti, tj] and I ′ = [t′i, t

′
j] are called (a) disjoint, when I ∩ I ′ =

∅ and overlapping otherwise and (b) continuous if t′i = tj+1

and non-continuous otherwise.

We also define a useful operation on sets of time intervals
termed join [14]. Given two sets I and I ′ of time intervals,
their join I ⊗ I ′ is the set of time intervals that include the
time instants that belong to both I and I ′.

B. Durable Graph Pattern Query

Given a static directed labeled graph G = (V,E, L) and
a user-specified graph pattern P = (VP , EP , LP), a graph
pattern query asks for all occurrences, or matches, of the graph
pattern P in G.

Definition 2 (Graph Pattern Matching): Given a graph G
and a graph pattern P = (VP , EP , LP), a graph pattern query
finds all subgraphs m = (Vm, Em, Lm) of G such that there
exists a bijective function f : Vp → Vm such that ∀v
∈ VP , LP(v) ⊆ Lm(f(v)) and for each edge (u, v) ∈ Ep,
(f(u), f(v)) ∈ Em. Graph m is called a match of P in G.

In the case of an evolving graph, we would like to find
those matches that live the longest, that is, those matches that
appear in the longest continuous time interval, or for the largest
number of time instants. Let us formalize these concepts.

Definition 3 (Pattern Match Lifespan): The lifespan,
lspan(m, P , G[ti,tj]) of a match m of a pattern query P in
an evolving graph G[ti,tj] is the set I of time intervals that
include all time instants, tk, ti ≤ tk ≤ tj , such that, m is a
match of P in graph snapshot Gtk .

Pattern Nodes Match 1 Match 2 Match 3

p1 u1 u1 u7

p2 u4 u3 u4

p3 u2 u2 u6

Duration [1,2] [0,1] {[0,0][3,3]}

l1

p1

p3p2

l1

l2

(a) (b)

Fig. 2: Example of (a) a graph pattern query, (b) the corresponding matches in the
evolving graph of Fig. 1.

We define the collective duration of a set of time intervals
I to be equal to the number of time instants in I and the
continuous duration of I to be equal to the duration of the
longest time interval in I. For example the collective duration
of I = {[1, 3], [5, 10], [12, 13]} is 11, while the continuous
duration is 6.

We ask for the matches whose lifespan has the longest
collective or continuous duration in a query set IP of time
intervals.

Definition 4 (Durable Graph Pattern Matching): Given
an evolving graph G[ti,tj], a graph pattern query P and a set
IP of time intervals:

(a) A collective-time durable graph pattern query finds
the matches m such that lspan(m, P , G[ti,tj]) ⊗ IP
has the largest collective duration.

(b) A continuous-time durable graph pattern query finds
the matches m such that lspan(m, P , G[ti,tj]) ⊗ IP
has the largest continuous duration.

An example of a graph pattern query is shown in Fig. 2(a)
which asks for matches that depict a connection between a
node with label l1 and two other nodes with labels l1 and l2.
The results of this query if it is interpreted as a collective-
time durable query with IP = {[0, 3]} in the evolving graph
of Fig. 1 are shown in Fig. 2(b). If this query is interpreted as
a continuous-time durable query, it would return only Matches
1 and 2.

Note that the definition of IP as a set of time intervals
allows us to look for durable patterns at specific periods of time
not necessarily continuous, for example, during weekends, or
specific seasons.

C. Labeled Version Graph

A labeled version graph is a directed graph that captures
the evolution of the graph in a concise manner.

Definition 5 (Labeled Version Graph): Given an evolving
graph GI = {Gti , Gti+1, . . . , Gtj}, its labeled version graph
(LVG) is a lifespan annotated directed graph V GI = (VI , EI ,
LI , Lu, Le, Ll)) where: VI =

⋃
tm ∈ I Vtm , EI =

⋃
tm ∈ I Etm ,

LI =
⋃
tm ∈ I Ltm , Lu : VI → I assigns to each node u in VI

its lifespan Lu(u), Le : EI → I assigns to each edge e in EI
its lifespan Le(e) and Ll : LI → I assigns to each node label
l ∈ LI(u) its lifespan Ll(l).

An example is shown in Fig. 3 which depicts the version
graph of the evolving graph in Fig. 1.

Storage. To represent lifespans, we use bit arrays. Assume
without loss of generality, that the maximum number of graph

u2[0,3]

u1

[0,3]

u4 [0,3]

u7

[0,3]

u6

[0,3]

u5

[0,3]

u3

[0,3]

[2,3][0,1]

[0,3]
[1,3][1,1]

{[0,1],[3,3]}

{[0,0],[2,3]}[3,3]

[0,1]

[3,3] [1,2]

[0,3]

[0,3]

[0,2] [0,2]

l1,[0,3]

l1,[0,3] l2,[0,3]

l1,[0,1], l2,[2,3] l1,{[0,0],[3,3]}, l3,[1,2] l1,{[0,0],[2,3]}, l3,[1,1]

l2,[0,3]

Fig. 3: Example of the LVG of the evolving graph of Fig. 1.

instants, i.e., graph snapshots, is T . Then, a lifespan, i.e., set
of intervals, I is represented by a bit array B of size T , such
that B[i] = 1 if time instant i belongs to I and 0, otherwise.
For example, take I = {[2, 4], [9, 10], [13, 15]} and T = 16.
The bit array representation of I is 0011100001100111. This
leads to an efficient implementation of join. In particular, let
I and I ′ be two set of intervals and B and B′ be their bit
arrays. Then, I ⊗ I ′ is computed as B logical-AND B′.

An alternative representation would be to use ordered lists
of intervals. Lifespan operations would then be performed
using variations of merge sort resulting in O(T) complexity.
We evaluate this alternative representation in our experiments.

For the in-memory storage of the labeled version graph, we
maintain an array of nodes, where each node is associated with
a key-value structure that maps each node u to its neighboring
nodes with a bit array of size T . The bit array keeps the
edge lifespan information during T . The storage complexity
for storing the adjacency structure is |EI |T , since we have to
store for all edges EI in V GI their lifespan of size T .

We also maintain for each node u its labels during T . A bit
array of size T is associated with each label l of u to represent
the lifespan of this label during T . Thus, for checking if a node
u contains a label l in a set I, we retrieve from u the lifespan
of that label (if it exists) requiring constant time O(1). Then
we perform a join of the lifespan of l with I. The storage
complexity, for storing the labels lifespan is |ΣI |T , where ΣI
is the set of all labels of VI in V GI .

Fig. 4(a) depicts the in-memory layout of the labeled
version graph.

III. DURABLE GRAPH PATTERN ALGORITHMS

In this section, we first describe a baseline approach to
processing a durable graph pattern query and then present the
various components of our DurablePattern algorithm. In the
following, when we make no distinction, by duration we mean
both the collective and the continuous duration.

A. Baseline Approach

A straightforward way to process a durable graph pattern
query is to first execute the graph pattern query P at each
graph snapshot Gtm , tm ∈ IP , of the evolving graph using

Algorithm 1 Baseline Algorithm(GI , P , IP)

Input: Evolving graph GI , pattern P , set of intervals IP
Output: The durable graph pattern matches of P in GI

1: Hash table H
2: for all t ∈ IP ⊗ {I} do
3: M ← get matches of P in Gt by matching algorithm
4: for each m ∈M do
5: if H[m].exists then
6: H[m]++
7: else
8: H[m]← 1
9: end if

10: end for
11: end for
12: return the matches m with the largest H[m]

a state-of-the-art graph pattern algorithm and then aggregate
the results by counting for each match the number of times it
appears in the result.

The steps of the baseline approach for collective-time
durable graph pattern queries are shown in Algorithm 1. The
subgraphs that match the graph pattern P are computed for
each graph snapshot Gt of the evolving graph, t ∈ IP (line 3).
To improve the performance of the aggregation step, we order
the set VP of nodes of the pattern P . Then, we represent each
match m as a string u1u2...u|VP |, where ui, 1 ≤ i ≤ |VP |, are
the nodes of the matched subgraph m ordered following the
order of the nodes in P that each one of them matches. Thus,
we reduce graph matching to string matching. Furthermore, to
match the resulting strings we use hashing. For each match
m, the algorithm checks whether it was found in a previous
time instant by looking into a hash table H (line 5). If m was
found, we increase the score of H[m] by one, otherwise we
initialize it to one. The algorithm returns all matches m with
the highest H[m] score. Let M be the number of matches at all
graph snapshots. The complexity of this algorithm is O(|M |),
linear on the total number of matches.

To process a continuous-time durable graph pattern query,
we must keep a second hash table H ′ which indicates for each
match m the score of the largest previous continuous interval
for which m was found to be a match. In particular, in the
loop (lines 4–10) and for each match m not found in some
time instant t, if H[m] > H ′[m], H ′[m] is set to H[m] and
H[m] is reset.

Even with these optimizations, the baseline approach is
expensive, since we have to retrieve all matches at each graph
snapshot, even those matches that appear only in this particular
snapshot. For frequent patterns and long intervals, the number
of retrieved matches grows very fast.

B. Durable Graph Pattern Matching

Since for large networks using the baseline approach is
computationally expensive, we consider a new approach driven
by a duration threshold ϑ. Our algorithm runs on the labeled
version graph and process durable graph pattern queries very
fast. The basic steps of the durable graph pattern matching
algorithm are outlined in Algorithm 2.

The algorithm starts by initializing a duration threshold ϑ
which represents the smallest duration of the seeking patterns.

Algorithm 2 DurablePattern Algorithm(V GI , P , IP)

Input: Version graph V GI , pattern P , set of intervals IP
Output: The durable graph pattern matches M of P

1: ϑ← 1; M ← ∅
2: for each p ∈ VP do
3: C(p)← FILTERCANDIDATES(V GI , P , p, IP)
4: if C(p) = ∅ then
5: return ∅
6: end if
7: end for
8: C ← REFINECANDIDATES(V GI , P , C, ϑ, IP)
9: DURABLEGRAPHSEARCH(V GI , P , C, 1, ϑ, IP , M)

10: return M

The next steps of the algorithm are separated into two phases.
The first phase (lines 2–7) computes the candidates nodes in VI
for each node p ∈ VP and stores them in a set C(p). We call
the procedure of generating the candidate nodes FILTERCAN-
DIDATES. The resulting candidate set C(p1) × ... × C(p|VP |)
determines the overall search space of the algorithm.

Our algorithm exploits the fact that a feasible match of
a pattern node must have the appropriate descendants and
ascendants nodes. Candidates nodes that do not meet these
criteria should be pruned and not examined by the algorithm.
The check of the appropriate descendants and ascendants
is conducted by the REFINECANDIDATES procedure. Then
Algorithm 2 traverses the remaining candidate nodes by calling
the recursive DURABLEGRAPHSEARCH procedure. The search
procedure uses the candidate sets and searches in a depth-first
manner for the most durable matches with duration at least ϑ.

In the rest of this section, we refine the basic steps of
Algorithm 2 to address the following issues:

1) How to reduce the size of the candidate set C(p) for
each node p and efficiently retrieve this set,

2) How to reduce the overall search space C(p1)× . . .×
C(p|VP |),

3) How to optimize the search order by determining
appropriate values for the ϑ threshold.

We first present appropriate time indexes.

C. Time Indexes

We consider three different types of time indexes, namely
TILA, TINLA, and TIPLA. In the following T is the number
of graph snapshots.

The time-label or TILA index allows constant time retrieval
of all nodes having a specific label at a given time instant. The
first level of TILA is an array of size T where each position i
refers to a time instant ti and links to a set of labels L. Each
label l in this set links to the set of nodes that are labeled
with l at ti. Thus, TILA stores at most |VI ||ΣI |T nodes, and
is shown in Fig. 4(a).

The time-neighborhood-label or TINLA(r) index maintains
for each node u in VI information about the labels of its
neighbors at distance r, that is, the neighbors that are r hops
away from u. For instance, TINLA(1) maintains information
for neighbors at distance 1, that is, for the immediate neighbors
of each node. TINLA(r) maintains for each u in VI a list of

ui

uj

List of nodes

.

.

.

uj 01001

Edge map entry

Edge lifespan

……………

eij

Target node

li

lj

.

.

.

0 1 1 0 1

0 1 1 0 1

Label array

Label lifespan

………

………

Label lifespan
TILA

li

lj

Label setti

tj

.

.

.

.

.

.

.

.

.

Interval array

li

lj

Label set
ui

uj

List of nodes

TINLA(r)

1 0 1 0 1

lifespan

………

1 0 1 0 1

lifespan

………

.

.

.

.

.

.

.

.

ri

rj

.

.

Radius

LVG

(a) LVG, time-label and time-neighborhood-label index

li

lj

Label set
ui

uj

List of nodes

CTINLA(r)

1 0 1 0 1 ………

1 0 1 0 1

lifespans

………

.

.

.

.

.

.

.

.

.

ri

rj

.

.

Radius

Counters

Counters

(b) counter-time-neighborhood-label index

ti tj

Interval array

.

li

li+1

lj

li,li+1

li,....,lj

.

.

.

.

.

.

li

li+1

lj

li,li+1

li,....,lj

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Label Path map Label Path map

List of nodes

List of nodes

.

.

.

.

.

.

.

.

.

.

List of nodes

List of nodes

Each time instant of interval array is associate with a Label Path map

(c) time-path-label index

Fig. 4: In-memory layouts for nodes, edges and labels

labels. Each label l is associated with a bit array of size T . The
i-th position of this array is set to one, if at least one neighbor
of u at distance r has label l at the corresponding time instant
ti. An example of a TINLA(r) is depicted in Fig. 4(a). We
also consider replacing the bit array associated with each label
l with an array of counters where the i-th position of the array
is equal to the number of neighbors of u at distance r that
have label l at time instant ti. We call this variation, counter-
time-neighborhood-label or CTINLA(r) index. CTINLA(r)
is shown in Fig. 4(b). TINLA index requires a storage of
|VI | |ΣI |T bits, since for all nodes in the worst case we have
to store for each label a bit array of size T .

Finally, in the time-path-label or TIPLA index we maintain
for each time instant t in T and each node u ∈ VI , the label
paths starting from u at t. TIPLA enumerates all paths up
to a maximum length λ using BFS. The number of possible

label combinations is very large, (
|λ|∑
r=1

|L|!
(|L| − r)!

), however, λ

= 2 seems to work well for graphs with small label sets as
indicated in our experiments. Paths are stored as strings. For
example, label path l1 → l2 → l3 is stored as key [l1, l2, l3].
Each key is associated with the set of nodes that are the sources
of the corresponding path. For instance, key k = [l1, l2, l3] is
associated with the nodes that are labeled with l1, connected
to a node labeled with l2, that is in turn connected to a node
labeled with l3. TIPLA is shown in Fig. 4(c).

D. Computing Candidate Nodes

We now describe our approach to generating the candidate
nodes for each pattern node p ∈ VP in a given set I of time
intervals. To avoid a sequential scan of all nodes of a large
graph that would result in a total search space of

∏|VP |
n=1 |C()|,

we use TILA. TILA returns for each pattern node p all nodes
that have the same label as p in at least one time instant in I.

To further reduce the number of feasible matches, we use
TINLA to retain node u as a candidate match of p, only if the
neighborhood subgraph of u is sub-isomorphic to that of p in at
least one time instant in I. To enforce this, we use TINLA(r)
(or, CTINLA(r)) to remove a node u from the candidate set
C(p), if u does not have a matching distance r neighbor whose
label lifespan intersects at at least one time instant in I with
the label of a corresponding distance r neighbor of p.

If a TIPLA index is available, we use TIPLA instead of
TILA to generate the candidate sets for each pattern node.
Specifically, for each pattern node p we first compute all the
label paths starting from p up to length λ. Then, for all label
paths Lpath(p) of p and for each time instant of I, we retrieve
from TIPLA the set of nodes that are the source nodes of each
lpath ∈ Lpath(p). Since, a feasible match of p must be a node
that is the source node of all paths in Lpath(p), we intersect
the retrieved sets in each time instant.

Generally, for each candidate set C(p) of p ∈ VP , it holds:

|C(p)TIPLA| ≤ |C(p)TINLA(r)| ≤ |C(p)TILA|

Furthermore, the candidate sets produced by CTINLA(r)
are subsets of the corresponding candidate sets produced by
TINLA(r), since CTINLA(r) takes into account also the mul-
titude of the labeled nodes in the r-neighborhood. However,
there is no subset relationship between the candidate sets of
CTINLA(r) and TIPLA with λ = r. Instead, the sizes of the
corresponding candidate sets depend on the pattern query. For
example, for a pattern query that connects p to two other nodes
with the same label l, TIPLA will return as candidate nodes for
p all nodes that have at least one path lpath, whereas CTINLA
will return only the nodes that have at least two neighbors with
the specific label l. However, for a pattern query where p is
connected with a node with label l1 which in turn is connected
with a node with label l2, CTINLA(2) will return a node that
has a neighbor with label l1 at distance 1 and a neighbor with
label l2 at distance 2, even if these two nodes are not connected
with each other, while TIPLA will prune such nodes.

E. Search Space Reduction

Let us first present our DURABLEGRAPHSEARCH algo-
rithm shown in Algorithm 3. The DURABLEGRAPHSEARCH
algorithm searches in a depth-first manner for the most durable
matches with duration at least ϑ.

DURABLEGRAPHSEARCH creates a copy C ′ of C (line
14), isolates a node u in C(pi) and treats it as if it were
the only node to match pattern node pi (line 15). Then, a
refinement is performed on C ′, which removes all nodes in
C(p1), . . . , C(p|VP |) that are not contained in an isomorphic
match with u. If the pruning of candidates eliminates all nodes
in C ′ at this point, then no isomorphic match exists with the

current mapping, and the algorithm backtracks. Otherwise, the
search procedure is called recursively, passing the subsequent
pattern node pi+1 until all pattern nodes are examined or the
pruning algorithm eliminates all remaining possible matches.

The duration threshold ϑ is used to prune matches with
a smaller duration than ϑ. In our basic algorithm, Algorithm
2, we start with ϑ equal to 1. When a match is found and
the current value of ϑ is smaller than the duration of the new
match, we increase ϑ to the new duration. Since, our algorithm
is using recursion, all recursion calls must be notified for the
change of threshold so as to prune subgraphs with duration
less than the new value. In addition, we need to store the new
durable matches and delete the ones with duration less than
ϑ. UPDATESTATE keeps the current durable matches, while
RESTORESTATE removes all matches with duration less than
ϑ and keeps the new most durable match(es) (lines 6–11).

Let us now describe our refine procedure outlined in
Algorithm 4. Our refine procedure is based on the dual graph
simulation technique [17], [18] that was shown in [19] to
outperform the commonly used VF2 algorithm [3]. The refine
procedure in a static graph checks for each node p and its
candidate node u whether the neighborhood of p ∈ VP is sub-
isomorphic to that of u in the graph. Specifically, given a set
of candidates nodes C(p) of p ∈ VP , the refine procedure
retrieves all of its neighbors p′. Then, for each u ∈ C(p), it
examines if u has the appropriate neighborhood by checking if
there are ascendant nodes of u contained in C(p′) (lines 2–7).
If u does not have a neighbor that is contained in C(p′), then
it is removed from C(p), otherwise its neighbors in C(p′) are
stored in a temporary set C ′p′ . Let us note that every node in
C(p′) must contain a descendant node in C(p). Thus, any valid
node in C(p′) must be contained in such an intersection in the
course of the iterations (lines 4–12). To this end, the candidate
set of pattern node p′ is updated to contain only the nodes
with descendants in C(p) (line 15). By doing so, the pruning
on neighborhood conditions is performed simultaneously and
the search space is pruned rapidly.

Since we seek durable patterns, TIME JOIN that imple-
ments the refinement also checks if a candidate node has the
required neighbors during I. In particular, given a pattern node
p′ and a graph node u, TIME JOIN returns the intersection
between the adjacency of u with C(p′). It starts by joining the
label lifespan of u with I, since we seek to find the durable
match(es) that consist of edges that exist during the required
set of intervals I (lines 22–25). If the resulting duration is less
than ϑ, TIME JOIN returns an empty set indicating that u does
not have the required neighborhood and it can not be part of
a durable match.

Otherwise, the neighborhood of u is checked for nodes
contained in C(p′) (lines 26–27). We note that in our imple-
mentation, we compare the size of the neighborhood of u with
the size of C(p′). If the the former is smaller than the latter,
we check if the neighbors of u are contained in the C(p′),
otherwise the opposite operation is performed. If an edge (u, v)
exists and the produced interval set Le((u, v))⊗Lv.label(p′) has
duration larger or equal to ϑ, v is added to the set C ′ (lines
28–32). In the end of the procedure, the new C ′ is returned
with all nodes that are appropriate neighbors of u, otherwise
an empty set is returned and node u is removed (lines 6–7).

Algorithm 3 DURABLEGRAPHSEARCH(V GI , P , C , i, ϑ, IP , M)

Input: Version graph V GI , pattern P , candidates set C, pattern node
id i, duration threshold ϑ, set of intervals IP , matches set M

Output: The durable graph pattern matches M of P
1: if i = |VP | then
2: for each (pi, pj) ∈ EP do
3: I ← IP ⊗ Le((C(pi), C(pj))
4: I ← I ⊗ LC(pi).label(pi) ⊗ LC(pj).label(pj)

5: end for
6: if I.duration = ϑ then
7: UPDATESTATE(C,M)
8: else if I.duration > ϑ then
9: ϑ← I.duration

10: RESTORESTATE(C , M , ϑ)
11: end if
12: else
13: for each u ∈ C(pi) and u /∈ C(pj), j < i do
14: C′ ← copy of C
15: C′(pi)← {u}
16: C′ ← REFINECANDIDATES(V GI , P , C′, ϑ, IP)
17: if C′ 6= ∅ then
18: DURABLEGRAPHSEARCH(V GI , P , C′, i+1, ϑ, IP ,

M)
19: end if
20: end for
21: end if

Although, REFINECANDIDATES checks for the duration of
the lifespans of the labels and edges of the candidate nodes, in
addition we need to ensure that the neighbors are all active at
the same time instants. This is the reason why when a pattern
match is found, Algorithm 3 checks for its duration in I (lines
1–5).

F. Search Order Based on Candidate Duration Ranking

In this subsection, we revisit the search order of Algorithm
2. The algorithm is driven by a threshold ϑ, in the sense that
the algorithm searches for matches whose lifespan has duration
at least ϑ, thus ϑ determines the order of searching for possible
matches. The initial value of ϑ is one and at the course of the
search, ϑ is updated to the duration of the new most durable
match that has been found. We call this approach SIMPLE
duration ordering.

With SIMPLE duration ordering, in the first runs, the
algorithm considers edges that have a short duration compared
to the actual duration of a potential match. Thus, the algorithm
pays a cost for finding matches that are not among the most
durable ones. Our goal is to reduce this cost by determining
a good threshold that would lead to smaller candidate sets
and to the minimum possible number of recursive calls. If the
threshold we choose does not produce any durable matches, we
compute another smaller threshold. To this end, we introduce
the ranking structure Rank which maintains for each time
instant a ranking of candidates for each pattern node p based
on their duration. In particular, Rankθ(p) refers to a set of
nodes that are candidate matches of p with duration at least θ.

To construct the ranking structure, we use the time indexes
TILA, TINLA (CTINLA) and TIPLA during the FILTERCAN-
DIDATES procedure. Rankθ(p) using TILA refers to a set of
nodes that are feasible matches of p and have the same label
as p for a duration at least θ. Similarly, the Rankθ(p) using

Algorithm 4 REFINECANDIDATES(V GI , P , C, ϑ, I)

Input: Version graph V GI , pattern P , candidates set C, duration
threshold ϑ, set of intervals I

Output: candidates set C after reduction
1: for each p ∈ VP do
2: for each (p, p′) ∈ EP do
3: C′

p′ ← ∅
4: for each u ∈ C(p) do
5: Cu(p

′)← TIME JOIN(p, u, p′)
6: if Cu(p

′) = ∅ then
7: C(p).remove(u)
8: else
9: C′

p′ ← C′
p′ ∪ Cu(p

′)
10: end if
11: end for
12: if C′

p′ = ∅ then
13: return ∅
14: end if
15: C(p′)← C′

p′

16: end for
17: end for
18: return C
19:
20: procedure TIME JOIN(p, u, p′)
21: C′ ← ∅
22: I ← Lu.label(p) ⊗ I
23: if I.duration < ϑ then
24: return ∅
25: end if
26: for each (u, v) ∈ EI do
27: if v ∈ C(p′) then
28: I ← I ⊗ Lv.label(p′) ⊗ Le((u, v))
29: end if
30: if I′.duration ≥ ϑ then
31: C′.add(v)
32: end if
33: end for
34: return C′

35: end procedure

TINLA (CTINLA) refers to a set of nodes that have the correct
adjacency and label as p for a duration at least θ. Finally, the
Rankθ(p) using TIPLA refers to a set of nodes that have the
required paths as p for a duration at least θ.

Given the Rankθ(p) structures for nodes p ∈ P , we are
able to determine a good threshold that is close to the actual
duration of the seeking match(es). In particular, we select the
minimum value of all maximum candidate durations of each
Rankθ(p). More formally, for each node p, let ϑ(p) be the
maximum value of θ for which the Rankθ(p) structure of
node p is not empty. We define ϑ as

ϑ = min
p∈VP

ϑ(p) (1)

That is, instead of initializing search using ϑ equal to one, we
now start searching with ϑ equal to the maximum possible
value of the duration of any match. This value of ϑ is
used in the DURABLEGRAPHSEARCH procedure which along
with REFINECANDIDATES searches for subgraphs of VI with
lifespan duration at least ϑ. By doing so, the candidate sets
that have to be examined are smaller, since we use only nodes
that are contained in the ranking sets with duration greater or
equal to ϑ.

An important question is how to determine the next value
of the threshold when the current value of the threshold does
not produce any match. We consider two alternatives. In the
first alternative, we get for each node p the maximum θ smaller
than the current ϑ for which Rankθ(p) is not empty. Then,
again we select the minimum among these values. We continue
this procedure until a durable match is found. In terms of the
number of calls to DURABLEGRAPHSEARCH, the algorithm
will be called at most |Θ| times, where Θ is the set of distinct
values of ϑ that the algorithm uses to find all the durable
matches. We call this alternative MINMAX duration ordering.
The other alternative, termed BINARY duration ordering, uses
binary search for determining the next smaller ϑ value. In this
case, the number of calls is at most logarithmic to the initial
value of ϑ. Note that at each step we select larger candidate
sets including nodes that have candidate duration smaller than
the previous threshold. Thus, searches get more expensive as
ϑ decreases.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of durable
graph pattern matching for various time indexes and different
duration orderings. We also report results of micro-benchmarks
that test the performance of three different structures for repre-
senting lifespans and an example of actual results representing
durable co-authorships.

A. Datasets and Setting

To evaluate the performance of our algorithms, we use a
number of datasets. In particular, we use the DBLP2 evolving
graph in time interval [1959, 2014] where each graph snapshot
corresponds to one year. At each graph snapshot, a node
represents an author and an edge a co-authorship relation
between two authors at the corresponding year. We assign
a label to each author whose value at each graph snapshot
denotes the approximate number of publications of this author
in the corresponding year. The label set consists of four
different values: BEGINNER ≤ 2, JUNIOR ≤ 5, SENIOR
≤ 10, PROF ≥ 11 publications. Fig. 6 depicts the distribution
of these values during the evolution of the graph.

We also use a YouTube (YT) [20] dataset in time interval
[1, 37] where each snapshot corresponds to one day. Since,
this dataset does not contain any other information besides the
graph structure, we generate different label values and assign
them to nodes at each graph snapshot using a Zipf distribution.
We generate 6 datasets, denoted by Y Tk, with the same edges
and nodes but a different number k of labels, k = {10, 20, 40,
60, 80, 100}. We treat DBLP as an undirected graph and the
Y Tk datasets as directed ones. The dataset characteristics are
summarized in Table I. The number of nodes during the time
interval ranges from 70–1,026,946 and 1,004,777–1,138,499
for DBLP and YT respectively.

We ran our experiments on a system with a quad-core Intel
Core i7-3820 3.6 GHz processor, with 64 GB memory. We
only used one core in all experiments.

2http://dblp.uni-trier.de/

0

1000

2000

3000

4000

5000

6000

7000

TL BIT LI

Si
ze

 (
M

B
)

(a)

0

10

20

30

40

50

60

70

80

90

TL BIT LI

Ti
m

e
(s

ec
)

(b)

0

20

40

60

80

100

120

140

160

180

200

7 1 4 2 1 2 8 3 5

Ti
m

e
(s

ec
)

Query Interval

TL BIT LI

(c)

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7

Ti
m

e
(s

ec
)

Query Size

TL BIT LI

(d)

Fig. 5: Comparison of the TL, BIT and LI representations: (a) LVG size, (b) LVG construction time, (c) reachability queries, and (d) durable graph pattern queries

TABLE II: Size and construction time

Dataset Size in memory (MB) Construction time (sec)
LVG TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA LVG TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

DBLP 2,491 1,084 398 898 1,271 4,614 909 39 31 12 148 16 109 189
YT10 2,260 1,647 430 991 4,313 15,359 27,261 45 23 16 6,022 39 7,840 8,684

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 9 5 9 1 9 6 4 1 9 7 4 1 9 8 4 1 9 9 4 2 0 0 4 2 0 1 4

N

o
d

es

Years

BEGINNER JUNIOR SENIOR PROF

Fig. 6: Distribution of label values during graph evolution

TABLE I: Dataset characteristics

Dataset # Nodes # Edges # Label values
DBLP 1,026,946 4,122,070 4
YTk 1,138,499 4,452,646 k = {10, 20, 40, 60, 80, 100}

B. Lifespan Representation Benchmarking

In the first experiment, we perform a benchmark test to
evaluate three different representations of lifespans. The first
representation is the temporal log (TL) of ordered time instants
[21], where for a set I = {[1, 3], [5, 7]} we keep its time
instants as a sequence of integers [1, 2, 3, 5, 6, 7]. The second
structure is our bit representation (BIT) where I is represented
as 01110111, assuming T = 8. The third representation follows
the physical representation of an interval by storing an ordered
list of time objects (TL) where each time object represents an
interval by its tstart and tend points.

Size. Fig. 5(a) depicts the size of the labeled version graph
(LVG) for the DBLP dataset. When using the LI and TL
representations, LVG is three times larger than when using the
BIT representation, since the integer values of LI and the list
of objects of TL require more memory than bit vectors. The
LI representation of LVG is larger that the TL one, due to the
lack of many consecutive co-authorships in DBLP requiring
LI to create many time objects for distinct time instants.

Construction Time. Fig. 5(b) reports the time required to
construct LVG using the different representations. LI requires
the most time, since the creation of new time objects and the
processing of the existing objects is time consuming compared
to adding integers in TL. BIT requires the least time, since
it avoids expensive operations involving memory allocation.

Graph Query Processing. We now evaluate the three different
representations in terms of query processing time. To this end,
we use a generic graph query that asks whether two nodes

are reachable during a query time interval IQ. To test whether
node u is reachable from v, we perform BFS traversals from u
taking at each step the join of the lifespan of the path traversed
so far with the lifespan of the current edge. Such join traversals
are the building blocks of our matching algorithms and we
expect the relative performance of the three representations on
such queries to be indicative of their performance on durable
graph pattern queries. Fig. 5(c) reports the performance of
reachability queries for different IQ intervals in the DBLP
dataset. Results are averages over 1,000 queries with randomly
selected endpoints. BIT -based traversals are faster, followed
by the TL-based ones. To test our assumption, that the relative
performance of the three representations remains the same in
the case of durable graph pattern queries, we experimented
with such queries as well. Our experiments confirm this
assumption. As an example, we show the results for a graph
pattern query asking for the most durable cliques of authors
labeled as SENIOR for different clique sizes in Fig. 5(d).

In the following, we use the BIT representation.

C. Time Indexes Size and Construction Time

In this set of experiments, we evaluate the size and the
time needed to construct the various time indexes. We build
TINLA and CTINLA for r ≤ 2 and TIPLA for λ = 2.

Index Size. As shown in Table II, for the DBLP and Y10

datasets, TINLA(1) is the smallest of the time indexes, since
it just stores for each node lifespan arrays equal to the number
of labels. CTINLA(1) requires more memory than TINLA(1),
since it maintains counters instead of bits. As expected, indexes
for r = 2 are larger than those for r = 1, since the number
of labels for which we maintain lifespans increase. Note that
the TIPLA size for the YT dataset is 30 times larger than that
that for DBLP, since YT nodes and edges are active during
all instants, whereas DBLP is more active in the last 20 time
instants in the interval. Thus, for each time instant of YT all
nodes are assigned to label paths resulting in a larger structure.

In Fig. 7(a), we depict the sizes of TILA, TINLA(1) and
CTINLA(1) for the YTk, k = {20, 40, 60, 80, 100} datasets.
We do not depict TIPLA, because its memory requirement
surpassed our memory limits. For TINLA, CTINLA we show
results for r = 1, since the trends for r = 2 are the same. The
size of TILA is not affected by the number of label values,
since for each time instant, it stores the same number of nodes.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

YT20 YT40 YT60 YT80 YT100

Si
ze

 (
M

B
)

TILA TINLA(1) CTINLA(1)

(a) Size

0

20

40

60

80

100

120

YT20 YT40 YT60 YT80 YT100

Ti
m

e
(s

ec
)

TILA TINLA(1) CTINLA(1)

(b) Construction time

Fig. 7: Size and construction time for YTk , k = {20, 40, 60, 80, 100}

The increase of the size of TINLA(1) and CTINLA(1) is
relatively small, because most nodes have only a few neighbors
with different labels since label values are assigned based on
a Zipf distribution.

Construction Time. As shown in Table II, the construction
of TINLA(1) is the fastest one, because it checks only the
immediate neighbors of each node. TILA requires time for
linking each node with the corresponding label for each
time instant. TILA(2) and TINLA(2) require more time than
the corresponding indexes for r = 1, since the number of
neighbors at distance r = 2 is in general larger than for r =
1. Since YT contains edges that are active during the whole
interval, TINLA(2) and CTINLA(2) require almost 2 hours
to be created, since for each time instant we have to check a
very large number of neighbors. The TIPLA construction is the
slowest in both datasets, because it has to perform a traversal
from each node and compute label paths for each time instant.

The construction times for YTk are depicted in Fig. 7(b).
The construction time of TINLA(1) and CTINLA(1) increases
in datasets with more label values, since more tests are
performed. TILA is not affected, since in all cases, it stores
the same number of nodes per time instant.

D. Durable Graph Pattern Query Processing

Let as now focus on processing durable graph pattern
queries. As our default pattern queries, we use cliques where
all nodes have the same label. Thus, for the DBLP dataset,
we have BEGINNER, JUNIOR, SENIOR and PROF cliques.
This gives us pattern queries with varying selectivities with the
BEGINNER clique having the largest number of matches and
the PROF clique the smallest. Similarly, for the YT dataset,
we have a MOST and a LEAST clique with nodes having
the most and the least frequent label respectively. As query
interval, we use the whole duration of the evolving graph. We
use as default the MINMAX duration ordering. We limit our
algorithm to get the first 1,000 durable matchings for frequent
patterns.

Time Index Comparison. In this set of experiments, we
compare the performance of the different time indexes for
collective-time clique queries of different sizes in the DBLP
and YT10 datasets (Figs 8 and 12, respectively).

A general remark is that our algorithm is able to detect the
most durable matchings fast, often in less than one second. As
expected, processing time increases with both the size and the
frequency of the pattern.

Overall, the indexes that lead to smaller candidate sets and
achieve more effective refinement work better. However, in

some cases the achieved reduction in the search space is small
and the overhead caused by the extra checks surpasses the
gain from the reduction. For example, as expected using a
larger radius r for TINLA(r) and CTINLA(r) leads to better
performance in DBLP. However, in YT10 (Fig. 12) using radius
r = 1 is better than r = 2, because in YT10, almost all nodes
exist from the first time instant and only a few edges are added
during the whole interval. Thus for clique queries, there are
many candidate nodes with the correct neighborhood. Using
CTINLA(1) seems to achieve the best performance in most
cases making CTINLA(1) a good choice given its reasonable
storage overhead.

Continuous-time vs Collective-time Queries. In Fig. 9 we
depict the response time of answering continuous-time clique
queries for the most and least selective cliques in DBLP
and YT10. Continuous-time queries are handled faster by the
algorithm because of the more effective pruning of candidate
sets due to the constraint of the consecutive time instants. Also,
we note that CTINLA(r), r ≤ 2 indexes are faster in all cases
and their pruning of non-consecutive time instants helps the
overall performance.

Comparison with Baseline. We also run the baseline algo-
rithm for finding durable collective or continuous time cliques
and we compared it using CTINLA(1) which has a good
average performance. Since the baseline algorithm needs to
generate all matching patterns, it is prohibitively slow. In many
cases, we had to stop baseline after 1.5h. Table III reports
representative results. As shown, the baseline algorithm takes
less than 1.5h only in the case of selective query patterns, i.e.,
for query patterns with few matches per snapshot. However,
still CTINLA(1) is considerably faster in such cases as well.
For example, it is up to ∼387x faster than baseline even for
the most selective among DBLP queries, i.e., for the collective-
time PROF-labeled clique queries. In general, baseline tends
to generate many redundant matches even for selective queries
(e.g., for the PROF-labeled 2-clique query, baseline generates
a total of 62,302 matches, whereas there are only 2 durable
ones).

TABLE III: Comparison with the baseline algorithm

Collective-time (sec) Continuous-time (sec)
Dataset Label Value Q. Size Baseline CTINLA(1) Baseline CTINLA(1)
DBLP BEGINNER 2 >5,400 22 >5,400 17.73
DBLP BEGINNER 3 >5,400 32.18 >5,400 25.96
DBLP BEGINNER 4 >5,400 42.70 >5,400 34.74
DBLP PROF 2 22 0.06 20.68 0.051
DBLP PROF 3 6.78 0.08 6.82 0.081
DBLP PROF 4 12 0.31 91.33 0.181
YT10 MOST 2 >5,400 7.89 >5,400 8.23
YT10 MOST 3 >5,400 11.87 >5,400 16
YT10 MOST 4 >5,400 28.9 >5,400 18.31
YT10 LEAST 2 91.80 0.96 91.81 1.03
YT10 LEAST 3 110.63 1.65 110.63 1.82
YT10 LEAST 4 157.68 2.12 157.68 2.33

Threshold Duration Ordering. So far, we have used the
MINMAX duration ordering for setting the ϑ threshold for
searching durable patterns. In this set of experiments, we also
consider the BINARY and SIMPLE duration orderings. Again,
we use the most and least selective queries for the DBLP and
YT10 datasets.

In Fig. 10, we depict the performance of each time index
using BINARY ordering. We do not depict the query time for
the MOST clique queries size of 4 and 5 in Y T10 because
it surpassed the 1.5h time limit. The relative performance of

0

50

100

150

200

250

300

350

400

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(a) Query time for BEGINNER clique

0

5

10

15

20

25

30

35

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(b) Query time for JUNIOR clique

0

2

4

6

8

10

12

14

16

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(c) Query time for SENIOR clique

0

1

2

3

4

5

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(d) Query time for PROF clique

Fig. 8: Query time for collective-time clique queries in DBLP: (a) BEGINNER-clique, (b) JUNIOR-clique, (c) SENIOR-clique and (d) PROF-clique

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(a) Query time for BEGINNER clique

0

1

2

3

4

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(b) Query time for PROF clique

0

50

100

150

200

250

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(c) Query time for MOST clique

0

100

200

300

400

500

600

700

800

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(d) Query time for LEAST clique

Fig. 9: Query time for continuous-time queries: (a) BEGINNER-clique and (b) PROF-clique in DBLP, (c) MOST-clique and (d) LEAST-clique in YT10

0

20

40

60

80

100

120

140

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(a) Query time for BEGINNER clique with BINARY ranking

0

1

2

3

4

5

6

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(b) Query time for PROF clique with BINARY ranking

0

50

100

150

200

250

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(c) Query time for MOST clique with BINARY ranking

0

20

40

60

80

100

120

140

160

180

200

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(d) Query time for LEAST clique with BINARY ranking

Fig. 10: Query time for continuous-time clique queries with BINARY duration: (a) BEGINNER-clique and (b) PROF-clique in DBLP, (c) MOST-clique and (d) LEAST-clique in YT10

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(a) Query time time for DBLP

0

5

10

15

20

25

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(b) Query time for YT10

0

5

10

15

20

25

TINLA(1) CTINLA(1) TINLA(1) CTINLA(1) TINLA(1) CTINLA(1) TINLA(1) CTINLA(1) TINLA(1) CTINLA(1)

YT20 YT40 YT60 YT80 YT100

Ti
m

e
(s

ec
)

2 3 4 5 6Query Size:

(c) Query time for YTk

Fig. 11: Query time for random queries for varying number of query sizes: (a) DBLP, (b) YT10, and (c) YTk

BINARY and MINMAX depends also on the actual duration of
the most durable matches and on the accuracy of the estimation
provided by the duration orderings. Overall, the performance of
matching with BINARY duration is worse than the performance
of matching with MINMAX ordering. This is due to the fact
that BINARY ordering reduces the ϑ threshold at each step in
half often producing values far below the actual duration thus
creating large candidate sets in each step.

BINARY outperforms MINMAX only when the actual du-
ration is very small, since it decreases the duration threshold
faster. For example, for query size 6 in YT10 for both MOST
and LEAST clique queries, BINARY is ∼2-6 times faster than
MINMAX for the various indexes. Using SIMPLE duration
ordering, all BEGINNER and MOST clique queries require
more than 1.5h to be answered. This is due to the large size of
the candidate sets of SIMPLE, since setting threshold ϑ equal
to one in the first steps of the algorithm results in searching in
all graph snapshots for durable matches. SIMPLE finds pattern
fast only when the candidate size is small and the durable
matches have short durations.

Overall, MINMAX duration ordering seems to strike a good

balance giving few recursive calls with high enough ϑ values.

0

100

200

300

400

500

600

700

800

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(a) Query time for MOST clique

0

100

200

300

400

500

600

700

2 3 4 5 6

Ti
m

e
(s

ec
)

Query Size

TILA TINLA(1) TINLA(2) CTINLA(1) CTINLA(2) TIPLA

(b) Query time for LEAST clique

Fig. 12: Query time for clique queries for (a) MOST, and (b) LEAST in YT10

Random Queries. In this last experiment, we use random
graph pattern queries instead of cliques. Random graph pattern
queries are generated as follows. For each random query of size
n, we select a node randomly from the graph and keep among
its label the one having the largest lifespan duration. Then,
starting from this node, we perform a DFS traversal keeping
for each visited node the label with the largest lifespan duration
until the required number n of nodes is visited. We use as our
pattern, the graph created by the union of visited labeled nodes
and travelled edges. We report the average performance of 100
random queries for each size n.

Fig. 11(a) and Fig. 11(b) show the performance of the
various indexes for the DBLP and the YT10 datasets respec-
tively. The general observations are similar with that for clique
queries. Note that TILA is competitive on YT10 for queries
with 2 and 3 nodes, because of the small pruning of the other
indexes due to the nature of the Y T dataset (i.e., many active
nodes and edges). In Fig. 11(c), we depict the query times
using TINLA(1) and CTINLA(1) on the other Y T datasets.

The performance of all algorithms improves as the number
of labels increases, since this improves the pruning achieved
by the indexes. Since, the patterns are such that we do not
often have multiple occurrences of the same label (as was the
case with cliques) the performance of TINLA(1) is comparable
with the performance of CTINLA(1).

E. Examples of Durable Graph Pattern Queries

We now present examples of the results retrieved for the
durable clique pattern queries on the DBLP dataset. Table
IV shows an example of authors per labeled clique, and the
pattern time interval in years. We depict only one matching per
clique size and label. We see that for some cliques the result
of continuous-time durable pattern contains the same authors
with collective-time but with different intervals. The results of
continuous-time queries contain only consecutive years.

V. RELATED WORK

Graph matching has been widely studied. However, we are
not aware of any study on durable graph patterns. Next, we
survey related work on graph pattern matching in static graphs
and on queries in historical graphs.

Graph Patterns. There is a large body of research on the
graph pattern matching problem. The problem has been studied
first in the theoretical literature as the subgraph isomorphism
problem [1] and proved to be NP-complete [22]. Approaches to
processing graph pattern queries can be broadly classified into
two categories [23]. The first category includes indexing algo-
rithms [24], [25], [26] that are based on a two-step filter and
refine strategy. Filtering uses indexes to minimize the number
of candidate graphs, and then refining checks if there exists
one subgraph isomorphism for each candidate. The second
category includes algorithms [1], [3], [5], [27] that are seeking
for all embeddings of a given query graph and data graph. In
both categories, algorithms use different indexing techniques
to improve pattern search. According to this classification, our
approach is closer to the second category.

Pattern matching problem is also studied on graph
databases. Specifically in [2] a new graph database language
is introduced that handles pattern queries using neighborhood
signatures of nodes to prune the initial candidate set and by
joining intermediate results it finds the matches of the pattern.
Join operation is also used in [7] where the authors propose a
join algorithm which runs on a memory cloud where given a
graph pattern query, it splits it into a set of subquery graphs that
can be efficiently processed in parallel via in-memory graph
exploration traversing. Processing graph pattern matching as
a sequence of r-join (reachability joins) is studied in [8]. The
authors use a database to represent a directed node-labeled
graph whose data are stored in tables. They keep center nodes

that maintain clusters F, T where nodes in F cluster can reach
nodes in T via the center node.

Many approaches use indexes to accelerate subgraph pat-
tern matching [5], [6], [27], [28]. In [5], [28] the authors
proposes neighborhood indices for each graph node where
each index contains the labels of nodes in the neighborhood
and a distance measure that is used to compare the pair of
nodes in query graph and the data graph in order to identify
the query matches. In [6] the authors use for each node
the shortest paths within k-neighborhood subgraph to capture
the local structural information around the node. Then they
decompose the query graph into a set of indexed shortest
paths and they seek to find candidate paths from data graph
that cover the original query graph. The study in [27] tries
to access label frequency information and the frequencies of
a triple (fromLabel, edgeLabel, toLabel). For each pattern
query, they weight query graph edges accordingly and uses
these weights to order the search by creating a minimum
spanning tree.

The recent work in [29] is the first one to use caching for
higher pruning power during graph pattern query processing.
Finally, the authors in [30] identify a set of key factors that in-
fluence the performance of subgraph isomorphism algorithms
and report the construction, indexing and query processing
time of six methods.

Historical Queries. Although, graph data management has
been the focus of much current research, work in processing
historical queries is rather limited. The main focus of research
on evolving graphs has been on efficiently storing and retriev-
ing graph snapshots. In this paper, our focus is on searching for
persistent patterns in a set of node-labeled graph snapshots. To
this end, we assume a compact representation of the sequence
of graph snapshots in the form of a version graph without
labels which was introduced in [14] and here we extend it
with labels and use it for graph pattern queries.

Various optimizations for reducing the storage and snapshot
reconstruction overheads have been proposed. Optimizations
include the reduction of the number of snapshots that need to
be reconstructed by minimizing the number of deltas applied
[11], using a hierarchical index of deltas and a memory pool
[10], avoiding the reconstruction of all snapshots [12], and
improving performance by parallel query execution and proper
snapshot placement and distribution [31].

Concerning historical graph processing, the following re-
cent works address indexing for historical reachability queries
through an index that contains information about strongly
connected components membership at various time points [14],
indexing in graph databases [32], and indexing for historical
shortest path distance queries [15], [33].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, given the history of a node-labeled graph in
the form of graph snapshots, corresponding to the state of the
graph at different time instants, we focus on the problem of
efficiently finding the most durable patterns, that is, patterns
that persist over time, either continuously or collectively. We
have proposed an approach termed DurablePattern that is
able to identify durable patterns by traversing a compact

TABLE IV: Example of authors from collective-time and continuous-time durable pattern queries

collective-time continuous-time
Size Label Authors Interval Authors Interval

2 PROF Sudhakar M. Reddy, Irith Pomeranz 1993, 1996-2010 Sudhakar M. Reddy, Irith Pomeranz 1996-2010
3 PROF Bo Zhang, Hong Zhang, Chao Wang 2004, 2007-2014 Bo Zhang, Hong Zhang, Chao Wang 2007-2014
4 PROF Arjan Durresi,Leonard Barolli, Fatos Xhafa, Tao Yang 2007-2011 Fan Wu, Chao Wang, Bo Zhang, Hong Zhang 2009-2013
2 SENIOR Rami G. Melhem, Daniel Mosse 1999-2000, 2003-2013 Rami G. Melhem, Daniel Mosse 2003-2013
3 SENIOR Rami G. Melhem, Daniel Mosse, Bruce R. Childers 2003, 2005, 2007-2008, 2011 Frank Wolter, Michael Zakharyaschev, Carsten Lutz 2008-2011
4 SENIOR Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Mitsuharu Morisawa 2005-2006, 2009 German Bordel, Amparo Varona, Luis Javier Rodriguez-Fuentes, Mireia Diez 2012-2014
2 JUNIOR Ricardo Jimenez-Peris, Marta Patino-Martinez 1996, 1999-2002, 2005-2008, 2010, 2013 Toru Kaneko, Atsushi Yamashita 2004-2010
3 JUNIOR Ignasi Corbella, Francesc Torres, Nuria Duffo 2004, 2006, 2009, 2011-2012, 2014 Kouichi Utsumiya, Tsuneo Kagawa, Hiroaki Nishino 2004-2009
4 JUNIOR Simonetta Paloscia, Marco Brogioni, Simone Pettinato, Emanuele Santi 2008-2009, 2013-2014 Federico Chesani, Evelina Lamma, Marco Gavanelli, Marco Alberti 2006-2008
2 BEGINNER A. P. Sakis Meliopoulos, George J. Cokkinides 1998-1999, 2001-2014 A. P. Sakis Meliopoulos, George J. Cokkinides 2001-2014
3 BEGINNER Cameron H. G. Wright, Thad B. Welch, Michael G. Morrow 1999, 2001, 2003-2014 Cameron H. G. Wright, Thad B. Welch, Michael G. Morrow 2003-2014
4 BEGINNER Gustavo Montero, Eduardo Rodriguez, Rafael Montenegro, Jose Maria Escobar 2002-2009 Gustavo Montero, Eduardo Rodriguez, Rafael Montenegro, Jose Maria Escobar 2002-2009

representation of the graph snapshots. We also introduce time
and neighborhood indexes on labels and nodes that boost the
candidate patterns reduction. Our extensive experiments with
two real social network datasets show that durable pattern
queries are processed efficiently even when involving large
candidate sets.

There are many possible directions for future work. An
interesting direction is maintaining appropriate graph statistics
in order to approximate the duration of the seeking match(es),
and enhance the pruning power of our algorithm. Another
more general direction is studying the streaming version of
the problem where instead of a history of graph snapshots, we
are given a stream of graph updates and want to locate the
most durable patterns inside a sliding time window.

REFERENCES

[1] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31–42, 1976.

[2] H. He and A. K. Singh, “Graphs-at-a-time: query language and access
methods for graph databases,” in SIGMOD, Vancouver, BC, Canada,
June 10-12, 2008, pp. 405–418.

[3] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 26, no. 10, pp. 1367–1372, 2004.

[4] M. Kuramochi and G. Karypis, “Finding frequent patterns in a large
sparse graph*,” Data Min. Knowl. Discov., vol. 11, no. 3, pp. 243–271,
2005.

[5] S. Zhang, S. Li, and J. Yang, “GADDI: distance index based subgraph
matching in biological networks,” in EDBT, Saint Petersburg, Russia,
March 24-26, 2009, pp. 192–203.

[6] P. Zhao and J. Han, “On graph query optimization in large networks,”
PVLDB, vol. 3, no. 1, pp. 340–351, 2010.

[7] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph
matching on billion node graphs,” PVLDB, vol. 5, no. 9, pp. 788–799,
2012.

[8] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang, “Fast graph pattern
matching,” in ICDE, April 7-12, Cancún, México, 2008, pp. 913–922.

[9] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast best-
effort pattern matching in large attributed graphs,” in ACM SIGKDD,
San Jose, California, USA, August 12-15, 2007, pp. 737–746.

[10] U. Khurana and A. Deshpande, “Efficient snapshot retrieval over
historical graph data,” in IEEE, ICDE, Brisbane, Australia, April 8-12,
2013, pp. 997–1008.

[11] G. Koloniari, D. Souravlias, and E. Pitoura, “On graph deltas for
historical queries,” CoRR, vol. abs/1302.5549, 2013.

[12] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng, “On querying historical
evolving graph sequences,” PVLDB, vol. 4, no. 11, pp. 726–737, 2011.

[13] A. G. Labouseur, J. Birnbaum, P. W. O. Jr, S. R. Spillane, J. Vijayan,
J.-H. Hwang, and W.-S. Han, “The g* graph database: efficiently
managing large distributed dynamic graphs,” Distributed and Parallel
Databases, 2014.

[14] K. Semertzidis, K. Lillis, and E. Pitoura, “Timereach: Historical reach-
ability queries on evolving graphs,” in EDBT, Brussels, Belgium, March
23-27, 2015, pp. 121–132.

[15] T. Akiba, Y. Iwata, and Y. Yoshida, “Dynamic and historical shortest-
path distance queries on large evolving networks by pruned landmark
labeling,” in WWW, Seoul, Republic of Korea, April 7-11, 2014, pp.
237–248.

[16] C. S. Jensen and R. T. Snodgrass, “Temporal element,” in Encyclopedia
of Database Systems, 2009, p. 2966.

[17] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing
simulations on finite and infinite graphs,” in 36th Annual Symposium
on Foundations of Computer Science, Milwaukee, Wisconsin, 23-25
October, 1995, pp. 453–462.

[18] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing topology in
graph pattern matching,” PVLDB, vol. 5, no. 4, pp. 310–321, 2011.

[19] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ramaswamy,
“Dualiso: An algorithm for subgraph pattern matching on very large la-
beled graphs,” in IEEE International Congress on Big Data, Anchorage,
AK, USA, June 27 - July 2, 2014, pp. 498–505.

[20] A. Mislove, “Online social networks: Measurement, analysis, and
applications to distributed information systems.” Rice University,
Department of Computer Science, 2009.

[21] D. Caro, M. A. Rodrı́guez, and N. R. Brisaboa, “Data structures for
temporal graphs based on compact sequence representations,” Inf. Syst.,
vol. 51, pp. 1–26, 2015.

[22] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[23] J. Lee, W. Han, R. Kasperovics, and J. Lee, “An in-depth comparison of
subgraph isomorphism algorithms in graph databases,” PVLDB, vol. 6,
no. 2, pp. 133–144, 2012.

[24] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent structure-
based approach,” in ACM SIGMOD, Paris, France, June 13-18, 2004,
pp. 335–346.

[25] L. Zou, L. Chen, J. X. Yu, and Y. Lu, “A novel spectral coding in a
large graph database,” in EDBT, Nantes, France, March 25-29, 2008,
pp. 181–192.

[26] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: Tree + delta
>= graph,” in Very Large DataBases, University of Vienna, Austria,
September 23-27, 2007, pp. 938–949.

[27] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism,” PVLDB,
vol. 1, no. 1, pp. 364–375, 2008.

[28] S. Zhang, S. Li, and J. Yang, “SUMMA: subgraph matching in massive
graphs,” in CIKM, 2010, pp. 1285–1288.

[29] J. Wang, N. Ntarmos, and P. Triantafillou, “Indexing query graphs to
speedup graph query processing,” in EDBT, 2016.

[30] F. Katsarou, N. Ntarmos, and P. Triantafillou, “Performance and scala-
bility of indexed subgraph query processing methods,” PVLDB, vol. 8,
no. 12, pp. 1566–1577, 2015.

[31] A. G. Labouseur, P. W. Olsen, and J. Hwang, “Scalable and robust
management of dynamic graph data,” in International Workshop on Big
Dynamic Distributed Data, 2013, pp. 43–48.

[32] K. Semertzidis and E. Pitoura, “Time traveling in graphs using a graph
database,” in Proceedings of the Workshops of the (EDBT/ICDT), 2016.

[33] W. Huo and V. J. Tsotras, “Efficient temporal shortest path queries on
evolving social graphs,” in SSDBM, 2014, pp. 38:1–38:4.

