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Abstract. Since most graph data, such as data from social, citation and
computer networks evolve over time, it is useful to be able to query their
history. In this paper, we focus on supporting traversals of such graphs
using a native graph database. We assume that we are given the history
of an evolving graph as a sequence of graph snapshots representing the
state of the graph at different time instances. We introduce models for
storing such snapshots in the graph database and we propose algorithms
for supporting various types of historical reachability and shortest path
queries. Finally, we experimentally evaluate and compare the various
models and algorithms using both real and synthetic datasets.

Keywords: Graph database · Historical traversals · Reachability · Path
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1 Introduction

Recently, increasing amounts of graph structured data are made available from
a variety of sources, such as social, citation, computer, hyperlink and biological
networks. Almost all such real-world networks evolve over time. Querying the
evolution of such graphs is an important and challenging problem.

In this paper, we assume that we are given the history of an evolving graph
in the form of a sequence of graph snapshots representing the state of the graph
at different time instances. Our focus is on efficiently storing and querying these
snapshots using a native graph database. Native graph databases offer an attrac-
tive means for storing and processing big graph datasets.

To store the sequence of graph snapshots in a graph database, we propose
models based on associating with each node and edge, its lifespan, i.e., the time
intervals, during which the node and edge is valid. The multi-edge approach
(me) uses a different edge type for each of the time instances during which the
edge was valid. The single-edge approaches use a single edge annotated with a
complex type for representing the lifespan of the edge. We consider two single-
edge approaches, one that models the lifespan as an ordered list of time instances
(setp), and one that uses an interval representation (seti).

We also introduce historical graph traversals that consider paths that existed
in a sufficient number of graph snapshots. We exploit variants of two types
of historical traversals, reachability and shortest paths. Historical reachability
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queries ask whether two nodes are connected in some time instance, in all time
instances, or in a sufficient number of time instances. Historical shortest path
queries ask for the shortest path between two nodes posing requirements on the
lifespan of such paths. We present algorithms for processing historical queries
for both the multi-edge and the single-edge approaches.

We have implemented our approach in the Neo4j graph database and present
experimental results using both real and synthetic datasets. For very short-lived
edges, using multiple edges to represent lifespans, seems to work well by tak-
ing advantage of the built-in traversal methods of the native graph database.
However, for all other cases, using the interval-based approach to represent lifes-
pans (seti) proves more efficient both in terms of processing time and storage.
We also present a case study regarding connectivity among authors of different
conferences through time.

Related Work: There has been recent interest on analytical processing and
mining of evolving graphs, including among others developing models [15], dis-
covering communities [2], and computing measures such as PageRank [3]. There
has been also research on building graph engines tailored to supporting ana-
lytical processing in dynamic graphs, such as Kineograph [5] and Chronos [7].
However, our focus here is on query processing.

There has been some work on historical query processing. The common
assumption is that the graph is either kept in main memory or is stored in
disk, but not in a native graph database. Most research assumes as a first step
the reconstruction of the relevant snapshots. Then, queries are processed through
an online traversal on each of the snapshots. Various optimizations for reducing
the storage and snapshot reconstruction overheads have been proposed. Opti-
mizations include the reduction of the number of snapshots that need to be
reconstructed by minimizing the number of deltas applied [12], using a hier-
archical index of deltas and a memory pool [11], avoiding the reconstruction
of all snapshots [17], and improving performance by parallel query execution
and proper snapshot placement and distribution [14]. Other research considers
in-memory processing of specific types of historical queries [1,4,9,13,18,19].

Very few works [4,6,8,20] are built on top of a native graph database. In
particular [4] proposes an approach for storing time-varying networks in the
Neo4j graph database using a hierarchical time index to support snapshots with
different granularity (e.g., months and days). They do not discuss historical
traversal queries, but, instead consider retrieving specific snapshots. In [6] the
authors focus on graph data with structural changes, and present time logs
that capture when an event has occurred (i.e. add/remove of edge/node) in the
history of the graph. Although, their indexes are used to retrieve fast a state
of the graph in a given period they are not designed for supporting historical
traversal queries. A short discussion of the storage models me and setp is made
in position paper [20]. Finally, the work in [8] targets specific types of graphs
with static structure but frequent changes in node and edges properties. Our
focus here is on structural updates and reachability and path queries.
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Paper outline: The rest of this paper is structured as follows. In Sect. 2, we
formally define historical traversal queries. We introduce three approaches for
storing the graph snapshots in graph databases in Sect. 3 and algorithms for
processing historical traversal queries in Sect. 4. In Sect. 5, we experimentally
evaluate the different approaches. Section 6 concludes the paper.

2 Traversals in Historical Graphs

In this section, we first define historical graphs and then introduce traversal
queries on them.

2.1 Historical Graphs

Graphs are used to represent relationships between entities where entities are
modeled as nodes and relationships as edges between them. Labels may be
assigned to both edges to capture different types of relationships and to nodes
to capture node attributes. Formally, a node and edge labeled graph G is a
tuple (V,E, λV , λE) where V is a set of nodes, E ⊆ V × V is a set of edges,
λV : V → LV and λE : E → LE are labeling functions that map a node and
an edge to a label from a set LV of node labels and a set LE of edge labels
respectively. Some graph databases also support an extension of labeled graphs,
termed property graphs, where instead of labels, a set of property-value pairs is
associated with nodes and edges. Such pairs are also sometimes called attributes.

Most real world graphs evolve over time. New nodes and edges are added, and
existing nodes or edges are deleted. We assume that time is discrete and use suc-
cessive integers to denote successive points in time. We use Gt = (Vt, Et, λ

V
t , λE

t )
to denote the graph snapshot at time instance t, that is the sets of node, edge
and labeling functions that exist at time instance t.

Definition 1 (Historical graph).
A historical graph G[ti,tj ] in time interval [ti, tj ] is a sequence {Gti , Gti+1, . . . ,
Gtj} of graph snapshots.

An example is shown in Fig. 1 which depicts a historical graph G[1,5] consisting
of five graph snapshots {G1, G2, G3, G4, G5}. Nodes and edge labels are omitted
for simplicity. Note that the granularity of creating time instances and graph
snapshots may vary. For example, we may create a new graph snapshot at every
second, hour or day.

We use the term lifespan (ls) to refer to the period of time that a graph
element, that is, a node, edge, or labeling function, existed. Lifespans are sets of
time intervals. Set of time intervals are also known as temporal elements [10]. For
example, the lifespan ls((u1, u3)) of edge (u1, u3) in Fig. 1 is equal to {[1, 1], [3, 4]}
meaning that edge (u1, u3) existed in graph snapshots G1, G3 and G4. We also
define a useful operation on interval sets, called time join [18]. Given two sets
of intervals I and I ′, their time join I ⊗ I ′ is the set of time intervals that
includes the time instances that exist in both I and I ′. For example, {[1, 3],
[5, 10], [12, 13]} ⊗ {[2, 7], [11, 15]} is equal to {[2, 3], [5, 7], [12, 13]}.
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Fig. 1. Example of a historical graph

2.2 Historical Traversal Queries

A graph traversal allows the navigation of the structure of the graph and is
a fundamental graph query. In an abstract form, a traversal query Q can be
expressed as a path query Q = u

α−→ v, where α specifies conditions on the paths
that we wish to traverse and u, v denote the starting and ending points of these
paths. The starting and ending points can be specific nodes or properties of the
nodes, or a mix of both. The expression α involves constraints on the properties
(or, labels) of the nodes and edges in the path. For example, we may look for
paths connecting two people in a social network with edges labeled as “friends”.

Traversals retain the paths from u to v that satisfy α. In general, there are
may be many such paths, even an infinite number, if there are cycles in the
dataset. Thus, besides maintaining all possible paths, various other semantics
may be associated with the evaluation of traversals. Common ones are retaining
only the shortest paths, or only paths that consist of no-repeated nodes or edges.

We now define traversal queries on historical graphs. First, let us define the
lifespan of a path. Let G[ti,tj ] be a historical graph and p = u1u2 . . . um be a path
of m nodes where uk ∈ ∪tj

tl=tiVtl , 1 ≤ k ≤ m. We define the lifespan, ls(p), of
path p as follows: ls(p) = ls((u1, u2)) ⊗ ls((u2, u3)) . . . ⊗ ls((um−1, um)). For
example, the lifespan of path u1u3u6 of G[1,5] in Fig. 1 is {[3, 4]}.

Definition 2 (Historical Traversal Query).
A traversal query QH on a historical graph, G[ti,tj ], called a historical traversal
query, is a tuple (Q, I, L) where Q is a traversal query Q = u

α−→ v, I is a set
of time intervals and L is a positive integer. For a path p, let D(p) = ls(p)⊗I⊗
[ti, tj ]. QH retains the paths p from u to v in G[ti,tj ] that satisfy α and for which
in addition D(p) contains at least L time instances.

Intuitively, we ask that the paths retained by a historical query exist in at
least L of the graph snapshots. At one extreme a path must appear at least once
in the graph history, in which case L = 1. At the other extreme, a path must
appear in all time instances, in which case L must be equal with the number of
time instances in I⊗ [ti, tj ].

A traversal query may produce different outputs. For example, the output
may be the set of the retained paths, or, the set of nodes, or edges on the retained
paths. Furthermore, in the special case of reachability queries, the output of the
traversal is boolean, i.e., true if there exists a path, and false otherwise. Without
loss of generality, in this paper we focus on reachability shortest path queries.
Additional semantics may be associated with the output of historical traversals.
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For example, for reachability queries, we may ask that two nodes are reachable in
at least one time instance (disjunctive queries), in all time instances (conjunctive
queries), or in at least-k time instances. For shortest path queries, we may ask,
for example, for the earliest shortest path (ESP), for the shortest among the
paths that existed in all time instances (stable shortest path (SSP)), or, for the
shortest among the paths that existed in at least-k snapshots (KSP).

3 Storing Historical Graphs

In this section, we present different approaches for representing a historical graph
in a native graph database. The basic idea is to augment each graph element with
its lifespan. For edges and nodes, lifespans are stored as labels (i.e., property,
attribute) of the corresponding edge and node. Based on the type of labels used,
we have two different approaches.

Multi-edge Representation. The multi-edge approach (me) utilizes a different
edge type between two nodes u and v for each time instance of the lifespan of
the edge (u, v). The multi-edge representation of the historical graph G[1,5] of
Fig. 1 is depicted in Fig. 2. For instance, to represent a relationship between
nodes u1, u3 with lifespan {[1, 1], [3, 4]}, we use three edges with different labels
to connect u1 and u3. Since all native graph databases provide efficient traversal
of edges having a specific label, the me approach provides an efficient way of
retrieving the graph snapshot Gt corresponding to time instance t. Similarly,
multiple labels are associated with each node.
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Fig. 2. me representation of the historical graph of Fig. 1 (nodes labels are not shown
for clarity)

Single-edge Representation. The single-edge approach uses a single edge
between any two nodes appropriately labeled with the lifespan of the edge. To
represent the lifespan of an edge or node, we consider two different approaches. In
the single-edge with time points approach (setp), the lifespan of a node or edge is
modeled using a label that is a sorted list of the time instances in their lifespan.
The setp representation of the historical graph G[1,5] of Fig. 1 is shown in Fig. 3(a).



172 K. Semertzidis and E. Pitoura

For example, the lifespan of edge (u1, u3) is now represented by a single edge hav-
ing as label [1, 3, 4]. In the single-edge with time intervals approach (seti), we
use Ls and Le, each one an ordered list of m elements, where m is the number of
time intervals in the lifespan of the edge or node. In particular, Ls[i], 1 ≤ i ≤ m,
denotes the start of the i-th interval in the lifespan, while Ls[i] the end of the inter-
val. An example is shown in Fig. 3(b). With the single-edge approaches, retrieving
the graph snapshot Gt at time instance t requires further processing of the related
labels.

u1 u2 u3

u5u4 u6

[1,3,4]

[4, 5]

[2, 3, 4, 5]

[4, 5]

[1, 2, 3, 4, 5]

[1, 3, 5]

(a) setp representation

u1 u2 u3

u5u4 u6

Ls: [1, 3] | Le: [1, 4]

Ls: [4] | Le: [5]Ls: [1] | Le: [5]

Ls: [4] | Le: [5]

Ls: [2] | Le: [5]Ls: [1, 3, 5] | 
Le: [1, 3, 5]

(b) seti representation

Fig. 3. Single-edge representations of the historical graph of Fig. 1 (nodes labels are
not shown for clarity)

Indexing. For faster retrieval of specific graph snapshots, we build an index
within the graph database by creating a new node type T where each node of
the given type has a unique value that corresponds to a specific time instance.
A T node that denotes a time instance t is connected with all nodes that existed
at time instance t. To retrieve the nodes that exist in a time interval, we get the
neighbors of the T nodes that correspond to this interval. Figure 4(a) shows the
index of the historical graph in Fig. 1.

Time-varying labels. Finally, we discuss how to store labels that change over
time. Current graph databases do not support versioning on labels and thus we
need to create for each unique label value l, a new node of type l. We connect all
nodes or edges that have value l at some time instance with the node representing
l using one of the three edge approaches presented previously. Doing so, we only
store each label once and to retrieve the labels of a node u in a time interval,
we retrieve all the nodes type of l that are connected to u by edges that refer to
the time instances in the interval. In Fig. 4(b), we depict an example of storing
the time-varying labels of two nodes u1, u2 using setp.

4 Processing Historical Traversal Queries

In this section, we focus on processing historical traversal queries in native graph
databases. For simplicity, we consider a single interval I, but the algorithms
easily extend to sets of time intervals.
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Fig. 4. (a) Time index of the historical graph of Fig. 1 and (b) an example of time-
varying labels

Multi-edge Representation. A basic functionality provided by all native
graph databases is a traversalBFS method that implements a BFS traver-
sal of all edges of a specific type (i.e., with a specific label) starting from a
source node. At each step, traversalBFS returns either the current traversed
node or all the previously traversed nodes in a form of a path. One approach for
retrieving the paths that exist between two nodes u and v during a time interval
I is to invoke traversalBFS starting from u once for each time instance t
in I and then combine these results. Another approach is to process paths an
edge-at-a-time. Starting from u for each time instance t in I we traverse only the
edges of type t until we reach v. Which of the two approaches is more efficient
depends on the type of the traversal query under consideration.

For reachability queries where we ask that two nodes are reachable, without
posing any requirement on the lifespan of the paths that connect them, the
approach that uses the built-in traversalBFS is more efficient. We invoke
traversalBFS for each time instance t in I until: (a) for disjunctive queries:
the first time instance that we find v, (b) for conjunctive queries: the first time
instance that we do not find v and (c) for the least-k queries: when we find v in
at least k time instances, or the remaining time instances are not enough to get
reachability at k time instances.

For queries that require that the paths exist in at least L > 1 time instances,
using the traversalBFS method is in general expensive, since we retrieve all
paths at each time instance, even those paths that appear only in a single time
instance. Thus, traversalBFS is used only for the earliest shortest path (ESP)
queries, where it returns the shortest path that connects u to v in the first time
instance. For stable (SSP) and at least-k (KSP) shortest path queries, we use
the second approach. We traverse the edge type that refers to the first time
instance in I and we continue the traversal only if for each edge (w, x) there
are all (SSP) or at least k (KSP) type of edges (w, x) that refer to other time
instances in I.

Single-edge Representation. For the single-edge approaches, we cannot use
the traversalBFS, since we need to post-process the lifespan label of each
edge to determine the time instances where the edges were active. Thus, we
implemented our own traversalBFS algorithm which traverses edges that are
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Algorithm 1. (setp-seti) Conjunctive-BFS(u, v, I)

Require: nodes u, v, interval I
Ensure: True if v is reachable from u in all time instances in I and false otherwise

1: create a queue N , create a queue INT
2: enqueue u onto N , enqueue I onto INT
3: while N �= ∅ do
4: n ← N.dequeue()
5: i ← INT.dequeue()
6: for each e ∈ n.getEdges() do
7: Ie ← TIME JOIN(e, i)
8: if Ie = ∅ then
9: continue
10: end if
11: w ← r.getOtherNode(n)
12: if w = v then
13: R ← R ∪ Ie
14: if R 	 I then
15: return true
16: end if
17: continue
18: end if
19: if IN (w) �	 Ie then
20: IN (w) ← IN (w) ∪ Ie
21: enqueue w onto N
22: enqueue Ie onto INT
23: end if
24: end for
25: end while
26: return false

alive in the given interval. We present in Algorithm1, the algorithm for process-
ing conjunctive reachability queries. Algorithm1 can be used for processing all
other types of historical queries with only small modifications.

Since a node v may be reachable from u through different paths at different
graph snapshots, we maintain an interval set R with the part of ls(u → v) ∪ Ie

covered so far (line 13), where Ie is the intersection of the lifespan of an edge
with a given interval. The traversal ends when R covers the whole query time
interval I (lines 14–16).

To retrieve Ie, we use method Time Join (line 7) and getOtherNode(n)
which given a node n that is attached to an edge, returns the other node (line 11).
In setp, Time Join retrieves the lifespan label from the edge and using an
intersection algorithm for sorted lists it returns the intersection of edge lifespan
and I. In seti, Time Join retrieves the edge lifespan labels Ls and Le and
for each [s′, e′] ∈ I s.t. ∃ i s.t max(Ls[i], s′) ≥ min(Le[i], e′) it returns the
overlapping time instances {[s′, e′] ∩ [Ls[i], Le[i]]}.

To speed-up traversal, we perform a number of pruning tests. The traversal
stops when we traverse an edge that is not alive in the query interval (lines 7–10).
Still an edge may be traversed multiple times, if it participates in multiple paths
from source to target. To reduce the number of such traversals, we provide
additional pruning by recording for each node w, an interval set IN (w) with
the parts of the query interval for which it has already been traversed. If the
query reaches w again looking for interval Ie ⊆ I and IN (w) � I, the traversal
is pruned (lines 19–23).
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Indexing. The time index can be used similarly in all approaches to prune
some computations. For example, for the least-k reachability query that asks
whether nodes u and v are reachable in at least k time instances, we can first
check using the index whether both nodes were active in at least k common
time instances. If they were not active, we do not need to traverse the graph.
Otherwise, we traverse the graph using a subinterval of I that contains only the
instances when both nodes were active.

5 Experimental Evaluation

In this section, we present an experimental comparison of the different
approaches for supporting historical traversal queries in a native graph data-
base. We used the Neo4j1 graph database that supports fast processing of graph
data and implemented all algorithms using the Neo4j Java API.

We use two real and one synthetic dataset. In particular, we use DBLP2 in
time interval [1959, 2016] where each graph snapshot corresponds to one year. At
each graph snapshot, a node represents an author and an edge a co-authorship
relation between two authors in the corresponding year. We also use a FB [21]
dataset which consists of 871 daily snapshots where at each snapshot a node
represents a user and an edge represents a relation between two users. The syn-
thetic dataset was generated using a preferential attachment graph generator
[16], where a new snapshot is created after 10,000 nodes. The dataset character-
istics are summarized in Table 1(a). The FB dataset and the default synthetic
dataset are insert-only, i.e., contain no node/edge deletions.

We ran our experiments on a system with a quad-core Intel Core i7-3820
3.6 GHz processor, with 64GB memory. We only used one core in all experiments.

Table 1. Dataset and Graph database characteristics

Dataset # Nodes # Edges # Snapshots

DBLP 1,167,854 5,364,298 58

FB 61,967 905,565 871

Synthetic 1,000,000 1,999,325 100

(a) Dataset characteristics

Dataset GDB Size (MB) Index Size (MB) Time (sec)

DBLP
me 353

131.37
39

setp 528.84 22
seti 546.55 23

FB
me 6,000

830
631

setp 400 65
seti 31.98 33

Synthetic
me 4,500

1,700
1,620

setp 513 145
seti 253 86

(b) Graph database size and creation time

5.1 Size and Load Time

We stored all datasets in three different database instances (GDBs) using the
three different representations, namely, me, setp, and seti introduced in Sect. 3.
1 https://neo4j.com/.
2 http://dblp.uni-trier.de.

https://neo4j.com/
http://dblp.uni-trier.de
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Also, in each GDB we stored a time index on the lifespan of the nodes. Table 1(b)
shows the size and construction time of each graph database instance. Multi-edge
approaches use a different edge type for each time instance, which leads to larger
sizes. This difference in size is more evident in the FB dataset, since most edges
in the DBLP dataset have short lifespans, because many co-authorships appear
only once or span very few years. To load the datasets into the graph databases
we used the CSV importing system of Neo4j. Again, me requires more time to
be loaded since it has to create more edges than the other models.
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Fig. 5. Size (a) for varying number of nodes and (b) percentage of deletions

In Fig. 5(a), we report graph database sizes for varying number of nodes (and
thus snapshot) using the synthetic dataset. As shown, the single-edge approaches
are much smaller than the multi-edge in all cases, as expected. We also vary the
percentage of edge deletes. For each edge, we randomly remove 10% to 50% of
the time instances in its lifespan. Figure 5(b) presents the results. We observe
that the size of me decreases; since removing a time instance leads to less edges
types. The number of removals in the lifespan (stored as lists) in setp leads to
slower size reduction. seti size is increasing since removing time instances leads
to more subintervals and thus to larger Ls and Le lifespan structures. Overall,
that single-edges are the best choice in terms of size efficiency for storing large
graphs. Among them, seti is more space-efficient, especially, when there are few
subintervals in the lifespan.

5.2 Query Processing

We now focus on query processing. We report the average execution time of
200 historical traversal queries where the source and target nodes are chosen
uniformly at random with the restriction that both nodes are present in the
graph at the beginning and the end of the query interval. For the FB and the
synthetic dataset, the query interval is chosen randomly. However, in DBLP
dataset which is more active in the last two decades, we use I = [2011, 2016] as
default query interval. For larger intervals we increase it using earlier years for
starting time instances. For the at least-k queries we set k to be equal to |I|/2.
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Reachability Queries. In Figs. 6 and 7, we depict the average query times
for DBLP and FB. A general remark that holds independently of the graph
representation model and the dataset is that disjunctive queries are faster than
conjunctive queries, since they stop once an instance where the nodes are reach-
able is found. Conjunctive queries are in turn faster than at least-k queries, since
they stop once an instance where the nodes are not reachable is found.

The main difference between the two datasets is that in DBLP edges represent
co-authorships, consequently, in general, their lifespans include very few years, in
most cases, just 1 or 2. In FB, lifespans are larger, and since we have no deletions,
include just one interval. The me approach is very fast for short-lived edges and
is a clear winner for reachability queries in DBLP. For FB which contains a large
number of multiple edge types, the response time of me increases linearly with
the size of the query interval. An exception is disjunctive reachability queries,
where traversal stops once an instance where a path exists is found and me
remains competitive.

Among the single edge approaches, setp outperforms seti only when the
lifespan includes very few time instances (as in DBLP). In this case, the time
join between the lifespan and any interval is fast. Furthermore, in this case,
seti includes many small intervals. When lifespans become larger and more
continuous (as in FB), seti outperforms setp.

To study further the effect of lifespans on query performance, we experimented
using the synthetic dataset with different percentage of deletions and with a query
interval of length 10 in Fig. 8. We observe that me and seti are competitive
in conjunctive and disjunctive queries whereas in at least-k queries seti is the
winner. me takes advantage of the use of the native traversalBFS method.

0
5

10
15
20
25
30

6 12 18 24 30

Ti
m

e 
(s

ec
)

Query Interval

ME SETP SETI

(a) Conjunctive

0
2
4
6
8

10
12

6 12 18 24 30

Ti
m

e 
(s

ec
)

Query Interval

ME SETP SETI

(b) Disjunctive

0
10
20
30
40
50
60
70

6 12 18 24 30

Ti
m

e 
(s

ec
)

Query Interval

ME SETP SETI

(c) Least-k
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Fig. 7. Query time for historical reachability queries in FB
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Fig. 8. Query time for historical reachability queries in the synthetic dataset
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Fig. 9. Query time for historical shortest path queries in FB

seti performs well in all type of queries and it is starting to slow down when the
percentage of deletions is getting higher and the number of intervals in the lifespan
gets large.

Path Queries. We also evaluated the performance of historical path queries.
ESP queries perform similar to disjunctive reachability queries, since we seek
for the shortest path in the first instance when the two nodes are connected.
However, in case of SSP and KSP we need to locate the shortest among paths
that exist in all or in at least-k instances. We experimented with a large number
of random pair of nodes and observed that in DBLP no paths that connect these
pairs exist in more than 6 time instances. Furthermore, in most cases, these paths
existed in just a single instance. In Fig. 9, we report the average time for shortest
path queries in FB. The processing in me is costly since for each traversed edge
that connects u to v the traversal algorithm has to check if there are also other
type of edges that refer to all (or k) time instances that u to v. Thus, we set a
limit of 120 s for each path query type. KSP queries in me exceed the time limit
for computing a solution. In general, seti is the fastest one and setp comes
second in SSP and KSP queries, since they traverse a small number of queries
compared to multi-edge and the edge lifespan verification in the given interval
is performed fast.

Time Index. Finally, we ran the same historical traversal queries in DBLP and
FB datasets without using the time index and we observed that in general the
time index improves query performance. Due to space constraints, we only depict
the change in performance for conjunctive queries in Fig. 10(a)(b). In particular,
in DBLP dataset we observe high performance as long as the query interval is



Historical Traversals in Native Graph Databases 179

0

20

40

60

80

100

6 12 18 24 30

Pe
rf

or
m

an
ce

 G
ai

n 
(%

)

Query Interval

ME SETP SETI

(a) DBLP

-20

-10

0

10

20

30

40

6 12 18 24 30

Pe
rf

or
m

an
ce

 G
ai

n 
(%

)

Query Interval

ME SETP SETI

(b) FB

0
10
20
30
40
50
60
70
80

1 2 3 4 5

Co
nn

ec
te

d 
(%

)

k

ADBIS SIGMOD VLDB ICDE SODA STOC

(c)

0
10
20
30
40
50
60

1 2 3 4 5

Co
nn

ec
te

d 
(%

)

k

ADBIS ADBIS - SIGMOD ADBIS - VLDB

ADBIS - ICDE ADBIS - SODA ADBIS - STOC

(d)

Fig. 10. (a)(b) Time index performance boost for conjunctive queries and (c)(d) per-
centage of connected pair of nodes in various conferences

increasing since there are not many connected pairs in all time instances and
thus indexing returns the negative answers very fast. However, in FB dataset
where there are nodes that are connected in whole interval even for larger ones,
we notice that indexing is more helpful in me and setp since we do not pay the
cost for traversing the graph for pairs that are not connected. seti performance
in FB does not increase very much since traversal algorithms run very fast by
pruning edges that are not active in the interval. The same trend is observed in
historical path queries and thus results are omitted.

5.3 Case Study

In this study, we use historical queries to study connectivity between authors
at difference conferences in DBLP. We selected 4 database (ADBIS, SIGMOD,
VLDB, ICDE) and 2 theory (SODA, STOC) conferences. For each conference,
we randomly selected 500 pair of nodes representing authors that have at least
one publication in the conference and examined whether they are reachable in
at least k years in the interval [1959, 2016]. We depict the results in Fig. 10(c)
where we observe that theory conferences have the most reachable pairs of nodes
which indicates that they consist of more well-connected communities compared
to database conferences. As expected, the percentage of nodes that are reachable
decreases as k increases. We also conducted a second study to show connectiv-
ity between ADBIS authors and authors in the other 5 conferences. As show
in Fig. 10(d), somehow surprisingly ADBIS authors are more connected with
authors in the theory conferences than with authors in the database confer-
ences. Not surprisingly, connectivity between authors of the same conference is
larger than connectivity among ADBIS and other conferences.

6 Conclusions

In this paper, we study the problem of storing and querying the history of
an evolving graph in a native graph database. We have proposed different
approaches for storing such graphs based on associating with each node and
edge a lifespan, i.e., a set of time intervals indicating when they were valid. We
have also proposed algorithms for processing various types of traversal queries
using the proposed storage models. For very short-lived edges, using multiple
edges to represent lifespans, one for each time instance, seems to work well by
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taking advantage of the built-in traversal methods of the native graph databases.
However, for all other cases, using an interval-based approach to represent lifes-
pans proves more efficient both processing and storage wise. There are many
possible directions for future work. One is to extend historical queries to include
time-varying node and edges labels, that is labels, that change over time. Another
direction is to provide support for historical graph queries inside the native graph
database.
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