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ABSTRACT
In this work we investigate the use of a reinforcement learning (RL) framework for the autonomous
navigation of a group of mini-robots in a multi-agent collaborative environment. Each mini-robot is
driven by inertial forces provided by two vibration motors that are controlled by a simple and effi-
cient low-level speed controller. The action of the RL agent is the direction of eachmini-robot, and it
is based on the position of eachmini-robot, the distance between them and the sign of the distance
gradient between each mini-robot and the nearest one. Each mini-robot is considered a moving
obstacle that must be avoided by the others. We propose suitable state space and reward function
that result in an efficient collaborative RL framework. The classical and the double Q-learning algo-
rithms are employed, where the latter is considered to learn optimal policies of mini-robots that
offers more stable and reliable learning process. A simulation environment is created, using the ROS
framework, that include a group of four mini-robots. The dynamic model of each mini-robot and of
the vibration motors is also included. Several application scenarios are simulated and the results are
presented to demonstrate the performance of the proposed approach.
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1. Introduction

Recently, the design and realization of micro-manipula
tors and micro/mini-robots has become an important
field of research. Potential areas of application are micro-
surgery, micro-manufacturing, micro-assembly, biome-
chanical design, and neurobiological control [1–3]. Sev-
eral micro-actuation techniques have been developed,
usually based on smart materials such as piezo-electric
actuators, shape memory alloys, etc. The most popular
micro-positioning motion mechanism is the stick-slip
principle, [4], which is implemented using piezoelectric
actuators. This principle is employed by the MINIMAN
micro-robot presented in [5] and others. These plat-
forms are capable of positioning accuracy of less than
200 nm and provide velocities of up to a few mm/s.
The impact drive principle, a variant of stick-slip prin-
ciple, is employed by the 3DOF micro-robotic platform
Avalon, which provides step size of about 3.0m and
speeds up to 1mm/s [6]. A different motion mecha-
nism based on piezo-tubes is utilized by the NanoWalker
micro-robot [7]. The first prototypes of this micro-
robot were capable for minimum steps of the order
of 30 nm and demonstrated a maximum displacement
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rate of 200mm/s. The MiCRoN micro-robotic platform
is equipped with piezoelectric actuators, with an inte-
grated micro-manipulator [8]. The centralized control
architecture of MiCRoN is presented in [9]. Kilobot,
a low-cost robot designed for testing and validating
algorithms for a swarm of robots, is presented in [10].
AMiRo, a modular robot platform that can be easily
extended and customized in hardware and software is
presented in [11]. Although the desired positioning accu-
racy can be achieved by using piezoelectric actuators,
they need expensive and cumbersome power units that
do not easily allow for untethered operation. An alter-
native drive mechanism is proposed by Vartholomeos
and Papadopoulos in [12]. They presented a low-cost
autonomous mini-robot (with dimensions of a few cen-
timeters) driven by two DC vibrating motors that is
able to translate and rotate, with micrometer position-
ing accuracy and velocities up to 1.5mm/s. Positioning
methodologies that compensate for the nonholonomic
constraints of the same mini-robot are proposed in [13].

Reinforcement Learning (RL) aims at controling an
autonomous agent in unknown stochastic environments
[14]. Typically, the environment is modelled as a Markov
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Decision Process (MDP), where the agent receives a
scalar reward signal that evaluates every transition. The
objective is to maximize its long-term profit that is
equivalent to maximizing the expected total discounted
reward. Thus the learning process is designed on select-
ing actions with the optimum expected reward. Discov-
ering optimal policy for agent is conducted with the
notion of value functionwhich associates every state with
the expected discounted reward when starting from this
state and all decisions are made following this policy.
Q-learning algorithm [15] that belongs to the tempo-
ral difference family of methods constitutes one of the
most popularmechanisms for building a RL agent among
other [16]. An improved method has been recently pre-
sented in [17,18], calledDoubleQ-learning, that prevents
from overestimation of actions that may negatively affect
the performance. An important advantage of double Q-
learning is its beneficial effect on the stability of learning
[17,18].

In the literature there are several workswith RL frame-
works in mini-robots applications. A mini-robot archi-
tecture together with reinforcement learning applications
for obstacle avoidance and control are presented in [19].
In [20] a medical colon endoscope robot is presented
that adjusts its locomotion through the use of tabu-
lar Q-learning RL scheme. Another application of the
tabular Q-learning algorithm is found in [21] where a
simple RL framework is used to an autonomous micro-
robot. The algorithm is optimized in speed and memory
consumption in order to be employed in mini-robots
with low resources (memory, power, processor perfor-
mance). A recent work is presented in [22] using a pair
of AMiRo mini-robots with various sensor modalities
that employs a RL-based distributed sensing framework
based on latent space from multi-modal deep generative
models. Also, in [23] a deep RLmethod was used to navi-
gate micro/colloidal robots regarding obstacle avoidance
and travel timeminimization.An actor-criticmulti-agent
reinforcement learning approach is proposed in [24]
based on deep Q-learning where the critic has access to
the full state information, while the actor has local obser-
vations. Finally, deep multiagent reinforcement learning
approaches have been developed recently with applica-
tions to swarm robotic systems [25–28], where many
identical agents (mostly with limited actuation and sen-
sors capabilities) interact with each other to achieve a
common goal.

In this paper, we address the problem of autonomous
navigation of a small group of multiple mini-robots (up
to four), where we formulate it as a multiagent Markov
Decision Process (MDP) based on a collaborative rein-
forcement learning framework [29–31]. The primary
goal is to learn joint agent’s policies to simultaneously

navigate all mini-robots toward targets. The workspace
is unknown for any robot and apart from static obsta-
cles, the other mini-robots are considered as moving
obstacles that must be avoided. A capable state space
and an efficient reward function are introduced that
aim at constructing agents’ policies with optimal driving
behavior that enable agents to reach their destinations
safely and rapidly. Through the reward function a col-
laborative environment is constructedwheremini-robots
coordinate their strategies so as to execute their tasks
jointly.

The output of the reinforcement learning framework
is the desired direction of the velocity for each mini-
robot. The required forces for the realization of the
commanded velocities are provided by two vibration
motors on each mini-robot. The dynamic model of the
mini-robot, including the vibration motors dynamics, is
integrated into the simulation environment. In order to
compensate for unknown disturbances, and improve the
motion resolution and the bandwidth of themini-robot, a
simple and low-cost PI speed controller for each vibration
motor is implemented.

In this work we have studied both tabular Double
and classical (single) Q-learning algorithms for training
robots’ policies in their discrete state space.

Several simulation examples considering a variety of
scenarios with different degree of complexity have been
made that show the effectiveness of the proposed frame-
work. The simulation results from both Q-learning algo-
rithms are presented and compared. According to the
results, the method has the capability to successfully
resolves any scenario and to achieve sub-optimum in
length navigation paths. Furthermore, it manages to pro-
vide robust agents’ policies with generalization capabil-
ities over test environments. To our knowledge, this is
the first time a collaborative multi-agent RL framework
that employs the tabular double Q-learning algorithm
is successfully implemented for multiple mini-robots for
discovering their navigation policy.

Preliminary results assessing the performance of an
abstract related scheme have been presented in [32]
where some initial results were reported, and only two
mini-robots were considered. With respect to this work
the following issues summarize the novel material in this
paper:

• An extended and improved multi-agent reinforce-
ment learning framework is proposed, suited to the
navigation of a group of several mini-robots in a
collaborative environment. The tabular Double Q-
learning algorithm is employed that offers improved
robustness and performance in comparison with the
classical Q-learning.
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• Anew and improved reward function is presented that
allows coordination of mini-robots’ strategies.

• Amore complex simulation environment is developed
including several mini-robots (four) and considering
several alternative scenarios.

• Extensive simulations and experiments are conducted
to evaluate and demonstrate the effectiveness of the
proposed method with the addition of the Double
Q-learning algorithm.

The remainder of this paper is organized as follows.
Section 2 gives a brief description of application exam-
ples and scenarios studied in this paper, while Section 3
gives the reinforcement learning scheme developed for
the navigation of a group of such mini-robots. The simu-
lation scenarios and comparative results are presented in
Section 4 and we conclude with a discussion and future
directions in Section 5.

2. Application examples and scenarios

The proposed reinforcement learning framework can be
applicable to any multi-agent system. Nevertheless, it is
evaluated in a simulated environment comprising up to
four mini-robots under a microscope. The mini-robots
under consideration, presented in [12], are tethered-
less, fully autonomous and designed to perform micro-
manipulation andmicroassembly tasks, such as the coop-
erative fabrication of micro-systems or manipulation of
biological specimens, in a micro scale environment. Sev-
eral applications scenarios are implemented, where the
goal was the navigation of the mini-robots to prede-
fined positions, under the assumption of an unknown
environment, in order to perform cell-manipulation or
micro-assembly activities under the microscope.

Example simulation environments are shown in
Figure 1(a and b). Since all robots share the same
workspace they have to avoid collisions and navigate
through limited space. The mini-robots targets are
located in the central region of the board (Figure 1(b))
having enough space among them to perform manip-
ulation tasks without collisions. An example of real-
world scenario would be when different procedures are
required to be performed in different positions and each
robot can carry only one type of instrument. This can be
done quickly with more robots rather than using a single
mini-robot to perform multiple procedures.

A functional prototype of the mini-robot is shown in
Figure 2(a), see [33]. The mass of the mini-robot is equal
to 0.1 Kg, with a body diameter and height of 0.05m and
0.045m respectively. The mini-robot is equipped with
two vibration micro-motors with an eccentric mass. A PI
speed controller is designed and implemented to improve
the dynamic response of each micro-motor, and to com-
pensate for the unknown disturbances, see [32]. The
motion principle is based on the gravitational and cen-
tripetal forces exerted on each rotating eccentric mass.
Above a critical value of actuation speed, actuation forces
overcome frictional forces and motion is induced.

The dynamic model of the mini-robot is described by
the following equations:

Mv̇ = R
∑
i

bfi

bIω̇p + bωp × bIbωp =
∑
i

(
bri × bfi

)
+

∑
j

bnj (1)

where i = {A,B,C,D,E}, and j = {D,E}, see Figure 2(b).
In (1), M denotes the mass of the mini-robot, v =
[ẋ, ẏ, ż]� is the linear velocity of the center of mass of
the mini-robot, and R is the rotation matrix from the

Figure 1. Multi-robot navigation concept: (a) Single mini-robot environment; (b) Four mini-robots environment.
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Figure 2. (a) Prototype; (b) Design concept (top view) (figures from [33]).

Figure 3. Simulation results for the net displacement toward the positive X-axis.

body frame, {b}, to the inertial frame. bfi is a vector that
includes the actuation forces generated by the two vibra-
tion motors and the friction forces at the three contact
points of the mini-robot, and bnj includes the moments
exerted by the vibration motors. The moment of inertia
of the mini-robot is denoted by I, and ωp is the angu-
lar velocity of the mini-robot. Finally, bri is the position
vector of point i expressed in the body frame.

The synchronous rotation of the vibration motors of
the platform, results in a net displacement toward the
positive or the negative X-axis or a rotation about the
vertical Z-axis, depending on the direction of rotation of
each vibration motor, see Figure 3.

It has been shown analytically that themotion step the
mini-robot exhibits over a cycle of operation can bemade
arbitrarily small depending on the actuation speedω. For
amore detailed presentation of the dynamics, design, and
actuation principle of the mini-robot, see [12].

3. Reinforcement learning for mini-robots
navigation

The Reinforcement Learning (RL) agent constitutes the
basic building block of the proposed decision support
system. The RL agent receives a state related to the posi-
tion of the mini-robot platform and performs an action
which corresponds to the direction of its velocity. Note

that the desired magnitude of the platform’s velocity is
constant and not affected by the RL agent. In addition, the
velocity and orientation of the platform are controlled by
the low-level controller proposed in [32].

We have formulated the task as a Markov decision
process (MDP) that constitutes an efficient mathematical
framework for sequential decisionmaking problems. It is
represented as a tuple (S ,A,T,R, γ ), where:

• S denotes the set of agent’s states. In our case we
have considered the platform inertial coordinates. i.e.
s = (x, y) as the states of the agent. However, as it will
be shown later the state vector will be enriched with
other features in the case of treating multiple mini-
robots.

• A is the action space.Wehave considered eight (8) dis-
crete values: A = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦,
270◦, 315◦} that correspond to eight different direc-
tions of mini-robot velocity. It must be noted that
this size of the action set seems to be appropri-
ate in our application leading to satisfactory perfor-
mance. However, any other set of actions can also be
used.

• T denotes theMarkovian state transition function that
specifies the probability of visiting a new state s′ from
state s by taking action a, P(s′ | s, a) : S× A× S→
[0, 1].
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• R : S → R is the reward function for a state-action
pair, R(s, a), describing the immediate reward of exe-
cuting action a in state s, and finally,

• γ is the discount factor across time ranging in [0, 1]
used for future rewards.

The decision mechanism of the agent is guided by the
policy π : S → A that is designed to perform a map
from state space to actions. The state-action value func-
tion (Q-value function) of agent, Q(s, a) describes the
expected discounted reward received by starting from
state s, executing the action a and following the policy π

thereafter. According to the Bellman equations [14] the
Q-function can be recursively written as:

Qπ(s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{ ∞∑
k=0

γ krt+k+1|st = s, at = a

}
(2)

A standardmethod for training anRL agent is by learning
the Q-function via minimizing the Bellman’s equation
error, given by:

Et(θ)

= 1
2
Es∼T,a∼π

∥∥∥R(st , at)+ γ max
a

Q(st+1, a)− Q(st , at)
∥∥∥2

(3)

The objective of RL problems is to estimate optimal pol-
icy π∗ by choosing actions that yield the appropriate
action-state value function, i.e.

π∗(s) = argmax
a∈A

Qπ(s, a) (4)

The term ‘optimal’ is used to describe the shortest path
from any starting position as well as the minimum
required rotations of eachmini-robot to achieve the com-
manded direction. The reason we also use the least num-
ber of direction changes is because of the limitation of
the robot model we use, this robot requires a substantial
amount of time to change the direction.

A common choice for training the agent is through Q-
learning [15].

Q-learning is a standard off-policy method [14,34]
where the agent learns about a policy different from
the one it is executing. Policy-gradient methods [35],
such as actor-critic methods [36], provide an alternative
strategy where the critic is used to evaluate the cur-
rent policy of the actor. For example, a learning method
for autonomous object assembly tasks with swarm mini-
robots (Kilobots) have been presented in [26], where the
proposed reinforcement learning algorithm is based on
the actor-critic relative entropy policy search (AC-REPS)
algorithm, introduced in [37].

In Q-learning the following policy update rule takes
place based on temporal-difference:

Q(s, a)←Q(s, a)

+ η

[
R(s, a)+ γmax

a′
Qπ(s′, a′)− Q(s, a)

]
(5)

where η is the learning rate (during all simulation runs
we set η = 0.01).

An alternative learning algorithm has been presented
recentrly, called double Q-learning [18], that uses the
double estimator to ease the overestimation. This is an
off-policy value based reinforcement learning algorithm
that employs a double estimator approach to determine
the value of the next state. Double Q-learning tackles the
problem ofQ-value overestimationwhich arises from the
fact that the Bellman equation computes the maximum
of a noisy estimator. More specifically, tabular double Q-
learning stores two functions, QA and QB. During train-
ing first a single Q function is randomly selected (QA or
QB) and then it is updated with a value from the other
function for the next state. The next updated equations
are taken place:

QA(s, a)←QA(s, a)

+ η

[
R(s, a)+ γmax

a′
QB(s′, a′)− QA(s, a)

]
(6)

QB(s, a)←QB(s, a)

+ η

[
R(s, a)+ γmax

a′
QA(s′, a′)− QB(s, a)

]
(7)

As indicated in [18], bothQ functions learn from separate
sets of experiences, however they are both used for the
action selection mechanism: action is estimated accord-
ing to the ε-greedy framework by calculating the average
of the two Q values.

The reward signal, R(s, a), for a single mini-robot is
simply defined as following:

R(s, a) =

⎧⎪⎨
⎪⎩
+L, if it reaches goal
−L, out of border
−1, otherwise

(8)

where L is a positive constant term; it was set to L = 100.
Each episode typically starts at a random position

on the edge of the board. During learning the agent is
trying to explore the environment by collecting sam-
ples and gradually uses them for exploitation rather than
exploration. An important issue in reinforcement learn-
ing is how to manage the trade-off between exploration
and exploitation since it may have significant impact to
the quality of learned policy. A common practice is to
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employ the ε-greedy exploration scheme, where at each
time step t an action is selected greedily, based on the
estimated action-value function with probability 1− εt ,
while a random action is chosen with probability εt , (εt ∈
[0, 1]). During the simulation runs the parameter ε0 is
initially set to a large value (e.g. ε0 = 0.9), and it decays
exponentially over time (decay rate 0.999).

Finally, it must be noted that an episode is defined as
a sequence of transitions that terminates either when the
agent reaches the goal state, or when the mini-robot plat-
form collides with the obstacle which is the restricted
zone in the middle of the board. We consider this obsta-
cle to be an object for the mini-robot to do an operation
on, e.g. biological specimen. The other terminal state of
an episode is when the agent goes out of the workspace
(board). Note that in this application we consider that
there is no additional obstacle so the agent is free to
explore through the entire board without any obstruc-
tion.

3.1. MDP formulation formultiplemini-robots

The primary aim of this work is to develop a reinforce-
ment learning framework for modeling multiple mini-
robots which are jointly interactingwith the environment
in a collaborative manner. Each robot must learn a sub-
optimal policy so as to reach its goal position under the
presence of other robots. The impact of this is that all goal
positions of the other mini-robots correspond to addi-
tional static obstacles for any robot. Furthermore, while
navigation other agents must be considered as dynamic
obstacles which appeared without any predefined knowl-
edge of their behaviour and must be avoided.

We are focused on constructing proximity collision
avoidance policies for all mini-robots considering cen-
tralized control so as to perceive the position of nearby
agents and calculate the rewards. The multiple robots
navigation system utilizes the basics from single robot
environment with added features derived from the co-
occurrence of all agents. The workspace is a rectangular
flat surface and is divided into grids. All agents don’t
have any prior knowledge of the environment and their
starting positions are different and random. During the
simulation runs we assume various scenarios with vari-
able robots’ targets and starting position areas on the
workspace. An episode ends when, either all mini-robots
reach their goals, or at least one agent fails, i.e. it goes out
of border, or collides with an (static or dynamic) obstacle.

Each agent has its own goal situated at a different posi-
tion and occupied a single grid cell. An example can be
seen in Figure 1(b). Asmentioned before, all robots share
the same workspace, therefore they have to avoid col-
lisions and navigate through limited space. The robot

targets are located in the central region of the board
(Figure 1(b)) having enough space among them to avoid
collisions.

Except for its inertial coordinates (xi, yi), the state
space of every mini-robot i also includes two other quan-
tities:

• The minimum distance di with all other robots. As
shown in Figure 4, this distance has been discretized
into three (3) constant values: ‘near’ (5 < di ≤ 6),
‘medium’ (6 < di ≤ 10), ‘far’ (di > 10).

• The sign of the distance gradient, gi, that indicates
whether the distance between the nearest mini-robot
is increased or decreased at each time step, t:

gi = sign(d(t)
i − d(t−1)

i ) (9)

Thus the state variable is represented as a vector of four
quantities:

si = (xi, yi, di, gi). (10)

This allows the agent to realize the presence of moving
obstacles (other robots) in its neighborhood so as toman-
age the creation of a policy for avoiding them. It must be
noted that the discretization of distance can be adjusted
to have appropriate size and distance for the workspace
and complexity of the problem.

3.1.1. The proposed reward function
The reward function evaluates the selected action based
on the current mini-robot’s state. In our study we have
designed an efficient reward function that aims at elimi-
nating the collisions and minimizing the travelling path
of all mini-robots and the time taken to reach their
destination and discovering their targets.

The proposed reward function is formulated as:

R(si, ai)

=

⎧⎪⎪⎨
⎪⎪⎩
L, reaches goal
−L, out of workspace, collision

−bi
[
k ∗maxj

(
1− disti,j

D

)]
− c, otherwise

(11)

where

• distij is discrete distance between two robots.
• D is maximum discrete distance in workspace.
• L, k, c are positive constants: The first term was set to

L = 1000). As we will see later in our simulations we
havemade an experimental study where we havemea-
sured the impact of the last two parameters, k, c, and
we selected the optimum values of them.
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Figure 4. Distance discretization.

• bi is distance gradient penalty coefficient, condition-
ally dependent on the sign of gi.

bi =
{
1.5 if gi < 0
1.0 if gi ≥ 0

(12)

An explanation of the above formulation is the follow-
ing:

• Likewise the single mini-robot case, the received
reward is constantly positively large (+L) when the
mini-robot reaches its goal, and negatively large (−L)
when it finds an obstacle or is located outside the grid
border.

• The bias term c provides the default reward when the
agent has not reached the target yetwithout having any
other mini-robot in its visual field and indicates the
maximum allowed value.

• The distance gradient penalty coefficient, bi, penalizes
more (bi ≥ 1) in the situation where its nearest mini-
robot is approaching. It can be considered as a weight
for the direction of a mini-robot.

• Finally, the parameter k is referred to the nearest
neighbor distance and provides a weight of this dis-
tance to the reward function.

4. Simulation results

We have studied the performance of the proposed
method by conducting several simulated scenarios. The
simulation environment has been implemented using the
ROS (Robot Operating System) framework. It includes
the kinematic and dynamic model of the mini-robotic
platforms, information about the proximity between the
robots and white noise added to each vibration motor
rotational speed that is equivalent to ±5% of the nomi-
nal rotational speed. In all simulation runs the integra-
tion time step for the mini-robotic platforms was set to
dt = 10−5, while the step of RL agent is equal to 2×
105 integration time steps, equivalent to 2 seconds. The
workspace is 30× 30 cm, with a rectangular restricted
zone of size 7× 7 cm located at its center. It is assumed
that every target position of each mini-robot occupies a
single cell next to the border of the restricted zone at the
central region of the board.

During the execution of the multiagents reinforce-
ment learning framework we have compared both Q-
learning algorithms, the single (Single Q) and the double
Q-learning (Double Q), for training the agents. In all
experiments we have used a discount rate of γ = 0.99
and a learning rate parameter of η = 0.01. Furthermore,
we have considered the ε-greedy exploration scheme
with an initial probability of ε = 0.9 together with a
linear reduction scheme using a coefficient of 0.999 at
every 2500 and 500 episodes, respectively for both algo-
rithms. In total 25× 106 (Double Q method) and 5×
106 (Single Q method) episodes were required for train-
ing the agents that correspond to an execution time
about 40 and 15min, respectively1. The initial 80%
of them were used for the exploration phase in both
methods.

We evaluated all policies generated by both methods
using the following two metrics:

• the percentage of the successful episodes, and
• the required average distance (path length) to reach

the mini-robots’ targets when starting from a random
position of the workspace border.

During all scenarios we calculated the mean values of
each performance metric after executing 20 independent
simulation runs.

4.1. Scenarios description

In figures 5, 8 and 9 we illustrate the scenarios used for
one and four mini-robots along with their target posi-
tions. Each mini-robot has to be trained to find safely the
destination to its respective target marked by the same
color as the robot. In the case of a single mini-robot
we have considered the scenario where the mini-robot
starts randomly from a zone of width equal to one cell on
the perimeter of the board (see Figure 5(a)). The goal is
located at the cell coordinate (15, 11), under the restricted
zone. In the case of four mini-robots we have applied six
scenarios with different starting area for eachmini-robot,
as given in Table 1 and illustrated in Figures 8 and 9.
The goal for each robot is presented as G1, G2, G3 and
G4, respectively. In the last scenario (f) all mini-robots
start at random positions around the perimeter of the
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Figure 5. The simulated scenario used and the obtained comparative learning curves of the single mini-robot training. The curves rep-
resent themean success rate and themean path length needed to reach the target of double and single Q-learning algorithms, together
with the standard deviation.

Table 1. Description of the scenarios with 4 min-robots used in our simulation runs. Si denotes
the (x, y) coordinates of the ith mini-robot’s starting position.

Mini-robots starting position (cm)

Scenario S1 S2 S3 S4

(a) (1± 1, 15± 2.5) (15± 2.5, 29± 1) (29± 1, 15± 2.5) (15± 2.5, 1± 1)
(b) (15± 2.5, 1± 1) (1± 1, 15± 2.5) (15± 2.5, 29± 1) (29± 1, 15± 2.5)
(c) (29± 1, 15± 2.5) (15± 2.5, 1± 1) (1± 1, 15± 2.5) (15± 2.5, 29± 1)
(d) (3± 1, 1± 1) (11± 1, 1± 1) (19± 1, 1± 1) (27± 1, 1± 1)
(e) (3± 1, 1± 1) (11± 1, 1± 1) (3± 1, 29± 1) (11± 1, 29± 1)
(f) random

workspace, assuming that there is a distance of at least
10cm between each mini-robot in the beginning.

4.2. Simulation with a singlemini-robot

At first we examined the performance of both algorithms
for training the agent, Double and Single Q-learning, to
the simulated environment in the case of a single mini-
robot, see Figure 5(a). In Figure 5(b and c) we present
the (mean) learning curves received during training the
single mini-robot agent in 20 independent simulation
runs using both Q-learning schemes. In particular we
show the mean and the standard deviation of the suc-
cess rate (percentage of reaching the target) and the
required path length (in cm). As shown, the perfor-
mance of both methods is almost identical converging
effectively (100% success rate) and quickly after a short
period of exploration. It is interesting to note their abil-
ity to reach always the same solution with a very low
variability.

In addition, in Figure 6 we show several robot nav-
igation paths obtained by both Q-learning algorithms
considering various random positions around the bor-
ders of the workspace. Based on the results it is worth
mentioning that the proposed frameworks have the abil-
ity to estimate sub-optimal paths by any random start-
ing position. We have found an average path length of

around 19 cm (50 agent’s steps) for both Double and
Single Q-learning algorithms, while executing the task of
the mini-robot navigation 1000 times after finishing the
training procedure.

4.3. Simulation withmultiplemini-robots

The primary aim of this work is to apply multiagent sys-
tems to the task of navigating multiple mini-robots in
unknown environments. We start our study by initially
evaluating the impact of the reward function’s param-
eters k and c (Equation (11)) to the performance of
the proposed method. As mentioned before, the first
coefficient, k, is used to penalize the distance with the
nearest mini-robot, while parameter c plays the role of
a threshold value for the reward function and denotes
the maximum allowed reward value a mini-robot can
receive. In our study we have examined four (4) dif-
ferent values of the k parameter, k = {0.5, 1.0, 5.0, 10.0}
and seven (7) different values of the c parameter, c =
{0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 5.0}, i.e. in total twenty (28)
pairs of values were evaluated. The obtained results are
presented in Figure 7 in the case of the Single Q-learning
scheme. Two evaluation metrics were used: mean suc-
cess rate and mean estimated path length estimated in
the scenario (f) that considers random starting posi-
tions of mini-robots and constitutes the most difficult
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Figure 6. Exemplar mini-robot trajectories obtained after finishing the learning procedure with both Q-learning algorithms.

Figure 7. Evaluation of the impact of the reward function parameters k and c (Equations (11)) on the scenario (f ). The diagrams show
themean percentage of the successful episodes and themean path length taken from 1000 episodes of 20 learned policies obtained after
executing 20 independent simulations. All simulation runs were made using the Single Q-learning scheme in the last scenario (f ) that
constitutes the most difficult case.

case. They are calculated by executing 20 independent
simulated runs and then 1000 episodes at every multi-
agent policy discovered. According to both graphs it is

interesting to observe that the method exhibits almost
constant behavior in terms of percentage of successful
episodes (success rate) and local variability in terms of
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Figure 8. Comparative learning curves from the application of the proposed multiagent RL approach using the Double and Single
Q-learning algorithm, respectively, to three different simulated scenarios (a), (b), (c). The curves represent the mean values and the stan-
dard deviations of the success rate and the mean path length required from four mini-robots to reach the targets as obtained by 20
independent simulation runs. The target positions are the same in all cases, while the starting positions of fourmini-robots differ at every
scenario.

path length. We obtained better results with k = 1.0 and
c = 0.5. Finally, it must be noted that we acquire simi-
lar results in the case of Double Q-learning scheme and
therefore we have adopted the above values for both

reward function parameters throughout the remaining
simulation runs.

In our study we have considered six different sim-
ulated scenarios with variable difficulty presented in
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Figure 9. Comparative learning curves from the application of the proposed multiagent RL approach using the Double and Single Q-
learning algorithm, respectively, to three different simulated scenarios (d), (e), (f ). The curves represent themean values and the standard
deviations of the success rate and the mean path length required from four mini-robots to reach the targets as obtained by 20 inde-
pendent simulation runs. The target positions are the same in all cases, while the starting positions of four mini-robots differ at every
scenario.

Figure 8 and 9. In the first scenario (a) the target of each
mini-robot is just opposite to its starting position and
thus the probability (a priori) of collision is low. The level
of difficulty is progressively increased in the next five

scenarios (scenario b to f ) and the environment becomes
more complicated in terms of the starting position of each
mini-robot and subsequently the determination of the
navigation paths to targets which might cross with other
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mini-robots. Therefore, each mini-robot’s policy must
be learned by interacting with the environment so as to
reach its target, as well as to avoid the collision with the
others. Furthermore, all agents must act collaboratively
in order to resolve the task together.

Figures 8 and 9 present the learning curves of the
proposed multiagent RL methodology to every evalu-
ation case, as calculated by executing 20 independent
simulated runs using the Double and Single Q-learning
algorithms. In particular, we show the obtained mean

value and the standard deviation of the success rate and
the path length (in cm) of all mini-robots. It must be
noted that once a robot reaches its target, it remains
there until all mini-robots terminate their motion (either
successfully, or not). An episode is considered as suc-
cessful only when all four mini-robots manage to reach
their targetswithout any collision. Regarding the received
learning curves we can observe that the performance of
the Double Q-learning algorithm is slightly better, since
in some cases it manages to create policies with increased

Figure 10. Exemplar trajectories for four mini-robots as obtained from the learned policies of the proposed multiagent RL approach
using the Double Q-learning algorithm.

Figure 11. Average distances between each robot and their nearest neighbour during their trajectories (divided into 10 bins). The bars
are obtained after executing 20 independent simulated runs in scenarios (c) and (f ).



ADVANCED ROBOTICS 13

Table 2. The comparative test performance of the proposed multiagent RL framework using the Dou-
ble and the Single Q-learning algorithm, in terms of two evaluation criteria in every scenario. Statistics
are calculated after executing 20 simulations of 1000 episodes per case.

Double Q Single Q

Scenario Success rate (%) Path length (cm) Success rate (%) Path length (cm)

(a) 100%± 0 10.09± 0.01 100%± 0 10.09± 0.01
(b) 100%± 0 15.59± 0.14 99.97%± 0.03 15.94± 0.08
(c) 99.93%± 0.03 27.94± 0.46 99.87%± 0.11 28.17± 0.74
(d) 100%± 0 22.24± 1.87 99.99%± 0.05 24.11± 0.81
(e) 100%± 0 28.63± 0.64 99.97%± 0.09 29.41± 0.96
(f) 97.77%± 0.69 32.15± 0.37 96.97%± 1.09 33.71± 0.79

success rate and lower path length. Another interest-
ing observation is that the Double Q-learning seems
to generate more compact solutions and near optimal
policies compared to the Single Q method, since it has
lower variability in both evaluation metrics during the
learning process. Note that only in two scenarios (Fig-
ures 8(c) and 9(f)) the percentage of successful episodes
was slightly lower than 100%.

In Figure 10 we illustrate several successful naviga-
tion paths for all mini-robots in all simulated scenarios
based on the learned robot policies using the Double Q-
learning algorithm. Seemingly, the proposed multiagent
framework has the ability to efficiently learn joint agents’
policies and to support mini-robots to reconcile conflict-
ing decisions. The constructed paths of every mini-robot
are designed to be sub-optimal and safe without the pres-
ence of any collision. In addition, in Figure 11we evaluate
further the produced robot paths of the learned poli-
cies in scenarios (c) and (f). In particular, we present the
distance between each robot and its nearest one during
executing their trajectories. Note that, since the naviga-
tion paths are of variable size, we have divided them into
10 bins, and we calculated the average distances of the
successful simulation runs (i.e. no collision is occurred).
The bars in Figure 11 are depicted after 50 independent
simulation runs in scenarios (c) and (f). It is interest-
ing to observe that during executing their trajectory all
mini-robots are in save distance among them, since their
minimumdistance in both scenarios is always larger than
5cmwhich is the body diameter of each mini-robot. This
illustrates both the quality of the constructed policies
and the additional benefits of coordination among agents
the proposed multiagent RL approach with Double Q-
learning offers.

Finally, in Table 2 we present a summary of the com-
parative results we obtained employing the Double and
the Single Q-learning algorithm to the proposed mul-
tiagent RL approach. 20 learned policies were used in
a series of 1000 episodes per case, where we calculated
the mean value and the standard deviation of the success
rate and the path length from random starting positions.
As in the learning process, the Double Q-learning seems

to perform better in test environments with improved
generalization capabilities. Again, only in two scenarios,
(c) and (f), the success rate is slightly lower than per-
fect, while the Double Q-learning achieves less variability
in path length which can successfully improve system’s
reliability.

5. Conclusions and discussion

In this study we have established an enhanced multia-
gent reinforcement learning framework for addressing
the problem of the autonomous navigation of multiple
mini-robots. The classical and the double Q-learning
algorithms are employed with promising results, where
the double Q-learning algorithm shows a slightly better
performance. The key aspect of the proposed scheme lies
on the efficient design of input state space of mini-robots
that allows the creation of a collaborative environment
among agents. Also, an advanced reward function was
created that manages to control multiple mini-robots
and navigate them safely and effectively to their target
position by minimizing their travelling time.

We are in the middle of the design and implemen-
tation process of such mini-robots, and we expect to
conduct experiments with real mini-robots in the next
few months. Concerning the practical implementation
we use a centralized approach, where each mini-robot
would be equippedwith amicro-processor that is respon-
sible for the low- level desired function of the robot
(power management, sensors and actuators function-
ality) and the low-level speed control. In addition, each
mini-robot has the capability of wireless communication
with a central computer where the high-level RL agents
are implemented.

We aim at further pursuing and developing the pro-
posed method in three main directions:

• Study the possibility to handle continuous state and
action spaces and employ value-function approxima-
tion schemes.

• Extend the presented framework to deep reinforce-
ment learning schemes [38,39].
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• Validate the proposed method in more complex envi-
ronments with greater degree of uncertainty, as well as
in real-world scenarios using real mini-robots that are
currently under construction.

Note

1. All experiments were conducted on an Intel Core i5-4950
PC with 16GB RAM under the C++ environment.
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