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ABSTRACT
This paper investigates the use of reinforcement learning
for the navigation of an over-actuated marine platform in
unknown environments. The proposed approach uses an
online least-squared policy iteration scheme for value func-
tion approximation in order to estimate optimal policy. We
evaluate our approach in a simulation platform and report
some initial results concerning its performance on estimat-
ing optimal navigation policies to unknown environments
under different environmental disturbances. The results are
promising.
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Keywords
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1. INTRODUCTION
Marine vehicle navigation aims at finding a route through

obstacles and constructing a motion planner in terms of a
feasible sequence of actions that allow to move a marine ve-
hicle from an initial ”configuration”to a goal ”configuration”.
Ideally, such planner tries to optimize an objective function
consisting of attributes such as plan duration, energy ex-
panded, etc. Robust motion planning algorithms for mobile
robots consider stochasticity in the dynamic model of the
vehicle and the environment.
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There is a tremendous need for developing fast analytic al-
gorithms for predicting the collision probability due to model
uncertainty and random disturbances in the environment for
a planar holonomic vehicle such as a marine surface vessel
[11, 1]. These predictions lead to a robust motion planning
algorithm that discovers the optimal motion plan quickly
and efficiently. Incorporating model learning into the pre-
dictions exhibits emergent active learning strategies to safely
and effectively complete the mission.

A flexible framework for motion planning and autonomous
vehicle navigation is through Reinforcement learning (RL)
[13, 14]. RL aims at controlling an autonomous agent in un-
known stochastic environments. Typically, the environment
is modelled as a Markov Decision Process (MDP), where
the agent receives a scalar reward signal that evaluates ev-
ery transition. The objective is to maximize its long-term
profit that is equivalent to maximizing the expected total
discounted reward. Value function is used for measuring the
quality of a policy, which associates to every state the ex-
pected discounted return when starting from this state and
all decisions are made following the particular policy. A
plethora of methods have been proposed during the last two
decades using a variety of value-function estimation tech-
niques [14, 15]. The temporal difference algorithms provide
a nice framework for policy evaluation since they have the
flexibility to handle large or continuous state space of real-
world applications. More specifically, least-squares temporal
difference (LSTD) family of methods is very popular mecha-
nism for approximating the value function that performs an
iterative procedure for optimal policy estimation. Finally, a
variety of value function approximation schemes have also
been also presented, including: Gaussian processes [4], on-
line clustering techniques which learn basis function sets
from experience [17], and Bayesian reinforcement learning
approaches [12] which propose linear of tree-based Bayesian
approaches for the exact inference of unknown dynamics in
continuous state spaces [18, 19], etc.

In the literature there are some marine robots applica-
tions, mostly involving autonomous underwater vehicles (AUV),
using reinforcement learning, see for a survey in [11], [21].
In [3] for example a neural networks-based reinforcement
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learning scheme is presented for high-level control of AUV’s.
In [7] another approach is proposed for motion planning
of under-actuated AUV in unknown non-uniform sea flow.
A recent work for marine vehicle navigation in [21] uses a
path planning algorithm for under-actuated marine vehicles
under ocean current disturbances based on reinforcement
learning. In this case, the marine vehicle is described only
by the kinematic model.

Our work is focused on the development of an intelligent
navigation mechanism based on reinforcement learning, for
the over-actuated autonomous triangular marine platform
”Vereniki” shown in Fig. 1. To our knowledge, this is the
first time that a reinforcement learning scheme is proposed
for the autonomous navigation of an over-actuated marine
vehicle. The detailed model of the platform can be found
in [20]. Controllers for the problem of the autonomous dy-
namic positioning are proposed in [20] and [16]. Here, we
examine the problem of the determination of a desired path
in an unknown environment. The required, forces and mo-
ment are provided by three rotating pump jets, consequently
the system is over-actuated, i.e., it has more control inputs
than degrees of freedom. Thus, a non-trivial problem arises
concerning the optimal use of the control inputs. To solve
this problem, a proper control allocation scheme is imple-
mented to allow for optimal allocation of the effort without
violating thruster capabilities.

The proposed on-line reinforcement learning algorithm which
is based on least square policy iteration (LSPI) [9, 2], aims
at the determination of a near-optimal path in the presence
of realistic environmental wind disturbances. Simulation re-
sults show that the generated path is tracked successfully
by the marine platform, which is described not only by the
kinematic but also by the dynamic model. One of the main
advantages of this method is that it is model free, meaning
that in the design process we did not use any explicit knowl-
edge about the system model. This makes the method ro-
bust to model uncertainties and noise, as it is demonstrated
in our results. Another advantage is that it can be imple-
mented as an online learning algorithm which brings us a
step further towards fully autonomous marine platform.

The remainder of this paper is organised as follows. Sec-
tion 2 gives an overview of the marine platform and its con-
trol design issues, while Section 3 gives the reinforcement
learning scheme. Some preliminary experimental results are
presented in Section 4 and we conclude with a discussion of
future directions in Section 5.

2. THE "VERENIKI" MARINE PLATFORM
The marine platform “Vereniki” is designed to assist in

the deployment of the deep-sea cubic kilometer neutrino
telescope “NESTOR”. It consists of a triangular structure
mounted on three hollow double-cylinders, one at each cor-
ner of the structure, see Fig. 1. The plane of the trian-
gle is parallel to the sea surface. The cylinders provide the
necessary buoyancy, as part of them is immersed in the wa-
ter. The platform actuation is realized using three fully sub-
merged pump-jets, located at the bottom of each cylinder.
Diesel engines drive the pumps, while electro-hydraulic mo-
tors rotate the jets providing vectored thrust. Next, a brief
description of the kinematics and dynamics of the platform
is presented. A more comprehensive description of the plat-
form can be found in [20].

Figure 1: The triangular marine platform.
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Figure 2: A 2D representation of the triangular plat-
form.

2.1 Kinematics
The main body of the structure has the shape of an isosce-

les triangle with side length LAB = LAC , and base length
LBC . The center of mass (CM) of the platform is at point G,
see Fig. 2. We focus on the platform planar motion; actua-
tion and control along the heave axis, and about the roll and
pitch axes, are beyond the scope of this work. Under these
assumptions, the kinematics equations of the plane motion
are described by:

ẋẏ
ψ̇

 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

uv
r

⇒ I ẋ = IRB
Bv (1)

In Eq. 1, x and y represent the platform CM inertial
coordinates and ψ describes the orientation of the body-
fixed frame {B}, whose origin is at the platform CM; u and
v are the surge and sway velocities respectively, defined in
the body-fixed frame {B}, and r is the yaw (angular) velocity
of the platform.

2.2 Dynamics
We consider three types of forces acting on the CM of the

platform: (a) the control forces/ torque from the jets, (b) the
hydrodynamic forces due to the motion of the cylinders with
respect to the water, and (c) the environmental disturbance
forces/torque due to wind.

2.2.1 Control forces/torque
The jets can provide vectored thrust and thus more flexi-



bility in control design. The JA, JB , and JC in Fig. 2 denote
the magnitudes of the thrusts while φA, φB , and φC denote
the force directions. These thrusts provide control resultant
forces in xb and yb axes, the Fx and Fy respectively acting
on the CM, and a torque Mz about zb, according to the
linear transformation:

Bnc = [Fx, Fy,Mz]
T = BBfc (2)

B =


1 0 0
0 −1 −dAG
1 0 −dDC
0 −1 dDG
1 0 dDC
0 −1 dDG



T

, Bfc =


JA sinφA
JA cosφA
JB sinφB
JB cosφB
JC sinφC
JC cosφC

 (3)

where Bnc is the control force/torque vector, and the dimen-
sional parameters in B are defined in Fig. 2. The vector Bfc
can be retrieved by the pseudoinversion of B in 2. The de-
sired jet thrust and direction are calculated according to,

Ji =
√

(fi sinφi)2 + (fi cosφi)2 (4)

φi = arctan(fi sinφi, fi cosφi) (5)

where i = A,B,C.

2.2.2 Hydrodynamic forces
The hydrodynamic force acting on each cylinder includes

two terms. The first term is the added mass force, which is
a linear function of the acceleration of each cylinder. The
second term is the drag force, which is a quadratic function
of the velocity of each cylinder, see [6]. As an example,
the normal to the axis of each cylinder force on the double-
cylinder structure at point A, expressed in body-fixed frame
{B} is given by:

Bfh,A = Caπρw[R2
uc(Huc − h) +R2

lcHlc](−BaA)+

Cdρw[Ruc(Huc − h) +RlcHlc]‖(−BvA)‖(−BvA)
(6)

where ρw is the water density, Ca is the added mass co-
efficient, and Cd the drag coefficient. BvA and BaA are
the velocity and acceleration of cylinder A respectively ex-
pressed in the body-fixed frame. Parameters h, Ruc, Huc,
Rlc, and Hlc denote the height of the cylinder above the wa-
ter surface, and the radius and height of the upper and lower
cylinder sections respectively. The hydrodynamic forces on
A given by Eq. 6 result in a force acting on the platform
CM and a moment about it, i.e.,

Bqh,A = [BfTh,A, (
BsA/G ×B fh,A)T ]T (7)

where BsA/G is the position of point A with respect to G
expressed in {B}, see Fig. 2. All terms that are a quadratic
function of the velocity of the platform are collected in vec-
tor,

Bq = [fx, fy, nz]
T (8)

2.2.3 Environmental disturbances
We define the disturbance vector Bqwind, which repre-

sents wind generated disturbance forces and torque. The

wind induced forces (surge and sway) and moment (yaw),
are calculated as,

fx,wind = 0.5CX(γR)ρV 2
RAT (9)

fy,wind = 0.5CY (γR)ρV 2
RAL (10)

nz,wind = 0.5CT (γR)ρV 2
RALL (11)

where CX and CY are force coefficients and CT is a moment
coefficient, see [5]. These coefficients are functions of the rel-
ative angle, γR, between the wind and platform direction,
and are taken from tables. ρ is the density of air, AT and AL
are the transverse and lateral projected area, and L is the
overall length of the platform. VR is the relative wind speed,
given in knots. Integrating Gaussian white noise produces
the inertial wind velocity magnitude and direction used in
the simulations. The wind velocity magnitude, vw(t), is lim-
ited such that vw(t) ≤ 7.9 m/s (15 kn or 4 Beaufort).

Using the above preliminaries, and assuming that the CM
of the platform is at the triangleâĂŹs centroid, we derive
the planar equations of motion of the platform, in {B}:

MBv̇ = Bq + Bqwind + Bnc (12)

M =

m− 3ma 0 0
0 m− 3ma 0
0 0 m33

 (13)

m33 = Izz − (d2AG + 2d2BD + 2d2DG)ma (14)

where m is the mass of the platform, ma is its added mass,
and Izz is its mass moment of inertia about the zb axis.

2.2.4 Orientation control of the platform
As shown in Eq. 2, the control vector Bnc includes the

forces Fx and Fy contributing to the translation of the ma-
rine platform in xb and yb axes, and the torque Mz con-
tributing to the rotation of the platform about zb. Fx and
Fy are defined according to the RL algorithm, see next sec-
tion. Independently, the torque Mz is controlled according
to a PD controller that aims at stabilizing the platform ori-
entation to a desired angle in the presence of realistic wind
disturbances. The desired orientation of the platform co-
incides with the direction of the wind. This configuration
results to reduced disturbance forces/torque, due to the re-
duction of the projected area to the wind. Consequently,
the torque Mz is calculated according to,

Mz = Kp(ψw − ψ)−Kdr (15)

where Kp and Kd are the controller gains, and ψw denotes
the direction of the wind.

3. REINFORCEMENT LEARNING FOR AU-
TONOMOUS MARINE VEHICLE NAVI-
GATION

The RL framework considers that the environment is mod-
eled as a Markov decision process (MDP). An MDP can be
described as a five-tuple (S,A, P,R, γ), where S is a set
of states; A a set of actions; P : S × A × S → [0, 1] is



a Markovian transition model that specifies the probability
P (s′|s, a) of transition to state s′ when taken an action a in
state s; R : S → R is the reward function for a state-action
pair; and γ ∈ (0, 1) is the discount factor for future rewards.
A stationary policy π : S → A is a mapping from states
to actions and denotes a mechanism for choosing actions.
An episode is a sequence of transitions: (s1, a1, r1, s2, . . .).
It must be noted that in our application we have consid-
ered that the state space consists of two platform inertial
coordinates, i.e. s = (x, y), while the action is related to
the translation of the marine platform. However, including
the orientation ψ of the body-fixed frame to the set of state
features constitutes a subject for future research study.

The Q-function Q : S × A → R of the policy π gives
for every state-action pair (s, a) the expected return when
starting in s applying action a and following π thereafter.
Q-values can be evaluated by solving the following set of
linear Bellman equations:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a

Q(s′, a). (16)

The objective of RL problems is to estimate an optimal pol-
icy π∗ by choosing actions that yield the optimal action-state
value function Q∗: π∗(s) = arg maxaQ

∗(s, a).
A common choice is to consider linearly parameterized Q-

function approximators. This can be done using a set of k
basis functions φ(s, a) = [φ1(s, a), . . . , φk(s, a)]>:

Q(s, a) = φ(s, a)>w =

k∑
j=1

φj(s, a)wj , (17)

where w = (w1, . . . , wk) is a vector of weights which are
unknown and must be estimated so as to minimize the ap-
proximation error. The selection of the basis functions is
very important and must be chosen to encode properties of
the state and action relevant to the proper determination of
the Q values.

In our work we have used RBF basis functions:

φj(s) = exp(−βj‖s− cj‖2) , (18)

for a given collection of centers cj and precision (inverse vari-
ance) βj . Note that we have considered common precision
to all k functions, i.e. βj = β. In order to obtain the param-
eters of these k basis functions we have following the idea
of tile coding that is based on (uniformly) partitioning the
state space on k non-overlapping regions and obtaining their
geometrical features (center and width). An alternative
way is to employ Fourier basis functions [8] for value func-
tion approximation, described as (nth order Fourier basis):
φj(s) = cos(πc>j s). The latter provides a non-parametrized
kernel formulation. However, in both cases the number and
the structure of k basis functions remain fixed during the
learning process.

Policy iteration is a dynamic programming algorithm, which
starts with an arbitrary policy and steadily improves it. It
discovers the optimal policy by generating a sequence of
monotonically improving policies. The policy iteration al-
gorithm manipulates the policy directly instead of finding
it via the value function, as happens in the case of value
iteration. Policy iteration consists of two successive, inter-
active phases: the policy evaluation where the value function
of policy π is computed and the policy improvement. The
above two phases are executed iteratively until policy π can-

not be further improved. In this case, the policy iteration
algorithm converges to the optimal policy π∗.

Least-Squares Policy Iteration (LSPI) [9] is a batch ap-
proximate policy iteration algorithm. It adopts the approx-
imate policy-iteration framework and uses a model-free ver-
sion of the least-squares temporal difference learning (LSTD).
The action-value function Q, is approximated instead of
the state-value function, while action selection and policy
improvement are permitted without the need of any prior
knowledge of the environment dynamics. In its original
form, the LSPI is an off-line algorithm and requires a set
of training examples: D = {si, ai, ri, s′i|i = 1, . . . , n}, which
are used at each iteration in order to evaluate the derived
policies. During the policy evaluation step, the matrix A
(size k × k) and the vector b (size k × 1), are computed
following the previously learned policy π, respectively, as
follows:

A =

n∑
i=1

φ(si, ai)(φ(si, ai)− γφ(s′i, π(s′i)))
>, (19)

b =
n∑
i=1

φ(si, ai)ri. (20)

At the policy improvement step, matrix A and vector b are
used in order to yield an improved policy. In this way, the
least-squares projection error for the state-value function Q,
is minimized as:

w = A−1b. (21)

The whole procedure is implemented iteratively, until a con-
vergence criterion is satisfied. The model parameters are
initialized arbitrarily or are set to 0.

A number of approaches have been proposed for render-
ing the LSPI framework in an online mode. Recently, an
online variant of the LSPI has been presented in [2], where
the ε-greedy exploration scheme is adopted. This approach
is based on an online scheme, where at each time step t an
action is selected greedily, based on the estimated action-
value function with probability 1 − εt (εt ∈ [0, 1]), while a
uniform random exploratory action is applied with proba-
bility εt. Initially, the parameter ε0 is set to a large value
(e.g., ε0 = 1), while it decays exponentially over time with
a decay rate εd ∈ (0, 1). In the particular scheme, policy
improvement can be implemented after a number of consec-
utive transitions. In our study we have followed this scheme
where policy improvement were performed either every 30
transitions, or at the end of each episode. Another inter-
esting online approach is the one presented in [10]. In that
work, the R-max exploration scheme is integrated in the
LSPI learning algorithm.

4. EXPERIMENTAL RESULTS
We have studied the performance of the proposed method

using several simulated experiments. Note that this is only a
preliminary experimental study and further tests are needed
in order to improve and verify some technical issues of the
framework. The simulation environment has been imple-
mented using the MATLAB software package. The envi-
ronment includes the kinematic and dynamic model of the
marine platform, and the environmental wind disturbances.
In all cases the integration time step was set to dt = 0.2.

During our experiments we have designed grid maps as
test environments that contain obstacles of various difficulty.



target

wind direction

Figure 3: The estimated optimum policies and the
navigation path in the case of the first test environ-
ments

The objective of the marine vehicle in this task was to find a
steady landmark with a minimum number of steps starting
from a particular position and performing a finite number
of actions. The map was completely unknown to the plat-
form and the study was focused on the proposed method’s
ability to generate a physically realizable path at a reason-
able computational cost under its motion constraints and
the external disturbances.

Figures 3 and 4 illustrates two experimental maps of differ-
ent complexity, where the landmark is presented as a small
rectangle. Also, the (stochastic) direction of the wind was
chosen to be 0 degrees (std 1) and the (stochastic) wind
velocity magnitude 7 kn (std 0.04). During the learning
process a new episode starts when one of the following in-
cidents comes first: the maximum allowed number of steps
per episode is expired (in our case was set to 1000), an ob-
stacle is hit, or the target is reached. At each time step, the
marine vehicle receives an immediate reward of −1, except
in the case that an obstacle is hit where the received reward
is −100. Finally, when the target is found a reward of 1 is
returned.

For the construction of the basis functions we have used
an equidistant 5 × 5 grid of RBFs over the 2D state space,
after performing a [0, 1] normalization. Therefore, a num-
ber of 25×K RBFs were constructed, where K denotes the
number of different actions. The action space corresponds to
the translation of the platform defined by the forces Fx and
Fy (magnitude and direction). Even if in this study we have
used a constant force magnitude of 15000 N , we could alter-
natively consider a discrete set of different level magnitude
values. This may offer the flexibility to make the proposed

wind direction

target

Figure 4: The estimated optimum policy and the
and navigation path in the case of the second test
environments

intelligent agent more adaptive and robust to environmental
situations and external disturbances. On the other hand we
have considered 4 values for the force direction, leading to
a final discrete action space that consists of K = 4 possible
actions). Finally, in all domains, the discount factor γ was
set equal to 0.99,

The depicted results are illustrated in Figures 3, 4 that
give the final solution paths from the selected steady state
to the goal state (target), consisting of a number of around
100 steps. We also give in Figure 5 the depicted learning
curves of the proposed RL model. In particular the progress
of the calculated mean reward value of the last 50 episodes
is shown (Fig. 5 (a)), as well as the mean success rate of the
method, i.e. the frequency of finding the target (computed
from the last 50 episodes). Note that the RL converges to the
optimal solution after (approximately) 200 episodes in either
case. Finally, we also present in Figures 3, 4 the learned
policies of the method in both grids after 1000 episodes, in
terms of the calculated values of the Q-function. As it can
be observed, the proposed method successfully found sub-
optimum policies in both test environments.

It must be noted that, according to our experimental
study, the number and the structure of the basis functions
constitutes a significant issue to the performance of out
method. Even if the number of 25 basis functions gave a
satisfactory behavior in both environments, their proper de-
termination and adaptation suggests a future direction in
our study.

5. CONCLUSIONS AND DISCUSSION
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Figure 5: Learning curves as depicted from the RL
model in the case of two test environments. The es-
timated reward value (a) and the frequency of target
found (b) per episode are shown.

In this study we presented an autonomous navigation frame-
work of a triangular floating marine platform involving a re-
inforcement learning scheme. The method tries to learn the
policy function and estimate a target position according to
a least-squares mechanism that uses RBF kernel functions.
The system is over-actuated and allows on-line learning ca-
pabilities. Simulated results illustrated its performance un-
der environmental disturbances.

As noted before, we took only some preliminary results
and further experimental study is required. In particular, we
plan to verify the proposed algorithm in the future in a more
complex simulated environment including additional distur-
bance sources, i.e. environmental disturbance forces/torque
due to sea current and waves, and state measurement noise
due to GPS measurement error. Moreover, the model of the
platform will be extended with the addition of the actuation
dynamics and constraints, i.e. the jet rotation dynamics and
bounds, and the diesel engines dynamics. Finally, a signif-
icant issue in constructing reinforcement learning agents in
Markov decision processes is how to design efficient feature
spaces. Our primitive aim is to address this challenge in the
marine vehicle navigation problem under two aspects: a) to
study alternative schemes for constructing appropriate basis
functions, and b) to model the marine navigation task with
partially observable Markov decision processes (POMDPs).
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