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Abstract— This paper investigates the use of reinforcement
learning for the motion planing of an autonomous triangular
marine platform in unknown environments under various envi-
ronmental disturbances. The marine platform is over-actuated,
i.e. it has more control inputs than degrees of freedom. The
proposed approach uses an online least-squared policy iteration
scheme for value function approximation in order to estimate
optimal policy. We evaluate our approach in simulation, taking
under consideration the dynamics of the platform, the dynamics
and limitations of the actuators, under the presence of wind,
and sea current disturbances. We report simulation results
concerning its performance on estimating optimal navigation
policies to unknown environments. Despite the model dynamics,
the actuation dynamics and limitations, and the environmental
disturbances, the presented results are promising.

I. INTRODUCTION

Marine vehicle navigation aims at finding a route through
obstacles and constructing a motion planner in terms of a
feasible sequence of actions that allow to move a marine
vehicle from an initial ”configuration” to a goal ”configu-
ration”. Ideally, such planner tries to optimize an objective
function consisting of attributes such as plan duration, energy
expanded, etc.

There is a tremendous need for developing fast analytic al-
gorithms for predicting the collision probability due to model
uncertainty and random disturbances in the environment for
a planar holonomic vehicle such as a marine surface vessel
[1], [2]. These predictions lead to a robust motion planning
algorithm that discovers the optimal motion plan quickly and
efficiently. Incorporating model learning into the predictions
exhibits emergent active learning strategies to safely and
effectively complete the mission.

A flexible framework for motion planning and autonomous
vehicle navigation is through Reinforcement Learning (RL)
[3], [4]. RL aims at controlling an autonomous agent in un-
known stochastic environments. Typically, the environment
is modeled as a Markov Decision Process (MDP), where
the agent receives a scalar reward signal that evaluates every
transition. The objective is to maximize its long-term profit
that is equivalent to maximizing the expected total discounted
reward. Value function is used for measuring the quality
of a policy, which associates to every state the expected
discounted reward when starting from this state and all
decisions are made following the particular policy. A plethora
of methods have been proposed during the last two decades
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using a variety of value-function estimation techniques [4],
[5].

The temporal difference algorithms provide a nice frame-
work for policy evaluation since they have the flexibility
to handle large or continuous state space of real world
applications. More specifically, least-squares temporal dif-
ference (LSTD) family of methods is very popular mech-
anism for approximating the value function that performs
an iterative procedure for optimal policy estimation. Finally,
model-based approaches for value function approximation
have been also proposed based on on-line schemes, through
Gaussian processes [6], clustering schemes [7], or regression
tree models [8], [9].

In the literature there are some marine robotic applications,
mostly involving autonomous underwater vehicles (AUV),
using reinforcement learning, see for a survey in [10],
and in [20]. In [10] for example a neural networks-based
reinforcement learning scheme is presented for high-level
control of AUV’s. In [11] another approach is proposed
for motion planning of under-actuated AUV in unknown
non-uniform sea flow. A recent work, presented in [12],
proposes a path planning algorithm for an under-actuated
marine vehicle in the presence of ocean current disturbances,
based on reinforcement learning. Nevertheless, the marine
vehicle is described only by the kinematic model.

Our work focuses on the development of an intelligent
navigation mechanism based on reinforcement learning, for
the over-actuated autonomous triangular marine platform
shown in Fig. 1. To our knowledge, this is the first time
that a reinforcement learning scheme is proposed for the
autonomous navigation of an over-actuated marine vehicle.
The detailed model of the platform can be found in [13].
Controllers for the problem of the autonomous dynamic
positioning of the platform have been proposed in [13] and
[14]. Here, we examine the problem of the determination
of a desired path in an unknown environment under various
environmental disturbances. The required forces and moment
are provided by three rotating pump jets, consequently the
system is over-actuated, i.e., it has more control inputs
than degrees of freedom (DOF). A proper control allocation
scheme is implemented, see [13], to allow for optimal
allocation of the effort without violating thruster capabilities.

The proposed on-line reinforcement learning algorithm
which is based on least square policy iteration (LSPI) [15],
[16], aims at the determination of a near-optimal path in
the presence of realistic environmental wind and sea current
disturbances. Simulation results show that the generated
path is tracked successfully by the marine platform, which
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Fig. 1. The triangular marine platform.

is described not only by the kinematic but also by the
dynamic model. Moreover, the dynamics and limitations
of the actuation system are modeled into the simulation
environment. One of the main advantages of this method is
that it is model free, meaning that in the design process we
did not use any explicit knowledge about the system model.
This makes the method robust to model uncertainties and
noise, as it is demonstrated in our results. Another advantage
is that it can be implemented as an online learning algorithm
which brings us a step further towards fully autonomous
marine platform.

II. THE MARINE PLATFORM

The marine platform is designed to assist in the deploy-
ment of a deep-sea cubic kilometer neutrino telescope. It
consists of a triangular structure mounted on three hollow
double-cylinders, one at each corner of the structure, see Fig.
1. The plane of the triangle is parallel to the sea surface. The
cylinders provide the necessary buoyancy, as part of them
is immersed in the water. The platform actuation is realized
using three fully submerged pump-jets, located at the bottom
of each cylinder. Diesel engines drive the pumps, while
electro-hydraulic motors rotate the jets providing vectored
thrust. A comprehensive description can be found in [13].

A. Kinematics

The main body of the structure has the shape of an
isosceles triangle with side length LAB = LAC , and base
length LBC . The center of mass (CM) of the platform is
at point G, see Fig. 2. We focus on the platform planar
motion; actuation and control along the heave axis, and about
the roll and pitch axes, are beyond the scope of this work.
Under these assumptions, the kinematics equations of the
plane motion are described by:

ẋẏ
ψ̇

 =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

uv
r

 ⇒ I ẋ = IRB
Bv (1)

In (1), x and y represent the platform CM inertial coordi-
nates and ψ describes the orientation of the body-fixed frame
{B}, whose origin is at the platform CM; u and v are the
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Fig. 2. A 2D representation of the triangular platform.

surge and sway velocities respectively, defined in the body-
fixed frame {B}, and r is the yaw (angular) velocity of the
platform.

B. Dynamics

We consider three types of forces acting on the CM of
the platform: (a) the control forces/ torque from the jets, (b)
the hydrodynamic forces due to the motion of the cylinders
with respect to the moving water, and (c) the disturbance
forces/torque due to wind.

1) Control forces/torque: The jets can provide vectored
thrust and thus more flexibility in control design. The JA,
JB , and JC in Fig. 2 denote the magnitudes of the thrusts
while ϕA, ϕB , and ϕC denote the force directions. These
thrusts provide control resultant forces in xb and yb axes,
the Fx and Fy respectively acting on the CM, and a torque
Mz about zb, according to the linear transformation:

Bnc = [Fx, Fy,Mz]
T = BBfc (2)

B =


1 0 0
0 −1 −dAG

1 0 −dDC

0 −1 dDG

1 0 dDC

0 −1 dDG



T

, Bfc =


JA sinϕA
JA cosϕA
JB sinϕB
JB cosϕB
JC sinϕC
JC cosϕC

 (3)

where Bnc is the control force/torque vector, and the di-
mensional parameters in B are defined in Fig. 2. The vector
Bfc can be retrieved by the pseudoinversion of B in 2. The
desired jet thrust and direction are calculated according to,

Ji =
√
(fi sinϕi)2 + (fi cosϕi)2 (4)

ϕi = arctan(fi sinϕi, fi cosϕi) (5)

where i = A,B,C. Note that the desired jet thrust and direc-
tion cannot be applied immediately due to actuator dynamics
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and limitations. A detailed description of the dynamics and
limitations of the actuation system of the platform can be
found in [13].

2) Hydrodynamic forces: Assuming a constant or slowly
varying water velocity, the hydrodynamic force acting on
each cylinder includes two terms. The first term is the added
mass force, which is a linear function of the acceleration of
each cylinder. The second term is the drag force, which is a
quadratic function of the relative velocity between the water
and each cylinder, see [17]. As an example, the normal to the
axis of each cylinder force on the double-cylinder structure
at point A, expressed in body-fixed frame {B} is given by:

Bfh,A = Caπρw[R
2
uc(Huc − h) +R2

lcHlc](−BaA)+

Cdρw[Ruc(Huc − h) +RlcHlc]

∥(Bvcur −B vA)∥(Bvcur −B vA)

(6)

where ρw is the water density, Ca is the added mass
coefficient, and Cd the drag coefficient. BvA and BaA
are the velocity and acceleration of cylinder A respectively
expressed in the body-fixed frame. Bvcur denotes the sea
current velocity expressed in the body-fixed frame. The
parameters h, Ruc, Huc, Rlc, and Hlc denote the height
of the cylinder above the water surface, and the radius and
height of the upper and lower cylinder sections respectively.
The hydrodynamic forces on A given by Eq. 6 result in a
force acting on the platform CM and a moment about it, i.e.,

Bqh,A = [BfTh,A, (
BsA/G ×B fh,A)

T ]T (7)

where BsA/G is the position of point A with respect to G
expressed in {B}, see Fig. 2. All terms that are a quadratic
function of the velocity of the platform are collected in
vector,

Bq = [fx, fy, nz]
T (8)

3) Environmental disturbances: We define the disturbance
vector Bqwind, which represents wind generated disturbance
forces and torque, see [18]. Integrating Gaussian white noise
produces the inertial wind velocity magnitude and direction
used in the simulations, see Fig. 3. The wind velocity
magnitude, vw(t), is limited such that vw(t) ≤ 7.9 m/s (15
kn or 4 Beaufort).

The sea current induced forces and moments are included
in the dynamic equations of motion by representing (6) in
terms of sea current velocity Bvcur. The inertial sea current
velocity magnitude and direction used in the simulations are
produced by integrating Gaussian white noise, see Fig. 4.
The sea current velocity magnitude, vc(t), is limited such
that vc(t) ≤ 0.5 m/s.

4) Equations of motion of the platform: Using the above
preliminaries, and assuming that the CM of the platform is
at the triangles centroid, we derive the planar equations of
motion of the platform, in {B}:

MBv̇ = Bq+ Bqwind +
Bnc (9)
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Fig. 3. Wind disturbances used in simulations.
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Fig. 4. Sea current velocity and direction.

M =

m− 3ma 0 0
0 m− 3ma 0
0 0 m33

 (10)

m33 = Izz − (d2AG + 2d2BD + 2d2DG)ma (11)

ma = −Caπρw[R
2
uc(Huc − h) +R2

lcHlc] (12)

where m is the mass of the platform, ma is its added mass,
and Izz is its mass moment of inertia about the zb axis.
The model described by (9) is used in all simulation runs
presented in Section IV.

It must be noted that in the proposed RL-based framework,
presented in the next Section, only the x, y inertial coordi-
nates are considered, and consequently the resulted action
is related only to the translation of the marine platform.
However, the rotation of the platform is controlled indepen-
dently according to a PD controller that aims at stabilizing
the platform orientation to a desired angle in the presence
of realistic wind disturbances. The desired orientation of
the platform coincides with the direction of the wind. This
configuration results to reduced disturbance forces/torque,
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due to the reduction of the projected area to the wind.
Consequently, the torque Mz is calculated according to,

Mz = Kp(ψw − ψ)−Kdr (13)

where Kp and Kd are the controller gains, and ψw denotes
the direction of the wind.

Nevertheless, including the orientation ψ of the body-fixed
frame to the set of state features in our RL-based framework
constitutes a subject for future research study.

III. REINFORCEMENT LEARNING FOR AUTONOMOUS
MARINE VEHICLE NAVIGATION

The RL framework considers that the environment is
modeled as a Markov decision process (MDP). An MDP
can be described as a five-tuple (S,A, P,R, γ), where S is
a set of states; A a set of actions; P : S ×A×S → [0, 1] is
a Markovian transition model that specifies the probability
P (s′|s, a) of transition to state s′ when taken an action a in
state s; R : S → R is the reward function for a state-action
pair; and γ ∈ (0, 1) is the discount factor for future rewards.
A stationary policy π : S → A is a mapping from states to
actions and denotes a mechanism for choosing actions. An
episode is a sequence of transitions: (s1, a1, r1, s2, . . .). As
noted before in our application we have considered that the
state space consists of two platform inertial coordinates, i.e.
s = (x, y), while the action is related to the translation of
the marine platform.

The Q-function Q : S × A → ℜ of the policy π gives
for every state-action pair (s, a) the expected return when
starting in s applying action a and following π thereafter.
Q-values can be evaluated by solving the following set of
linear Bellman equations:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a

Q(s′, a). (14)

The objective of RL problems is to estimate an optimal
policy π∗ by choosing actions that yield the optimal action-
state value function Q∗: π∗(s) = argmaxaQ

∗(s, a).
A common choice is to consider linearly parameterized

Q-function approximators. This can be done using a set of
k basis functions ϕ(s, a) = [ϕ1(s, a), . . . , ϕk(s, a)]

⊤:

Q(s, a) = ϕ(s, a)⊤w =
k∑

j=1

ϕj(s, a)wj , (15)

where w = (w1, . . . , wk) is a vector of weights which
are unknown and must be estimated so as to minimize the
approximation error. The selection of the basis functions is
very important and must be chosen to encode properties of
the state and action relevant to the proper determination of
the Q values.

In our work we have used RBF basis functions:

ϕj(s) = exp(−βj∥s− cj∥2) , (16)

for a given collection of centers cj and precision (inverse
variance) βj . Note that we have considered common preci-
sion to all k functions, i.e. βj = β. In order to obtain the

parameters of these k basis functions we have following the
idea of tile coding that is based on (uniformly) partitioning
the state space on k non-overlapping regions and obtaining
their geometrical features (center and width). An alternative
way is to employ Fourier basis functions [19] for value func-
tion approximation, described as (nth order Fourier basis):
ϕj(s) = cos(πc⊤j s). The latter provides a non-parametrized
kernel formulation. However, in both cases the number and
the structure of k basis functions remain fixed during the
learning process.

Policy iteration is a dynamic programming algorithm,
which starts with an arbitrary policy and steadily improves
it. It discovers the optimal policy by generating a sequence
of monotonically improving policies. The policy iteration
algorithm manipulates the policy directly instead of finding
it via the value function, as happens in the case of value
iteration. Policy iteration consists of two successive, interac-
tive phases: the policy evaluation where the value function of
policy π is computed and the policy improvement. The above
two phases are executed iteratively until policy π cannot be
further improved. In this case, the policy iteration algorithm
converges to the optimal policy π∗.

Least-Squares Policy Iteration (LSPI) [15] is a batch
approximate policy iteration algorithm. It adopts the ap-
proximate policy-iteration framework and uses a model-free
version of the least-squares temporal difference learning
(LSTD). The action-value function Q, is approximated in-
stead of the state-value function, while action selection and
policy improvement are permitted without the need of any
prior knowledge of the environment dynamics. In its original
form, the LSPI is an off-line algorithm and requires a set of
training examples: D = {si, ai, ri, s′i|i = 1, . . . , n}, which
are used at each iteration in order to evaluate the derived
policies. During the policy evaluation step, the matrix A (size
k×k) and the vector b (size k× 1), are computed following
the previously learned policy π, respectively, as follows:

A =
n∑

i=1

ϕ(si, ai)(ϕ(si, ai)− γϕ(s′i, π(s
′
i)))

⊤, (17)

b =
n∑

i=1

ϕ(si, ai)ri. (18)

At the policy improvement step, matrix A and vector b are
used in order to yield an improved policy. In this way, the
least-squares projection error for the state-value function Q,
is minimized as:

w = A−1b. (19)

The whole procedure is implemented iteratively, until a
convergence criterion is satisfied. The model parameters are
initialized arbitrarily or are set to 0.

A number of approaches have been proposed for rendering
the LSPI framework in an online mode. Recently, an online
variant of the LSPI has been presented in [16], where the ϵ-
greedy exploration scheme is adopted. This approach is based
on an online scheme, where at each time step t an action
is selected greedily, based on the estimated action-value
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function with probability 1−ϵt (ϵt ∈ [0, 1]), while a uniform
random exploratory action is applied with probability ϵt.
Initially, the parameter ϵ0 is set to a large value (e.g., ϵ0 = 1),
while it decays exponentially over time with a decay rate
ϵd ∈ (0, 1). In the particular scheme, policy improvement can
be implemented after a number of consecutive transitions.
In our study we have followed this scheme where policy
improvement were performed either every 30 transitions,
or at the end of each episode. Another interesting online
approach is the one presented in [20]. In that work, the R-
max exploration scheme is integrated in the LSPI learning
algorithm.

IV. SIMULATION RESULTS

We have studied the performance of the proposed method
using several simulated experiments. The simulation environ-
ment has been implemented using the MATLAB software
package. The environment includes the kinematic and dy-
namic model of the marine platform, and simulated wind and
sea current disturbances, Moreover, the dynamics and limits
of the actuators are also implemented into the simulation
environment. In all cases the integration time step was set to
dt = 0.2.

During the simulation runs we have designed grid maps as
test environments that contain obstacles of various difficulty.
The objective of the marine vehicle in this task is to find a
steady landmark with a minimum number of steps starting
from a particular position and performing a finite number of
actions. The map was completely unknown to the platform
and the study was focused on the proposed method’s ability
to generate a physically realizable path at a reasonable
computational cost under its motion constraints and the
external disturbances.

Figures 5 and 6 illustrates two experimental maps of
different complexity, where the landmark is presented as a
small rectangle. Also, the (stochastic) direction of the wind
was chosen to be 90 degrees (std 1) and the (stochastic)
wind velocity magnitude 7 kn (std 0.04). During the learning
process a new episode starts when one of the following
incidents comes first: the maximum allowed number of steps
per episode is expired (in our case was set to 1000), an
obstacle is hit, or the target is reached. At each time step, the
marine vehicle receives an immediate reward of −1, except
in the case that an obstacle is hit where the received reward
is −100. Finally, when the target is found a reward of 1 is
returned.

For the construction of the basis functions we have used
an equidistant 5× 5 grid of RBFs over the 2D state space,
after performing a [0, 1] normalization. Therefore, a number
of 25 × K RBFs were constructed, where K denotes the
number of different actions. The action space corresponds
to the control forces Fx and Fy . Even if in this study
we have used a constant force magnitude of 15000 N ,
we could alternatively consider a discrete set of different
level magnitude values. This may offer the flexibility to
make the proposed intelligent agent more adaptive and robust
to environmental situations and external disturbances. On

target

wind direction

Fig. 5. Optimum policies and navigation path in the case of two test
environments.

wind direction

target

Fig. 6. Optimum policies and navigation path in the case of two test
environments.
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Fig. 7. Learning curves as depicted from the RL model in the case of
two test environments. The estimated reward value (a) and the frequency of
target found (b) per episode are shown.

the other hand we have considered 4 values for the force
direction, leading to a final discrete action space that consists
of K = 4 possible actions). Finally, in all domains, the
discount factor γ was set equal to 0.99,

The depicted results are illustrated in Figures 5, 6 that
give the final solution paths from the selected steady state
to the goal state (target), consisting of a number of around
100 steps. We also give in Figure 7 the depicted learning
curves of the proposed RL model. In particular the progress
of the calculated mean reward value of the last 50 episodes
is shown (Fig. 7 (a)), as well as the mean success rate of
the method, i.e. the frequency of finding the target (computed
from the last 50 episodes). Note that the RL converges to the
optimal solution after (approximately) 200 episodes in either
case. Finally, we also present in Figures 5, 6 the learned
policies of the method in both grids after 1000 episodes, in
terms of the calculated values of the Q-function. As it can
be observed, the proposed method successfully found sub-
optimum policies in both test environments.

It must be noted that, according to our simulation study,
the number and the structure of the basis functions constitutes
a significant issue to the performance of out method. Even
if the number of 25 basis functions gave a satisfactory
behavior in both environments, their proper determination
and adaptation suggests a future direction in our study.

V. CONCLUSIONS AND DISCUSSION

In this study we presented an autonomous navigation
framework of a triangular floating marine platform involving
a reinforcement learning scheme. The method tries to learn
the policy function and estimate a target position according
to a least-squares mechanism that uses RBF kernel functions.
The system is over-actuated and allows on-line learning

capabilities. Simulated results illustrated its performance
under environmental disturbances.

We plan to verify the proposed algorithm in the future
in a more complex simulated environment including ad-
ditional disturbance sources, i.e. environmental disturbance
forces/torque due to waves, and state measurement noise
due to GPS measurement error. Finally, a significant issue
in constructing reinforcement learning agents in Markov
decision processes is how to design efficient feature spaces.
Our primitive aim is to address this challenge in the ma-
rine vehicle navigation problem under two aspects: a) to
study alternative schemes for constructing appropriate basis
functions, and b) to model the marine navigation task with
partially observable Markov decision processes (POMDPs).
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