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Abstract—In this paper, we consider the dynamic modeling 

and the practical implementation of an autonomous dynamic 

positioning scheme, i.e., the stabilization of linear and angular 

velocities as well as the position and orientation, of a floating 

sea triangular platform. The required, closed-loop force and 

moment must be provided by three rotating pump jets, located 

at the bottom of three partly submerged cylinders at the 

corners of the platform. With this control configuration the 

platform is overactuated, i.e., it has more control inputs than 

degrees of freedom (DOF). We present the initial design of a 

control allocation scheme that allows goal realization without 

violating thruster capabilities. Simulation results are presented 

that demonstrate the performance of the controller, and the 

allocation scheme employed. 
 

Index Terms— Floating platform control, rotating jets 

driven platform, control allocation. 

I. INTRODUCTION 

LOATING platforms are widely used in offshore 

petroleum industry, as portable pipeline systems, as 

research, in-the-field laboratories, etc, [1]. These platforms 

must be kept stationary at a desired position and orientation 

in order to accomplish their task. Therefore, these platforms 

are equipped with appropriate actuation systems that provide 

the necessary dynamic positioning to counterbalance the sea 

waves and currents, and the uncertainties in modeling the 

dynamics of the platform. Floating platform dynamics are 

inherently nonlinear due to the rigid body dynamics and, 

more importantly, due to the strong hydrodynamic 

interactions, [2]. Hence, in order to design efficient closed-

loop controllers, nonlinear techniques must be adopted. 

Control allocation schemes must also be designed; usually, 

such vessels have redundant actuators, i.e., they have more 

control inputs than DOF yielding an overactuated control 

system. Thus, the closed-loop control forces and moments 

need to be efficiently distributed to the actuators in such a 

way that the control objective is realized without violating 

the thrusters’ capability. The above problem leads, in 

general, to a constrained optimization problem that is hard to 

solve using even state-of-the-art iterative numerical 

optimization software in a safety-critical real-time system 

with limiting processing capacity, [3]. Though, real-time 

iterative optimization solutions have been proposed [4], [5], 

and [6]. Optimal thrust allocation has been addressed in [7]. 

Thrusters that can be rotated, and thus produce two force 

components in the horizontal plane, are usually mounted 

under the hull of the vessel. Optimization schemes for such 

actuation configurations have been proposed for example in 

[8]. In [9], controllability problems regarding the plane 

motion are studied. 
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In this paper, we consider the dynamic modeling and the 

stabilization of linear and angular velocities as well as the 

position and orientation, of a floating triangular platform 

moving on the sea surface, see Fig. 1. Our main goal is the 

practical implementation of such an autonomous dynamic 

positioning scheme. The required, closed-loop force and 

moment is provided by three rotating pump jets, located at 

the bottom of three partly submerged cylinders at the corners 

of the platform. The system is overactuated, i.e., it has more 

control inputs than degrees of freedom (DOF). Hence, we 

design a properly control allocation scheme in order for the 

control objective to be realized without violating the 

thrusters capability. This scheme is based on the 

maximization of the determinant of the transformation 

matrix relating the control forces and the jet thrust, which is 

a novel approach. This methodology provides a fast, 

reliable, and computationally inexpensive algorithm related 

to the complex, on-line, iterative ones. Simulation results are 

finally presented to demonstrate the performance of the 

controller, and allocation scheme. 
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Figure 1. A 3D representation of the triangular platform.
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II. PLATFORM SYSTEM DESCRIPTION 

In this section, a general description of the floating 

platform is given, along with its geometry, its kinematics, 

and its dynamics. 

A. General Description 

A 3D representation of the platform is shown in Fig. 1. It 

consists of a triangular structure mounted on three double-

cylinders, one at each corner of the structure. The plane of 

the triangle is parallel to the sea surface. These cylinders 

provide the necessary buoyancy since part of their body is 

immersed. The actuation of the platform is realized utilizing 

pump jets at the bottom of the three cylinders, fully 

submerged. A diesel engine drives each pump, while an 

electro-hydraulic motor can rotate the jet providing vectored 

thrust. Currently, the platform is under construction. It will 

be used during the assembly of the deep sea high-energy 

neutrino telescope “NESTOR”, [10]. 

B. Geometry 

The main body of the structure has the shape of an 

isosceles triangle with ABL  ACL  and BCL  the length of the 

base, Fig. 2. 

The structure has its center of mass (CM) coinciding with 

point , along the symmetry axis at a distance  from 

the vertex 
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Figure 2. A 2D representation of the platform. 

Further geometric characteristics are: the distances 

between the vertices ,  and the mid point  of the 

segment , i.e., 

B C D

BC BDd  DCd ; the distance DGd  between 

the points  and G ; the height D ucH  and the radius  of 

the upper cylinder which is partly submerged with  the 

variable height above the sea surface; and the height 

ucR

h

lcH  

and the radius  of the lower cylinder which is fully 

submerged, Fig. 3. 

lcR

C. Kinematics 

To describe the kinematics of plane motion, two reference 

frames are employed, the inertial reference frame {  and 

the body-fixed frame { , see Fig. 2. As shown, the origin 

of {  frame coincides with the platform CM. The 

}I

}B

}B bx  body 

axis is aligned with the symmetry axis of the platform, the 

 points left, and by bz  points upwards. Hence, the 

kinematics equations of the plane motion are: 

  (1a)  x Rv�

where 

 [ , , ]Tx y \ x �� � �  (1b) 

  (1c) [ , , ]Tu rX v

 

0

0

0 0 1

c s

s c

\ \
\ \

�ª º
« » « »
« »¬ ¼

R  (1d) 

with sin( )s�  � , cos( )c�  � . In (1), x  and  represent the 

inertial coordinates of the CM and 

y

\  the orientation of {  

with respect to the {  frame; u  and 

}B

}I X  are the surge and 

sway velocities respectively, defined in the body-fixed 

frame, and  is the yaw (angular) velocity of the platform, 

Fig. 2. 
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Figure 3. A side view of the double-cylinder structure. 

Due to the fact that the hydrodynamics interactions are 

between the water and the submerged part of the cylinders, 

we also need the kinematics relations between the cylinders 

and the CM in order to derive equations for the 

hydrodynamic forces and moments. First, we introduce 

some necessary notations:  is the position of point /

B

A Gs A  

with respect to G  expressed in frame{ , and }B
/

B

B Gs , and 

 have similar meaning; /

B

C Gs [ , ]B T

G u X v  is the linear 
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velocity vector of the CM,  is the linear 

acceleration vector, and 

B B

G  a v�G

rD  �  is the angular acceleration, all 

expressed in frame { . Then, the following geometric 

relations hold: 

}B

 / [ ,0]B T

A G AGd s  (2a) 

 / [ , ]B T

B G DG BDd d �s  (2b) 

 / [ , ]B T

C G DG DCd d � �s  (2c) 

Velocities and accelerations are given by: 

 [ , ]B T

A u rdX �v AG

]

 (3a) 

 2[ ,B T

A AGu r d dX D � �a ��
AG

]

 (3b) 

 [ ,B T

B BD Du rd rdX � �v G

2 ]

 (3c) 

 2[ ,B T

B BD DG DG Bu d r d d r dD X D � � � �a ��
D

]

 (3d) 

 [ ,B T

C DC Du rd rdX � �v G

2 ]

 (3f) 

 2[ ,B T

C DC DG DG Du d r d d r dD X D � � � �a ��
C

2

 (3g) 

D. Dynamics 

The structure is statically balanced in the vertical 

direction because the weight equals buoyancy: specifically, 

when the weight of the structure increases –within certain 

bounds– the cylinders are submerged further, yielding 

increased buoyancy and vice-versa, see Fig. 3. From this 

static balance, the height above the surface is computed as: 

  (4) 2(1/ )( /(3 ) )uc uc lc lch H R m R HSU � �

where U  is the water density and m  is the mass of the 

structure. The hydrodynamic forces are due to the motion of 

the cylinders into the water: the added mass force is a linear 

function of the acceleration of the cylinder, while the drag 

force is a quadratic function of the cylinder velocity. These 

forces are modeled according to Morison’s Equation [11]. 

As an example, we derive here the force on a cylinder at 

point A , expressed in body-fixed frame { : }B

 

2 2[ ( ) ]

       [ ( ) ]

B

A A uc uc lc lc A

B B

D uc uc lc lc A A

C R H h R H

C R H h R H

SU

U

 � � �

� � �

f a

v v
 (5) 

where  is the added mass coefficient and AC DC  the drag 

coefficient. The forces on the cylinder are equivalent with an 

equal force and a moment acting on the CM. For example, 

the force in (5) gives 

  (6) t /

B

G A G us fA

It is already mentioned that the jets can provide vectored 

thrust and thus more flexibility in control design, Fig. 2. The 

magnitudes of the thrusts are denoted by ,AJ  ,BJ  and CJ  

while ,AM  ,BM  and CM  denote the corresponding rotation 

variables. These thrusts provide control forces in bx  and  

axes, 

by

xF  and 
yF  respectively acting on the CM, and torque 

zM  about bz , according to the linear transformation: 

 t ( , , )c A B CM M M B J  (7a) 

where 

  (7b) t [ , , ]T

c x y zF F M 

 

A B C

A B C

AG A DG B DC B DG C DC C

s s s

c c c

d c d c d s d c d s

M M M
M M M
M M M M M

ª º
« » � � �« »
« »� � �¬ ¼

B  (7c) 

 [ , , ]T

A B CJ J J J  (7d) 

Using the above computations we derive the equations of 

motion of the platform in plane motion, expressed in body-

fixed frame { : }B

  (8a) tc �Mv f�

where, the mass and added mass matrix is  

 
2 2 2

3 0 0

0 3 (2 )

0 (2 ) ( 2 2 )

A

A DG AG A

DG AG A zz AG BD DG A

m m

m m d d m

d d m I d d d m

�ª º
« » � �« »
« »� � � �¬ ¼

M (8b) 

with  is the coefficient of the acceleration in (5), and Am zzI  

the mass moment of inertia about the bz  axis. Also, 

  (8c) [ , , ]Tu rX v �� � �

  (8d) [ , , ]T

x y z
f f f f

where  is a nonlinear function of the velocities of the 

system not written here due to space limitations. 

f

III. CLOSED LOOP CONTROL DESIGN 

In this section, we design a closed loop controller for 

dynamic positioning purposes. We assume as closed control 

input the vector . In the next section we transform this in 

jet  vector requirements. From (8a) it is  

tc

J

 t1( c

� ) �v M f�  (9) 

yielding three scalar equations 

 1 2u uu f f Fx ��  (10a) 

 
1 2 3z yf f M f FX X XX  � ��  (10b) 

 
1 2 3r r y rr f f F f M z � ��  (10c) 

where the various f ’s are functions of the states. We 

observe that there are input couplings in (10b) and (10c) but 

the corresponding coefficients 2fX  and 2rf  are very small, 
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justifying the consideration of 2 zf MX  and 
2r yf F  as small 

disturbances that are bounded and that can be counteracted 

by a robust closed loop controller. Hence, in the last two 

equations the control design variables are 
yF  and zM  

respectively. Setting 

 2 11/ ( )x u u u2F f f fD �  (11a) 

 
3 11/ ( )y 3F f f fX X XE �  (11b) 

 3 11/ ( )z r r r3M f f fJ �  (11c) 

with ,D  ,E  and J  auxiliary control design variables, we 

have the system 

 u D �  (12a) 

 2 zf MXX E ��  (12b) 

 
2r yr f FJ ��  (12c) 

From (1a) we can write 

  (13)  �x Rv Rv��� �

Setting the control variables ,D  ,E  and J  from (12) as  

  (14) (T

fb
 �v R f Rv�� )

fb R R R D R R R R

T

P R R R R

t

T

I R R R R

x y x x y y

x x y y

x x y y dt

\ \ \

\ \

\ \

 � � � �

� � � �

� � � �³

f K

K

K

�� � ��� �� � � � �

d p

i

selecting the feedback such as to include integral action, i.e. 

  (15) 

0

[ , , ] [ , , ]

[ , , ]

[ , , ]

T T

with the following positive definite diagonal gain matrices 

, , 

, then the controlled system becomes, 

{ , , }D dx dydiag k k k \ K { , , }P px pydiag k k k \ K

{ , , }I ix iydiag k k k\ K

 

0

( ) ( )

( )

R dx R px R

t

ix R x

x x k x x k x x

k x x dt H

�  � � � �

� � �³

�� �� � �

 (16a) 

 

0

( ) (

( )

)
R dy R py R

t

iy R y

y y k y y k y y

k y y dt H

�  � � � �

� � �³

�� �� � �

 (16b) 

 

0

( ) ( )

( )

R d R p

t

i R

k k

k dt

\ \

\ \

R
\ \ \ \ \

\ \ H

�  � � � �

� � �³

�� �� � � \

 (16c) 

In (16), “R” denotes a reference (desired) variable, and ,xH  

,yH  and \H  are small and bounded disturbances. 

IV. CONTROL ALLOCATION 

In this section, the proposed control allocation scheme 

that has been implemented is illustrated. The goal is to 

distribute the closed-loop control forces and moments 

efficiently to the actuators in such a way that the control 

objective is realized without violating thruster capabilities. 

Equation (7) describes the linear transformation between 

the magnitudes of the three jet thrusts, [ , , ]T

A B CJ J J J , and 

the control variables . In order to realize 

the control algorithm described above, we calculate , 

using (7a), according to: 

t [ , , ]T

c x y z
F F M 

J

  (17) t1( , , )A B C cM M M� J B

It is important for the successful implementation of the 

control algorithm to keep , as low as possible. Hence, we 

examine matrix . Our goal is to find the appropriate 

configuration of matrix B  in order to maintain the vector 

, with the magnitudes of the thrusts, as low as possible. 

J

B

J

In order to keep  low,  must be minimum, or 

equivalently, 

J 1�
B

( )Det B  must be maximized. In other words, 

 should be kept away from singular configurations. Thus, 

the analysis of matrix B  is based on its determinant. 

Although other methods to shape B  exist, we choose this 

determinant-centered method because it results in a 

computationally effective solution, which is very important 

in real time applications. 

B

( )Det B  depends on the geometry of the floating platform 

and the rotation angles of the pump jets. It can be computed 

from the following equation: 

 
( ) cos( )[2 sin( )sin( )

 sin( )] sin( )sin( )

A B C

C B A C B

Det Q

W Q

M M M

M M M M M

 �

� � �

B
 (18) 

where  and W  depend exclusively on platform geometry, 

and are equal to: 

Q

  (19) 
DC

AG DG

Q d

W d d

 

 �

The first step of our analysis is to find, using (18), the 

combinations of ,AM  ,BM  and CM  that make ( )Det B  equal 

to zero, and consequently infinite required jet thrusts values. 

From (18) we obtain that: 

 

( ) 0

2 sin( )sin( ) sin( )
tan( )

sin( )

B C C B

A

C B

Det

B A
A

Q

M M M M
M

M M

 �

� �
 

�

B

 (20) 

Figure 4 shows these combinations of the jet angles, 

where 0 , /B C 2M M S� � . Avoiding these angle sets we 

ensure that the control algorithm does not requires infinite 

jet thrusts values. Similar surfaces can be obtained for the 

entire jet angles range ( 0 2S� ). 

The extensive search of ( )Det B  results in the following 

interesting conclusion. ( )Det B  is zero when: 

(a) 0&B C kM M S  , where . 1,2k  

(b) &B Ck 0M S M  , where . 1,2k  
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(c) B C kM M  S , where . 0,1,2k  

(d) & 2B CM S M S   or 2 &B CM S M S  . 

(e) ( / 2)&( )A B Cl kM S M M � 1,3 S , l  & 1,2,3...k  . 

(f) &i j q iM M M M S  �  where . , , , ,i j q A B C 
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Figure 4. Sets of ,AM  ,BM  and CM  that make ( )Det B  equal to zero. 

The next step of our analysis is to find the appropriate jet 

angles sets resulting in maximum ( )Det B  and guarantee the 

minimum required jet thrusts values. We consider as 

acceptable all jet angles sets, which result in a ( )Det B  that 

satisfies the following relation: 

 ( ( , , ) ) max[ ( ( , , ))]
acA B C A B CDet k DetM M M M M MtB B  (21) 

where  is a factor high enough to ensure feasible and cost 

effective jet thrusts values. 

k

Employing an extensive search, we obtain the result 

shown in Figs. 5 and Fig. 6.  
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Figure 5. Sets of ,AM  ,BM  and CM  that make ( )Det B  higher that 50% of 

the maximum value ( 0 , , 2A B CM M M S� � ). 

In Fig. 5 all three jet angles are between 0 and 2S  (rad). 

The points shown are representing the resulting angle 

triplets by setting . Since the results shown in Fig. 5 

are repeated with a period of 

0.5k  
S , and for a more clear view, 

in Fig. 6 all three jet angles are between 0 and S  (rad). 

Again the points shown are representing the resulting 

angle triplets by setting . In both figures a darker 

gray color represents a higher value for 

0.5k  
( )Det B . Choosing 

jet angles triplets from the above shown areas we ensure that 

the jet thrust values required for the realization of the control 

algorithm are feasible and cost effective. This is also 

demonstrated in the next chapter where some simulation 

runs are described. 
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Figure 6. Sets of ,AM  ,BM  and CM  that make ( )Det B  higher that 50% of 

the maximum value ( 0 , ,A B CM M M S� � ). 

V. SIMULATIONS 

In this section we present simulation results to 

demonstrate the performance of the controlled dynamical 

system. Some characteristic parameters used are given: 

geometric data 45,ABL    , 35,BCL  3
425 10m  u 2.2,ucR   

6.5,ucH   3.5,lcR   , all in SI units and the 

hydrodynamic coefficients are  

3lcH  

0.8,DC  0.6AC  . The 

gains of the controller were chosen as dxk  0.4dyk  , 

0.2dk \  , 
pxk  pyk  0.1pk \  , and ixk  

iyk  0.0ik\   

i.e., no integral action is implemented initially. 

The control objective is to drive the platform from some 

initial configuration to point zero for the position, 

orientation, and velocity variables. The initial errors are set 

as || || 1ex  , || || 1ey  , in m, || || 5e\  deg, || || 0.3eu  , 

|| || 0.2eX  , in m/s, and, ||  in rad/s. In Fig. 7, the 

resulting trajectory of the CM of the platform in the inertial 

2D space is displayed. 

|| 0.01er  

Fig. 8 (a, b, c, d, e, and f) shows the thrusts of the jets and 

the corresponding angles chosen, according the search 

results shown in Fig. 6, required to realize the closed loop 

control forces and moments computed in Section III. 

The linear and angular velocities which converge after 

 s, are depicted in Fig. 9 (a, c, and e,) while in Fig. 9 (b, 

d, and f) we observe the smooth convergence of the position 

and orientation variables to the desired values after about 

 s as well. 

40

40
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Figure 7. The 2D path of the CM of the platform. 

0 10 20 30 40
-2

0

2
x 10

4

t, [s]

Je
tA

, 
[N

]

0 10 20 30 40
-1

0

1

t, [s]

p
h
iA

, 
[d

eg
]

0 10 20 30 40
-2

0

2
x 10

4

t, [s]

Je
tB

, 
[N

]

0 10 20 30 40
78

80

82

t, [s]

p
h
iB

, 
[d

eg
]

0 10 20 30 40
-5

0

5
x 10

4

t, [s]

Je
tC

, 
[N

]

0 10 20 30 40
30

35

40

t, [s]

p
h
iC

, 
[d

eg
]

��� ���

��� ���

��� ���

 
Figure 8. (a), (c), (e) Jet thrusts, and (b), (d), (f) Jet angles. 
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Figure 9. (a), (c), (e) Linear and angular velocities, and (b), (d), (f) Position 

and orientation variables. 

In order to improve the performance of the controller so 

as to counterbalance environmental disturbances e.g., sea 

current, we activate next the integral part of the controller 

setting ix iy
. Also, we impose a sea current 

with velocity magnitude 

k  k  0.01ik\  
2v   m/s. In Fig. 10, the 

dynamic positioning performance of the added integral 

action of the controller is illustrated against the sea current 

disturbances, with the direction indicated on the figure. 
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Figure 10. Dynamic positioning with integral action and sea disturbances. 

VI. CONCLUSION 

This paper reports initial work on the dynamic modeling 

and dynamic positioning of a floating triangular platform. 

The required, closed-loop force and moment is provided by 

three rotating pump jets, located at the bottom of three partly 

submerged cylinders located at the corners of the platform. 

The system is overactuated, i.e., it has more control inputs 

than degrees of freedom (DOF). Hence, we designed an 

appropriate and novel control allocation scheme in order for 

the control objective to be realized without violating thruster 

capabilities. The scheme is based on the maximization of the 

determinant of the transformation matrix relating the control 

forces to the jet thrust. This methodology provides a fast, 

reliable, and computationally inexpensive algorithm 

compared to the complex, on-line, iterative ones. Simulation 

results were presented to demonstrate the performance of the 

controller and allocation scheme. 
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