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This paper investigates the use of reinforcement learning for the navigation of an over-

actuated, i.e. more control inputs than degrees of freedom, marine platform in un-

known environment. The proposed approach uses an online least-squared policy iteration
scheme for value function approximation in order to estimate optimal policy, in conjunc-

tion with a low-level control system that controls the magnitude of the linear velocity,
and the orientation of the platform. Primary goal of the proposed scheme is the reduc-

tion of the consumed energy. To that end, we propose a variable reward function that

depends on the energy consumption of the platform. We evaluate our approach in a com-
plex and realistic simulation environment and report results concerning its performance

on estimating optimal navigation policies under different environmental disturbances,

and position GPS measurement noise. The proposed framework is compared, in terms
of energy consumption, to a baseline approach based on virtual potential fields. The

results show that the marine platform successfully discovers the target point following

a sub-optimal path, maintaining reduced energy consumption.

Keywords: Reinforcement learning; autonomous navigation; over-actuated marine vehi-

cle; energy reduction.
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1. Introduction

Marine vehicle navigation aims at finding a route through obstacles and construct-

ing a motion planner in terms of a feasible sequence of actions that allow to move

a marine vehicle from an initial “configuration” to a goal “configuration”. Ideally,

such planner tries to optimize an objective function consisting of attributes such

as plan duration, energy consumption, etc. Robust motion planning algorithms for

mobile robots consider stochasticity in the dynamic model of the vehicle and the

environment.

There is a tremendous need for developing fast analytic algorithms for pre-

dicting the collision probability due to model uncertainty and random distur-

bances in the environment for a planar holonomic vehicle such as a marine surface

vessel.1,2 These predictions lead to a robust motion planning algorithm that discov-

ers the optimal motion plan quickly and efficiently. Incorporating model learning

into the predictions exhibits emergent active learning strategies to safely and effec-

tively complete the mission.

A flexible framework for motion planning and autonomous vehicle navigation

is through Reinforcement Learning (RL).3,4 RL aims at controlling an autonomous

agent in unknown stochastic environments. Typically, the environment is modelled

as a Markov Decision Process (MDP), where the agent receives a scalar reward

signal that evaluates every transition. The objective is to maximize its long-term

profit that is equivalent to maximizing the expected total discounted reward. Value

function is used for measuring the quality of a policy, which associates to every

state the expected discounted return when starting from this state and all deci-

sions are made following the particular policy. A plethora of methods have been

proposed during the last two decades using a variety of value-function estimation

techniques.4,5 The temporal difference algorithms provide a suitable framework for

policy evaluation since they have the flexibility to handle large or continuous state

space of real-world applications. More specifically, least-squares temporal difference

(LSTD) family of methods is very popular mechanism for approximating the value

function that performs an iterative procedure for optimal policy estimation. Fi-

nally, a variety of value function approximation schemes have also been presented,

including: Gaussian processes,6 online clustering techniques which learn basis func-

tion sets from experience,7 and Bayesian reinforcement learning approaches for the

exact inference of unknown dynamics in continuous state spaces,8–10 etc.

In the literature there are some marine robots applications, mostly involving

autonomous underwater vehicles (AUV), using reinforcement learning, see for a

survey in Refs. 1 and 11. In Ref. 12 for example a neural networks-based rein-

forcement learning scheme is presented for high-level control of AUV’s. In Ref. 13

another approach is proposed for motion planning of under-actuated AUV in un-

known non-uniform sea flow. A recent work for marine vehicle navigation in Ref. 11

uses a path planning algorithm for under-actuated marine vehicles under ocean cur-

rent disturbances based on reinforcement learning. In this case, the marine vehicle

is described only by the kinematic model.
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Fig. 1. The triangular marine platform.22

Our work focuses on the development of an intelligent navigation mechanism

based on reinforcement learning, for the over-actuated autonomous triangular ma-

rine platform “Vereniki” shown in Fig. 1. In addition, the magnitude of the linear

velocity, and the orientation of the platform is controlled by a low-level control

scheme. The detailed model of the platform can be found in Ref. 14.

Various control schemes for the autonomous dynamic positioning of the plat-

form have been proposed in previous papers. A Model-based controller has been

presented in Ref. 14. A linear MPC, and a Backstepping controller have also been

presented in Refs. 15 and 16 respectively. Nevertheless, in all these approaches, the

target configuration of the platform was known, and the goal of the control was

not the motion planning in the presence of unknown obstacles, but the dynamic

positioning of the platform on that configuration.

Here, we examine the problem of the determination of a desired path in an

unknown environment. The required, forces and moment are provided by three ro-

tating pump jets, consequently the system is over-actuated, i.e., it has more control

inputs than degrees of freedom. Thus, a non-trivial problem arises concerning the

optimal use of the control inputs. To solve this problem, a proper control allocation

scheme is implemented to allow for optimal allocation of the effort without violating

thruster capabilities, see Ref. 14.

The proposed on-line reinforcement learning algorithm which is based on least

square policy iteration (LSPI),17,18 aims at the determination of a near-optimal

path in the presence of realistic environmental wind, and wave disturbances, and

position measurement noise. Simulation results show that the generated path is

tracked successfully by the marine platform, which is described not only by the

kinematic but also by the dynamic model. One of the main advantages of this

method is that it is model free, meaning that in the design process we did not use

any explicit knowledge about the system model. This makes the method robust

to model uncertainties and noise, as it is demonstrated in our results. Another
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advantage is that it can be implemented as an online learning algorithm which

brings us a step further towards fully autonomous marine platform.

The novel material in this paper, compared to our previous work in Refs. 19

and 20 where initial results were reported, can be summarized as follows:

• An important feature of the proposed scheme is the determination of a sub-

optimal policy that leads to the reduction of the energy consumption. To that

end, we propose a reward function that depends on the energy consumption of

the platform at each step.

• The action space of the RL agent now includes the direction of the velocity of the

marine platform, instead of the thrust acting on the platform used in our previous

work. This simplifies the discovery process of the RL agent optimal policy.

• A low-level controller ensures that the magnitude of the linear velocity equals to

an arbitrary predefined value, and the orientation of the platform equals to the

direction of the wind, resulting in reduced disturbances.

• New extensive simulation results are presented in a more comprehensive, realistic,

and challenging simulated environment.

• The proposed framework is compared, in terms of energy consumption, to a

baseline approach based on virtual potential fields with a complete known map.

• The simulated environment includes a new workspace based on a real map taken

from Google Maps, additional wind generated wave disturbance forces/torque,

and position GPS measurement noise.

The remainder of this paper is organized as follows. Section 2 gives an overview

of the marine platform and its control design issues, while Section 3 gives the

reinforcement learning scheme. Simulation results are presented in Section 4 and

we conclude with a discussion of future directions in Section 5.

2. The “Vereniki” Marine Platform

The marine platform “Vereniki” is designed to assist in the deployment of the

deep-sea cubic kilometer neutrino telescope “NESTOR”.21 It consists of a triangu-

lar structure mounted on three hollow double-cylinders, one at each corner of the

structure, see Fig. 1. The plane of the triangle is parallel to the sea surface. The

cylinders provide the necessary buoyancy, as part of them is immersed in the water.

The platform actuation is realized using three fully submerged pump-jets, located at

the bottom of each cylinder. Diesel engines drive the pumps, while electro-hydraulic

motors rotate the jets providing vectored thrust. Next, for the sake of completeness,

a brief description of the kinematics and dynamics of the platform is presented. A

more comprehensive description of the platform can be found in Ref. 14.

2.1. Kinematics

The main body of the structure has the shape of an isosceles triangle with side length

LAB = LAC , and base length LBC . The center of mass (CM) of the platform is at
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Fig. 2. A 2D representation of the triangular platform.14

point G, see Fig. 2. We focus on the platform planar motion; actuation and control

along the heave axis, and about the roll and pitch axes, are beyond the scope of

this work. Under these assumptions, the kinematics equations of the plane motion

are described by:ẋẏ
ψ̇

 =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

uv
r

⇒ I ẋ = IRB
Bv (1)

In (1), x and y represent the platform CM inertial coordinates and ψ describes

the orientation of the body-fixed frame {B}, whose origin is at the platform CM;

u and v are the surge and sway velocities respectively, defined in the body-fixed

frame {B}, and r is the yaw (angular) velocity of the platform.

2.2. Dynamics

We consider three types of forces acting on the CM of the platform: (a) the control

forces/torque from the jets, (b) the hydrodynamic forces due to the motion of

the cylinders with respect to the water, and (c) the environmental disturbance

forces/torque due to wind, and wind generated waves.

2.2.1. Control forces/torque

The jets can provide vectored thrust and thus more flexibility in control design.

The JA, JB , and JC in Fig. 2 denote the magnitudes of the thrusts while φA, φB ,
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and φC denote the force directions. These thrusts provide control resultant forces

in xb and yb axes, the Fx and Fy respectively acting on the CM, and a torque Mz

about zb, according to the linear transformation:

Bnc = [Fx, Fy,Mz]
T = BBfc (2)

B =



1 0 0

0 −1 −dAG
1 0 −dDC
0 −1 dDG

1 0 dDC

0 −1 dDG



T

, Bfc =



JA sinφA

JA cosφA
JB sinφB

JB cosφB

JC sinφC

JC cosφC


(3)

where Bnc is the control force/torque vector, and the dimensional parameters in B

are defined in Fig. 2. The vector Bfc can be retrieved by the pseudoinversion of B

in (2). The desired jet thrust and direction are calculated according to,

Ji =
√

(fi sinφi)2 + (fi cosφi)2 (4)

φi = arctan(fi sinφi, fi cosφi) (5)

where i = A,B,C.

2.2.2. Hydrodynamic forces

The hydrodynamic force acting on each cylinder includes two terms. The first term

is the added mass force, which is a linear function of the acceleration of each cylin-

der. The second term is the drag force, which is a quadratic function of the velocity

of each cylinder, see Ref. 23. As an example, the normal to the axis of each cylinder

force on the double-cylinder structure at point A, expressed in body-fixed frame

{B} is given by:

Bfh,A = Caπρw[R2
uc(Huc − h) +R2

lcHlc](−BaA)

+Cdρw[Ruc(Huc − h) +RlcHlc]‖(−BvA)‖(−BvA) (6)

where ρw is the water density, Ca is the added mass coefficient, and Cd the drag

coefficient. BvA and BaA are the velocity and acceleration of cylinder A respectively

expressed in the body-fixed frame. Parameters h, Ruc, Huc, Rlc, and Hlc denote

the height of the cylinder above the water surface, and the radius and height of

the upper and lower cylinder sections respectively. The hydrodynamic forces on A

given by (6) result in a force acting on the platform CM and a moment about it,

i.e.,

Bqh,A = [BfTh,A, (
BsA/G ×B fh,A)T ]T (7)
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where BsA/G is the position of point A with respect to G expressed in {B}, see

Fig. 2. All terms that are a quadratic function of the velocity of the platform are

collected in vector,

Bq = [fx, fy, nz]
T (8)

2.2.3. Environmental disturbances and measurement noise

We define the disturbance vector Bqenv dist, which represents wind, and wind gen-

erated wave disturbance forces and torque. The wind induced forces (surge and

sway) and moment (yaw), are calculated as,

fx,wind = 0.5CX(γR)ρV 2
RAT (9)

fy,wind = 0.5CY (γR)ρV 2
RAL (10)

nz,wind = 0.5CT (γR)ρV 2
RALL (11)

where CX and CY are force coefficients and CT is a moment coefficient. These

coefficients are functions of the relative angle, γR, between the wind and platform

direction, and are taken from tables. ρ is the density of air, AT and AL are the

transverse and lateral projected area, and L is the overall length of the platform. VR
is the relative wind speed, given in knots. Integrating Gaussian white noise produces

the inertial wind velocity magnitude and direction used in the simulations.

The wind velocity magnitude, vw(t), is limited such that vw(t) ≤ 7.9 m/s (15 kn

or 4 Beaufort). In our simulated environment, the wave signals are functions of the

simulated wind signals. A detailed description of the generation of wind, and wind

depended wave signals, and the calculation of the respected disturbance forces and

torque can be found in Ref. 24. Example time series of the simulated wind signal are

shown in Figs. 3(a) and 3(b). In both figures, the initial wind velocity magnitude is

equal to 4 kn. The initial wind velocity direction is equal to 0◦ and 180◦ respectively.

Using the above preliminaries, and assuming that the CM of the platform is at

the triangle’s centroid, we derive the planar equations of motion of the platform,

in {B}:

MBv̇ = Bq + Bqenv dist + Bnc (12)

M =

m− 3ma 0 0

0 m− 3ma 0

0 0 m33

 (13)

m33 = Izz − (d2AG + 2d2BD + 2d2DG)ma (14)

where m is the mass of the platform, ma is its added mass, and Izz is its mass

moment of inertia about the zb axis.14
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Fig. 3. (a) Wind signal with initial wind velocity magnitude equal to 4 kn, and initial wind

velocity direction equal to 0◦. (b) Wind signal with initial wind velocity magnitude equal to 4 kn,
and initial wind velocity direction equal to 180◦.
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Fig. 4. Sample time series of the position GPS measurement noise.

1860005-8



May 31, 2018 16:48 IJAIT S0218213018600059 page 9

1st Reading

Motion Planning with Energy Reduction for a Floating Robotic Platform

Usually, the position and orientation of the platform are provided by GPS re-

ceivers that introduce measurement noise to the input. In our simulated environ-

ment, the receivers have an accuracy of ±2 m with an update frequency of 5 Hz. In

order to simulate the measurement noise, we used noise from real GPS receivers.

This is achieved by subtracting from the GPS readings the known position of the

antennas. Then, the measurement noise is superimposed to the simulated trajec-

tory of the platform. A sample time series of the extracted GPS noise used in the

simulation runs is shown in Fig. 4.

2.2.4. Velocity and rotation control of the platform

As shown in (2), the control vector Bnc includes the forces Fx and Fy contributing

to the translation of the marine platform in xb and yb axes, and the torque Mz

contributing to the rotation of the platform about zb. This vector is the output of

a controller scheme with two independent closed loops. The first closed loop realize

a velocity controller where the input is the desired velocity of the floating platform

(as commanded by the RL-agent), and the output is the desired forces according

to

[Fx, Fy]> = Kp1(
[
ẋdes ẏdes

]′ − [ẋ ẏ
]′

) (15)

where Kp1 is the controller gain related to the desired forces calculation, and ẋdes
and ẏdes are the desired inertial linear velocities. The second closed loop is a PD

controller where the input is the desired orientation of the floating platform, and

the output is the desired torque according to

Mz = Kp2(ψw − ψ)−Kdr (16)

where Kp2, and Kd are the controller gains related to the desired torque calculation,

and ψw denotes the direction of the wind. As (16) suggests, the desired orientation

of the platform coincides with the direction of the wind. This configuration results

to reduced disturbance forces/torque, due to the reduction of the projected area

of the platform to the wind. The desired inertial linear velocities, ẋdes and ẏdes,

are calculated using a constant velocity magnitude defined by design, and a desired

direction, which is the action of the RL agent, (see next section).

3. Reinforcement Learning for Autonomous Marine

Vehicle Navigation

According to the Reinforcement Learning (RL) framework the environment is mod-

eled as a Markov decision process (MDP). An MDP can be described as a five-tuple

(S,A, P,R, γ), where S is a set of states; A a set of actions; P : S×A×S → [0, 1] is

a Markovian transition model that specifies the probability P (s′|s, a) of transition

to state s′ when taken an action a in state s; R: S → R is the reward function

for a state-action pair; and γ ∈ (0, 1) is the discount factor for future rewards.

A stationary policy π : S → A is a mapping from states to actions and denotes
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Fig. 5. A map of the site used as the test environment in our experiments.

a mechanism for choosing actions. An episode is given as a sequence of transitions:

{(s1, a1, r1), (s2, a2, r2), . . .}.
In our application we have considered the two platform inertial coordinates,

s = (sx, sy), as the state variables, while the action consists of five (5) discrete

values: A = {−90◦,−45◦, 0◦, 45◦, 90◦} that correspond to five different directions

of the marine platform velocity (see Fig. 5). Including the orientation ψ of the

marine platform to the set of state features in our RL-based framework constitutes

a subject for future research study.

The Q-function Q: S × A → R of the policy π gives for every state-action pair

(s, a) the expected discounted return received by starting from state s and taking

action a following the policy π:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtR(st|s0 = s.a0 = a

]
(17)

Estimating the optimal policy π∗ is equivalent on choosing actions that yield the

optimal action-state value function Q∗: π∗(s) = arg maxaQ
∗(s, a). Q-values can be

evaluated by solving the following set of Bellman equations:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a

Q(s′, a) . (18)

In common RL domains with large or infinite state spaces the value function

cannot be calculated explicitly. and so there is a need for function approximation.

A common choice is to consider the linear model using a set of k basis functions

φ(s, a) = [φ1(s, a), . . . , φk(s, a)]>:

Q(s, a) = w>φ(s, a) =

k∑
j=1

wjφj(s, a) , (19)

where w = (w1, . . . , wk) is a vector of linear coefficients which are unknown and

must be estimated so as to minimize the approximation error. The selection of the
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basis functions is very important and must be chosen to encode properties of the

state and action. In our work we have used RBF basis functions:

φj(s) = exp(−βj‖s− cj‖2) , (20)

for a given collection of centers cj and precision (inverse variance) βj . The deter-

mination of these k basis functions was made by following the idea of tile coding,

where the state space is (uniformly) partitioning into k non-overlapping regions

and obtaining their geometrical centers, cj . Note that we have considered common

precision to all k functions, i.e. βj = β.

Policy iteration is a dynamic programming algorithm, which starts with an ar-

bitrary policy and steadily improves it. The policy iteration algorithm manipulates

the policy directly instead of finding it via the value function, as happens in the

case of value iteration. It consists of two successive, interactive phases: the policy

evaluation where the value function of policy π is computed and the policy im-

provement. The above two phases are executed iteratively until policy π cannot

be further improved. In this case, the policy iteration algorithm converges to the

optimal policy π∗.

Least-Squares Policy Iteration (LSPI)17 is a batch approximate policy iteration

algorithm that uses a model-free version of the least-squares temporal difference

learning (LSTD). In its original form, the LSPI is an off-line algorithm and requires

a set of training examples: D = {si, ai, ri, s′i|i = 1, . . . , n}, which are used at each

iteration in order to evaluate the derived policies. During the policy evaluation

step, the following matrix A (size k×k) and the vector b (size k×1), are computed

following the previously learned policy π:

A =

n∑
i=1

φ(si, ai)(φ(si, ai)− γφ(s′i, π(s′i)))
> , (21)

b =

n∑
i=1

φ(si, ai)ri . (22)

At the policy improvement step, matrix A and vector b are used in order to yield

an improved policy:

w = A−1b . (23)

The whole procedure is implemented iteratively, until a convergence criterion is

satisfied.

An online variant of the LSPI has been presented in Ref. 18 that is based on the

incremental nature of (21), (22). In particular, after making a movement in state

space and receiving the tuple (s, a, r, s′), both quantities are updated as follows:

Anew = Aold + φ(s, a)(φ(s, a)− γφ(s′, π(s′)))> , (24)

bnew = bold + rφ(s, a) . (25)

1860005-11
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Special care was also made to manage the trade-off between exploration and

exploitation since it has a significant impact to the quality of learned policy.3,25 A

common choice is to employ the ε-greedy exploration scheme,26,3 where at each time

step t an action is selected greedily, based on the estimated action-value function

with probability 1− εt, while a random action is used with probability εt. Initially,

the parameter ε0 is set to a large value (e.g., ε0 = 0.7), while it decays exponen-

tially over time with a decay rate of 0.99. Finally, in our particular scheme policy

improvement was implemented after a number of 10 consecutive transitions, or at

the end of each episode.

3.1. The proposed reward function

The goal of the proposed methodology is to achieve a sub-optimal policy of the ma-

rine platform with minimum energy consumption. Therefore, the proposed reward

depends on the energy consumption at each step.

In particular, a variable reward is received given by −Ē/Ēmax, where Ē is the

average energy consumption of the three jets during the step according to

Ē =
1

3

∑
i=A,B,C

∫
|pi| dt . (26)

Ēmax denotes the upper limit of Ē, while pi describes the input power for the ith

jet during the step. In order to calculate the input power, we have used indicative

numerical tables with the input power of real pump jets as a function of the pro-

duced thrust. The appropriate fitting of the numerical data resulted to the following

polynomial that describes the input power of each jet as a function of the thrust:

pi = 3.2930f4i + 2.1234f3i + 7.8610f2i + 0.0030fi + 0.1743 (27)

where fi is the thrust of the ith jet. Furthermore, in case of a collision with an

obstacle or when the platform is outside the workspace, the received reward is

−λĒmax. Finally, when the target is found a positive reward equal to λĒmax is

returned. During in our simulation runs we have used λ = 10. According to the

previous, the mathematical expression of the reward function is the following:

R(s, a) =


−λĒmax, if hit obstacle or out of workspace;

+λĒmax, if target found;

−Ē/Ēmax, otherwise.

(28)

Since the energy consumption depends on the number of steps, the use of the

reward function (28) leads to simultaneously obtain a sub-optimal path in terms of

the number of steps. Note that in our previous work the reward function was not

variable and the RL optimization was implemented only in terms of the number of

steps.19,20
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4. Experimental Results

We have studied the performance of the proposed method using several simulated

experiments. The simulation environment has been implemented using the MAT-

LAB software package. The environment includes the kinematic and dynamic model

of the marine platform, the environmental wind, and wave disturbances, and the

GPS measurement noise. In all cases the integration time step was set to dt = 0.2,

and the RL agent step is equal to 50 integration time steps. For validation purposes,

we compare the proposed methodology with a baseline approach.

As mentioned in Section 2, the “Vereniki” platform is initially designed to assist

in the deployment of the deep-sea cubic kilometer neutrino telescope “NESTOR”.

The “NESTOR” Project (Neutrino Extended Submarine Telescope with Oceano-

graphic Research Project) was an international scientific collaboration whose target

was the deployment of a neutrino telescope on the sea floor of Pylos and Methoni,

South Peloponnese, Greece.21,22 Therefore, in the simulation runs we have used a

map of the area south of Methoni, as taken by the Google maps. The objective of

the marine vehicle is to find a steady landmark (rectangular target), avoiding the

physical obstacles in the area (islets), with minimum energy consumption, starting

from the entrance of the port of Methoni. Figure 5 shows the original Google maps

image and the corresponding binary image of size 744× 933 pixels that represents

our test environment. Note that 1 pixel corresponds to 15 meters.

In any case, the map was completely unknown to the platform and the study was

focused on the proposed method’s ability to generate a physically realizable path

at a reasonable computational cost under its motion constraints and the external

disturbances.

Several experiments were made in this simulated environment considering a

variety of wind conditions. In particular we have used three values of wind velocity

magnitude (1, 4, 7 kn) and three wind directions (0◦, 90◦, 180◦). During the learning

process a new episode starts when one of the following incidents comes first: the

maximum allowed number of steps per episode is expired (in our case was set to

1000), an obstacle is hit, the platform is outside the workspace, or the target is

reached.

For the construction of the basis functions we have partitioned the 2-dimensional

state space on M equal and non-overlapping regions where we estimate their center

(cj) for constructing RBF mean parameters. A typical value of the number of basis

function used in our experimental study was M = 100 with a common precision

(inverse variance) β = 10. The action space corresponds to the direction of the

platform velocity (see Section 3). Finally, in all cases the discount factor γ was set

equal to 0.99.

The results for various wind velocities (1, 4, 7 kn) and wind directions (0◦, 90◦,

180◦) are illustrated in Figs. 6, 7 and 8 that give the performance of the proposed

methodology. In particular, the progress of (a) the mean success rate of the method,

i.e. the frequency of finding the target is shown, as well as (b) the calculated mean
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Fig. 6. Case 1: Results with wind velocity = 1 kn and various wind directions. Learning curves

showing (a) the success rate and (b) the total energy consumption at each successful episode.

total energy consumption of the last 50 (successful) episodes. As shown in these

figures, the RL agent converges to a sub-optimal solution after (approximately)

200 episodes in all cases. Naturally, the energy consumption is minimized when

the wind direction coincides (0◦) with the desired direction of the platform. On the
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Fig. 7. Case 2: Results with wind velocity = 4 kn and various wind directions. Learning curves

showing (a) the success rate and (b) the total energy consumption at each successful episode.

contrary, the energy consumption is maximized when the wind opposes (180◦) the

desired direction of the platform.

Various successful navigation paths are illustrated in Fig. 9 in the case of wind

directions 0◦ and 180◦, respectively, and wind velocity magnitude equal to 4 kn.
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Fig. 8. Case 3: Results with wind velocity = 7 kn and various wind directions. Learning curves

showing (a) the success rate and (b) the total energy consumption at each successful episode.

Apparently, the marine platform is able to discover the target point following a

sub-optimal path. In addition, Fig. 10 illustrates the energy consumption and the

action sequence of a sample successful episode commanded by the policy of the RL

agent. As expected, the energy consumption is maximized when a change in the

direction of the platform velocity is commanded by the RL agent.
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(a) (b)

Fig. 9. The sub-optimal navigation paths as estimated by the proposed method in two cases of

wind direction (a) 0◦ and (b) 180◦, while the wind velocity was 4 kn.
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Fig. 10. Energy consumption and action sequence during a sample successful episode.

4.1. Comparison with a baseline approach

As mentioned before, for validation purposes we compared the proposed method-

ology with a baseline approach. More specific, in the baseline approach we con-

sider the target position and the physical obstacles in the area (islets) completely

known, in contrast to the proposed approach where the map is unknown. Using

a path planning algorithm based on virtual potential fields, we designed an op-

timal path from the start position to the target position, avoiding the physical

obstacles.27 Note that the action space in the baseline approach is continuous,

in contrast to the proposed framework where we consider a discrete number of

5 actions A = {−90◦,−45◦, 0◦, 45◦, 90◦} . For comparison reasons, the marine plat-

form follows the desired path under the same environmental disturbances, and GPS

measurement noise (see subsection 2.2.3), as in the proposed methodology. In addi-

tion, the control of the platform’s actuation system is implemented using the same
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velocity controller, according to (15), and (16) in subsection 2.2.4. The objective of

the controller remains the same as in the proposed framework, i.e. (a) to follow the

desired path with a predefined constant velocity magnitude, and (b) the desired

orientation of the platform to coincide with the direction of the wind.

Figure 11 shows the desired (red line), and the simulated paths (white line) for

wind velocities equal to 4 and 7 kn. In both cases, the direction of the wind velocity

is the worst case scenario, i.e. opposite to the desired motion (equal to 180◦).
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Fig. 11. The optimum path (red line), and the simulated path (white line) in the baseline ap-

proach during a sample run for (a) 4 kn, and (b) 7 kn.

Table 1 presents a comparison of the simulation results, concerning the average

energy consumption per episode, the average number of steps and the average en-

ergy per step, in the baseline and the proposed approaches. As shown, the energy

consumption in the proposed approach is about 25% more compared to that of the

baseline approach. It must be noted that the difference in the energy consump-

tion is mainly due to the increase of the average number of steps in the proposed

framework. This behavior is explained by the use of discrete action space that may

result in irregular motion and thus in additional acceleration and energy demands,

especially against large wind disturbances.

Table 1. Comparison results with the baseline approach concerning energy consumption and

number of steps.

Average Energy in [kJ] Average Number of Steps Average Energy Per Step

4 kn 7 kn 4 kn 7 kn 4 kn 7 kn

Baseline 51 545 62 752 65 65 8.04 9.68

Proposed 58 361 89 152 83 94 7.03 9.48
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5. Conclusions and Future Work

In this study we presented an autonomous navigation framework of a triangular

over-actuated floating marine platform involving a reinforcement learning scheme,

and a low-level velocity/orientation controller. The method tries to learn the pol-

icy function and estimate a target position according to a least-squares mechanism

that uses RBF kernel functions. In order to achieve a sub-optimal policy with min-

imum energy consumption, the proposed variable reward depends on the energy

consumption at each step. The low-level controller successfully controls the mag-

nitude of the linear velocity equal to a predefined value, and the orientation of

the platform equal to the direction of the wind resulting in reduced disturbances.

Simulated results illustrated its performance under wind, and wind generated wave

disturbances, and position measurement noise.

In the future, we plan to verify the proposed algorithm in a more complex

simulated environment, where there is a local differentiation of the environmental

disturbances. Also, an interesting direction would be to study alternative schemes

of the reward function that combine energy consumption and optimal path. More-

over, including the orientation of the marine platform to the state space of the

agent constitutes an interesting future research study. Another issue concerning

the reinforcement learning scheme is to use alternative model-based value function

approximation methodologies and to study the potential benefits of the combination

of RL and Deep Learning.28,29 Finally, the optimization of the energy consumption

in an over-actuated autonomous platform, is a very interesting research topic and

subject of our current research work.
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