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ABSTRACT
Wepropose anovel algorithmportfoliomodel that incorporates time
series forecasting techniques to predict online the performance of
its constituent algorithms. The predictions are used to allocate com-
putational resources to the algorithms, accordingly. The proposed
model is demonstrated on parallel algorithm portfolios consisting
of three popular metaheuristics, namely tabu search, variable neigh-
bourhood search, and multistart local search. Moving average and
exponential smoothing techniques are employed for forecasting
purposes. A challenging combinatorial problem, namely the detec-
tion of circulant weighing matrices, is selected as the testbed for the
analysis of the proposed approach. Experimental evidence and sta-
tistical analysis provide insight on the performance of the proposed
algorithms and reveal the benefits of using forecasting techniques
for resource allocation in algorithm portfolios.
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1. Introduction

A central problem in computational optimization lies in the selection of the most
appropriate algorithm and parameter setting for solving a given problem. The so-called
algorithm selection problem has received the attention of the research community for
many decades [33,35] due to the observed performance fluctuations of optimization algo-
rithmswhen applied on different problems or different instances of a specific problem type.
Strong theoretical results such as the No Free Lunch Theorem [42] suggest that no univer-
sal algorithm exists that can tackle all problems equally well. Nevertheless, experimental
evidence has shown that specific algorithmic instances can be particularly effective and
efficient in specific optimization problems [34] or instances of a specific problem type [2].
The ability to identify the most appropriate algorithm eventually determines the boundary
between success and failure when challenging optimization problems are confronted.

Algorithm selection methods usually operate offline [2]. Given a collection of relevant
problems (e.g. different instances of the travelling salesman problem) and a collection
of different algorithms or different parameterizations of a specific algorithm, selection
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2 D. SOURAVLIAS ET AL.

methods identify the most promising solver based on preliminary experimentation on a
representative (training) subset of the problems. Then, the selected approach is used to
solve the rest of the problems. Despite the success of suchmethods on collections of similar
problems, their direct applicability on previously unseen problem types without the pre-
liminary experimentation phase is questionable. Also, the offline methods neglect possible
performance fluctuations of the algorithm during its run. While an algorithm may prove
to be very efficient in early stages of the optimization procedure, it may exhibit declining
performance after a critical number of iterations. At that point, dynamically switching to
a different algorithm can be highly beneficial.

Algorithm portfolios [1,20,22,34,37,41,43] were introduced as general frameworks for
building algorithmic schemes that alleviate deficiencies originating in the selection of a
single algorithm for tackling a specific optimization problem. Instead of struggling for the
selection of a single algorithm, which includes the risk of a poor choice, portfolios admit a
set of possible solvers for the given problem and try to optimally allocate the available com-
putational resources among them. The constituent algorithms of the portfolio are executed
either serially and interchangeably on a single processing unit [43] or in parallel whenmany
processors are available [1,37]. In the serial case, a fraction of the available computational
budget is consumed by one algorithm before proceeding to the next algorithm in a round-
robin manner. In the parallel case, a number of the available processing units is devoted
to each algorithm. In both cases, the algorithms assume no interaction among them and
the prescribed allocated fractions of the computational budget are determined through a
preprocessing phase based on preliminary experimentation [20,22].

The use of many algorithms instead of one can relieve the practitioner from the error-
prone selection of a single solver. However, the assignment of prespecified fractions of the
computational resources to each algorithm may be inefficient since it neglects the online
dynamics of the algorithms. In such cases, online techniques for the dynamic allocation
of resources during the portfolio’s run can be beneficial, especially in computationally
demanding problems.

Metaheuristics have been frequently used in an algorithm portfolio framework, in
order to alleviate the algorithm selection problem and exploit the diverse dynamics of
different solvers. Recently, such schemes were proposed for solving difficult combinato-
rial optimization problems in parallel computing environments [26,38]. The underlying
resource allocation scheme was proved to have significant impact on the portfolio’s per-
formance on these problems. Sophisticated allocation schemes were shown to achieve
high-performance standards in terms of solution quality and time efficiency of the port-
folios against their constituent algorithms individually [38]. Also, the domination of
trajectory-based approaches, especially tabu search, has been verified against other algo-
rithms.

The present work proposes a novel parallel algorithm portfolio model that incorporates
time series forecasting techniques. Forecasting is periodically applied during the run of
the portfolio to predict online the performance of the constituent algorithms based on
their achievements. Thus, the portfolio can make informative decisions on the allocation
of the available computational resources (processing units). We demonstrate the idea on a
heterogeneous algorithmportfolio consisting of three popularmetaheuristics, namely tabu
search, variable neighbourhood search, andmultistart local search. These solvers have been
widely used in combinatorial optimization, and they are combined with three essential
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forecasting models, namely the moving average, simple exponential smoothing, and linear
exponential smoothing.

Combinatorial matrices are involved in diverse applications such as quantum infor-
mation processing, coding theory, and statistical experimentation [4,27,40]. Significant
amount of theoretical research has been devoted to the investigation of existence of finite or
infinite classes of circulant weighing matrices [5,6,11,12,16]. Whenever theoretical analy-
sis has been fruitless [24], computational methods have been used by transforming the
problem to an equivalent permutation optimization task. Metaheuristics have proved to be
effective solvers in such cases. Motivated by the difficulty of this problem type, we decided
to evaluate the proposed algorithm portfolio model on a testbed of circulant weighing
matrices detection problems of variable dimension. The performance of the model was
studied and statistically analysed with and without the use of performance forecasting,
verifying the benefits of the proposed approach.

The rest of the paper is structured as follows: Section 2 offers background informa-
tion on the employed algorithms and test problems. The proposed algorithm portfolios are
described in Section 3 and the experimental analysis is reported and discussed in Section 4.
The paper closes with conclusions in Section 5.

2. Background information

In the following paragraphs, we provide necessary background information. This includes
very brief descriptions of the general algorithm portfoliomodel, its constituent algorithms,
the considered time series forecasting models, and the basic formulation of the circu-
lant weighing matrices problems that served as our testbed for experimentation. Detailed
descriptions of the presented algorithms and concepts can be found in the provided
references.

2.1. Algorithm portfolios

Algorithm portfolios [22] are defined as collections of algorithms that operate either inter-
changeably or concurrently on a given problem by sharing the available computational
resources. They are characterized as homogeneous if they consist of instances of the same
algorithm or heterogeneous if they comprise different algorithms. If only a single pro-
cessing unit is available, the portfolio’s constituent algorithms are alternately executed
according to a time-sharing schedule. Otherwise, they are executed in parallel with each
algorithm typically occupying a number of the available processing unit [20,26]. Standard
algorithm portfolios assume no interaction among their constituent algorithms, although
recent studies with interactive algorithms suggest that performance benefits are possi-
ble through information exchange [37,38]. Extensive experimentation has shown that the
use of algorithm portfolios with appropriate resource allocation to their constituent algo-
rithms can offer significant performance benefits against the application of an individual
algorithm equipped with all the available resources [20,22,37,38].

2.2. Tabu search

Tabu search [17] is a widely used local search algorithm, originally proposed for solv-
ing discrete optimization problems. It is based on two essential components, namely
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neighbourhood search and a short-term memory called the tabu list. The algorithm is ini-
tialized on a randomly selected position in the search space. At each iteration, the current
position is replaced by the best position in its neighbourhood (excluding itself). This prop-
erty equips tabu search with local search and hill-climbing capability, which is necessary
for alleviating local minimizers. In order to avoid cyclic moves, the l most recent visited
positions are stored in the tabu list and they are prohibited for a number of iterations. Also,
the algorithm is restarted on a new randompositionwhenever a prescribed number of iter-
ations, trest, with no improvement of the overall best solution is exceeded. This promotes
the exploration of different regions of the search space by deploying new trajectories. The
reader is referred to [15,18,19] for a detailed presentation of the algorithm.

2.3. Variable neighbourhood search

Variable neighbourhood search [31] is a popular metaheuristic in combinatorial optimiza-
tion. The main idea is the use of various neighbourhood structures and the systematic
change among themeither for approximating localminimaor producing new initial points.
Thus, whenever the search stagnates within one neighbourhood, the next neighbourhood
is selected allowing the algorithm to alleviate local minimizers. It is not necessary to search
each neighbourhood exhaustively. Instead, a prespecified number of trial points is gen-
erated before proceeding to the next neighbourhood. If the whole procedure does not
provide any improvement, then the algorithm is initialized to a new random point selected
in one of the available neighbourhoods. The neighbourhoods may come in various forms
depending on the problem at hand. For instance, in permutation optimization problems
they are defined through different permutation search operators [44]. A comprehensive
introduction on this algorithm can be found in [21].

2.4. Multistart local search

This is the simplest of the employed algorithms. It consists of pure local search starting
fromdifferent initial points, which are randomly generated in the search space. Specifically,
a random initial point is specified and local search is initiated until the nearest local min-
imum is reached. Naturally, locality depends on the employed neighbourhood structure.
Then, a new random initial point is taken and the procedure is repeated until the avail-
able computational budget is exceeded. During this procedure, the best detected solution
is retained. Further details on this approach can be found in [28].

2.5. Time series forecastingmodels

Time series forecasting [8,9] is concerned with the prediction of a model based on its his-
torical observations. The main struggle lies in the detection of statistical patterns in the
available data. Among the plethora of available models for time series forecasting, expo-
nential smoothing [13,14] is distinguished as a simple and straightforward approach. For
the needs of our proposed model, we considered the following forecasting schemes.

(1) Simple moving average [23,30]: This is the simplest approach for data smoothing. If ft
denotes the observed quantity at timemoment t, then the predicted value at t+1 is the
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average of the kmost recent observations,

f̂t+1 = 1
k

k−1∑
i=0

ft−i. (1)

In this model, each one of the k observations has equal weight. Thus, increasing
k results in declining impact of the most recent observations, producing smoother
forecast series. The case k=1 is the well-known random walk model, which has the
property of following the exact path of the predicted variable but with 1-period lag.

(2) Simple exponential smoothing [29,30,36]: This is also known as the exponentially
weighted moving average model. Its main difference from the previous one lies in
the assumption of gradually decreasing weights for older observations. Thus, the next
forecasted value is given as

f̂t+1 = α ft + (1− α) f̂t , (2)

with α ∈ [0, 1] being the smoothing constant. Smaller values of α produce smoother
forecast series, while higher values assume that each observation introduces significant
changes in the level of the series.

(3) Linear exponential smoothing [30]: This model takes into consideration both the level
and trend of the time series. If lt and rt denote the local estimates of level and trend,
respectively, then their values are computed as

Trend : lt = α ft + (1− α) (lt−1 + rt−1), (3)

Level : rt = β (lt − lt−1)+ (1− β) rt−1, (4)

where α,β ∈ [0, 1] are weighing factors. Eventually, the forecast for k steps ahead is
computed as

f̂t+k = lt + k rt . (5)

Higher values of β assume rapid changes in the trend of the data, while smaller values
match slower changes.

The forecasted variable can be considered as the aggregation of pure signal andnoise, where
the signal can be predicted while the noise introduces distortion to its values. The forecast-
ing model shall be capable of capturing and extrapolating the underlying signal in time.
Naturally, this is far from an easy task for complex signals.

2.6. Circulant weighingmatrices

Circulant weighing matrices [5] are combinatorial matrices with special properties. A
square n× n matrix W = [wij] with entries wij ∈ {−1, 0, 1}, i, j ∈ I � {1, 2, . . . , n}, is
called a weighing matrix of order n and weight γ , if there exists a positive integer γ < n,
such thatWWT = γ In, where In is the identity matrix of dimension n, andWT denotes
the transpose matrix ofW. A circulant weighing matrix, denoted as CW(n, k2), is a weigh-
ing matrix with the property that each row, excluding the first one, is a right cyclic shift
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of its preceding row. Thus, the matrix can be completely defined solely by one of its rows.
Note that the weight of a circulant weighing matrix is always a perfect square.

Various methodologies have been proposed for the systematic detection of circulant
weighingmatrices of various orders andweights [3,7,12,39]. In addition to theoretical alge-
braic methods, computational optimization algorithms have been successfully applied. In
these cases, the original problem ismodelled as a permutation optimization problemwhere
each global minimizer corresponds to a matrix of the desirable type, i.e. it defines a row
of the matrix (the first row, without loss of generality). The objective function of the cor-
responding optimization problem is based on the periodic autocorrelation function [24].
More specifically, let

T
n = {x = (x1, x2, . . . , xn) : xi ∈ {−1, 0,+1} for all i ∈ I},

be the set of all ternary sequences of length n, and x ∈ T
n be the first row that defines a

CW(n, k2) matrix. Then, its periodic autocorrelation function values are defined as

PAFx(s) =
n∑

i=1
xi xi+s, s = 0, 1, . . . , n− 1, (6)

where i+s is taken modulo n when i+s>n. Note that the symmetry property PAFx(s) =
PAFx(n− s) allows to use only the first [n/2] terms in Equation (6). The defining property
of circulant weighing matrices is then equivalent to the system

PAFx(s) = 0, s = 0, 1, . . . , n− 1.

Thus, the admissible sequences that define CW(n, k2) matrices are the global minimizers
of the combinatorial optimization problem,

min
x∈Tn

f (x) =
[n/2]∑
s=1
|PAFx(s)| . (7)

Moreover, it is proved that each admissible sequence has exactly k2 non-zero (i.e. +1 or
−1) components, k(k+ 1)/2 components equal to+1, and k(k− 1)/2 components equal
to−1. Taking into consideration the fixed number of appearances of 0,+1, and−1 in the
sequence, the problem becomes a permutation optimization problem. Various approaches
includingmetaheuristics have been extensively used for solving such problems [24–26,38].
Experimental evidence has shown that the difficulty level of the problem increases with the
length n of the sequence and the weight k2 of the matrix.

2.7. Neighbourhood search operators

The presented metaheuristics have a common prerequisite for their application, namely a
proper neighbourhood structure (or more than one in the case of variable neighbourhood
search). For this reason, we considered four state-of-the-art neighbourhood search opera-
tors for permutation optimization [44]. Specifically, let x = (x1, x2, . . . , xn), be a sequence
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that defines a CW(n, k2) matrix (i.e. x is its first row), and let i< j be two component
indices. Then, the following neighbourhood search operators can be used:

(O1) Interchange Operator: swaps xi and xj.
(O2) Relocate Operator: relocates xi immediately after xj.
(O3) Or-Opt Operator: relocates xi and xi+1 between xj and xj+1.
(O4) 2-Opt Operator: interchanges xi+1 and xj and reverses the order of all components

between them.

The neighbourhood of x for each operator consists of all vectors that can be produced by a
simple application of the corresponding operator on x. Note that these operators except O1
shift or reverse whole subsequences of x, with O4 having the strongest expected impact.

Another issue of interest is whether the algorithm will conduct exhaustive search in
each neighbourhood or directly select the first point of improvement. The first case is the
well-known neighbourhood-best approach, which conducts the deepest descent and guar-
antees detection of a local minimizer if it lies in the neighbourhood of the current point.
The second one is the first-best approach, which moves rapidly from one point to another
sparing function evaluations, although at the risk of temporarily overshooting the mini-
mizer. These two approaches are rather complementary and they are frequently considered
together in relevant applications.

In our portfolio implementation, the standard tabu search algorithm with the O1
operator was considered, while the variable neighbourhood search utilized all operators.
Multistart local search used all but O4 because less impactful approaches seem to be more
suitable for such simplistic local search procedures. Moreover, both the neighbourhood-
best and the first-best search were considered. Further details on the employed algorithms
are postponed until Section 4.

3. Proposed algorithm portfolio model

A metaheuristic optimization algorithm can be considered as a stochastic system that
evolves through time. Its state signal during a run can be defined as the function value
of the best solution it achieved up to the current time moment or iteration. This signal can
be tracked and extrapolated in order to predict the algorithm’s performance. Random per-
formance fluctuations due to stochasticity or dynamic adaptation (e.g. through parameter
tuning) introduce noise to the observed signal. The noise can be detrimental for the quality
of the predictions if it is based solely on simple observations or explicit if-then-else rules.

The main idea in our approach lies in monitoring the performance signal of each con-
stituent algorithm of the portfolio in order to predict its forthcoming performance. Then,
the predictions are used to proportionally allocate the available computational resources,
which are the available processing units (CPUs) in the high-performance computation
environments of our interest.

Putting it formally, let P = 〈A1,A2, . . . ,AN〉 denote an algorithm portfolio consisting
of N algorithms. Let C � N denote the number of the available CPUs. These can be either
physical cores or processing threads. Also, let emax denote the available computational bud-
get in terms of function evaluations. This means that the portfolio is terminated when the
total number of function evaluations spent by all its constituent algorithms exceeds emax.
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Both C and emax are external parameters dictated by the computation environment and
user-related restrictions.

In our model, the computational budget is assigned to the portfolio in batches. Specifi-
cally, the user defines a desirable number of batches bmax. At each batch b, a fixed number
of function evaluations,

eb = emax

bmax
, b = 1, 2, . . . , bmax, (8)

is allocated to the portfolio and shall be completely consumed before the next batch
assignment. These function evaluations are equally shared among the C CPUs. Thus, the
computational budget allocated to each CPU per batch is fixed and equal to

ec = eb
C
= emax

C bmax
, c = 1, 2, . . . ,C. (9)

At each batch, each CPU is occupied strictly by one of the available algorithms of the port-
folio. Thus, the main decision issue is the allocation of the N algorithms to the C CPUs,
i.e. the number of copies of each algorithm in the present batch. Let cib denote the number
of CPUs running algorithm Ai during batch b. Each one of these processing units executes
the specific algorithm independently of the rest. Obviously, it shall hold that

C =
N∑
i=1

cib, (10)

for all b = 1, 2, . . . , bmax. At the end of batch b, the best performance achieved by each
algorithm is recorded. This consists of the best solution value achieved by all instances of
the algorithm from the start of the run. Using this information, forecasting methods are
used to predict the performance of each algorithm in the forthcoming b+1 batch.

According to the predicted performance, the new number of CPUs that will be occupied
by each algorithm in the next batch is determined. Specifically, let f ib denote the overall best
solution value detected by all instances of algorithm Ai at the end of batch b. We assume
that the objective value of the optimization problem at hand is strictly nonnegative, as in
the permutation problems of our interest. Also, let f̂ ib be the corresponding predicted best
solution value of algorithm Ai (regardless of the employed forecasting model). TheN sets,

Hi
b =

{
f i1, f̂

i
2, f

i
2, f̂

i
3, f

i
3, . . . , f̂

i
b, f

i
b

}
, i ∈ {1, 2, . . . ,N},

contain all the available (actual and forecasted) performance data achieved by each
algorithm Ai up to batch b. Additional information may be also included in these sets
depending on the selected forecastingmethod (e.g. trend values shall be additionally stored
for the linear exponential smoothing model). This information is used to predict the
performance of each algorithm Ai in the next batch b+1. Specifically, let

f̂ ib+1 = forecast
(
Hi
b
)
, i ∈ {1, 2, . . . ,N},

be the forecasted solution values of the algorithms for the next batch. Then, the fraction
of the available CPUs that will be occupied by algorithm Ai in batch b+1 is given by the



OPTIMIZATION METHODS & SOFTWARE 9

normalized inverse of its predicted performance value,

ηib+1 =
1/f̂ ib+1
N∑
j=1

1/f̂ jb+1

, i ∈ {1, 2, . . . ,N}. (11)

Using these fractions, the actual number of CPUs that host each algorithm in the next batch
is determined through a resource allocation plan

cib+1 = allocate
(
ηib+1,C

)
, i ∈ {1, 2, . . . ,N}, (12)

taking care that Equation (10) holds. For example, a simple allocation procedure may
directly set cib+1 = [ηib+1 C], where [.] stands for rounding to the nearest integer. However,
correctionmay be needed since the outcome of the rounded quantities is not guaranteed to
sum up to C. In our implementation, we considered a different scheme that uses the floor
values

cib+1 =
⌊
ηib+1 C

⌋
, i ∈ {1, 2, . . . ,N},

to make a first-round assignment of algorithms to CPUs. This approach may leave spare
processing units, which are subsequently assigned to the algorithms in a second allocation
round. Specifically, the algorithm with the best (highest) ηib+1 gets the first spare CPU, the

Algorithm 1 Algorithm Portfolio with Performance Forecasting
1: INPUT: A1, . . . ,AN (algorithms); C (available processing units); bmax (number of

batches); emax (computational budget)
2: set ec according to Equation (9) for all c = 1, 2, . . . ,C
3: b← 0
4: /* processing units equally shared in 1st batch */
5: ηib+1← 1/N for all i = 1, . . . ,N
6: cib+1← allocate

(
ηib+1,C

)
for all i = 1, . . . ,N

7: Hi
b← ∅ for all i = 1, . . . ,N

8: /* loop on the number of batches */
9: for (b = 1 . . . bmax) do
10: /* parallel execution of the algorithm portfolio */
11: execute_algorithm

(
Ai, cib, ec

)
for all i = 1, . . . ,N

12: for (i = 1 . . .N) do
13: update_best

(
f ib

)
14: Hi

b← Hi
b−1 ∪ {f ib}

15: f̂ ib+1← forecast
(
Hi
b
)

16: Hi
b← Hi

b ∪ {f̂ ib+1}
17: end for
18: compute ηib+1 and pib+1 according to Equations (11) and (12) for all i = 1, . . . ,N
19: end for
20: report overall best solution
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second best algorithm gets the second spare CPU, and we continue in the same manner
until all spare CPUs have been occupied.

The proposed procedure is given in the pseudocode of Algorithm 1 and depicted in
the flowchart of Figure 1. In a parallel master-slave environment, better work division is
attained when the master node is devoted to book-keeping, forecasting, and resource allo-
cation procedures, while the rest of the CPUs (slave nodes) are devoted to the execution of
the portfolio’s constituent algorithms. In this framework, Algorithm 1 can be executed on
the master node except step 11, which can utilize all slave nodes.

Figure 1. Flowchart of the proposed algorithm portfolio model.
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Another issue of interest is the minimum number of CPUs occupied by each algorithm.
Specifically, it is widely perceived that the efficiency of algorithm portfolios stems from
the inclusion of diverse algorithms. Complementarity of the constituent algorithms has
been widely recognized as performance booster of the portfolio since weaknesses of
one algorithm can be addressed by another [32]. Thus, the allocate( ) function in
Equation (12) shall guarantee that cib+1 does not vanish for any algorithm. In order to avoid
this potential deficiency, we recommend at each batch to initially assign each one of the N
algorithms to one CPU regardless of its predicted performance and, then, allocate the rest
C−N CPUs proportionally to the algorithms according to the procedure described above.
This way, it is guaranteed that cib � 1, for all batches b = 1, 2, . . . , bmax.

It shall be noted that the proposed algorithm portfolio model does not exceed the user-
defined computational budget emax. It rather allocates it more efficiently by favouring the
best-performing algorithms, which occupy more CPUs at each batch. Thus, in the long-
run, dominant algorithms are provided with higher number of function evaluations than
the rest. Nevertheless, the total computational cost of the portfolio remains fixed to its
predefined value. This is a significant property for algorithms executed in parallel envi-
ronments where execution time shall be predetermined under the penalty of deferred
execution or additional charges if exceeded.

4. Experimental analysis

We validated the proposed approach through simulation experiments. The complete
experimental configuration is summarized in Table 1. For the demonstration of the pro-
posed approach, we considered portfolios consisting of seven algorithms, namely two
variants of tabu search, two variants of variable neighbourhood search, and three variants
of multistart local search, under different configurations. Specifically, tabu search assumed
tabu list size l = n/2 in both variants, although the one utilized the neighbourhood-best
and the other one utilized the first-best search approach (both with the O1 neighbour-
hood operator). Similarly, one variant of variable neighbourhood search was based on

Table 1. Experimental configuration.

Description Notation Value (s)

Test problems CW(n, k2) CW(33, 25), CW(42, 16), CW(48, 36), CW(52, 36)
CW(57, 49), CW(62, 16), CW(70, 16), CW(78, 9)
CW(84, 16), CW(96, 9), CW(112, 16), CW(130, 9)

Tabu search (TS) A1 Tabu list size l = n/2, neighbourhood-best
A2 Tabu list size l = n/2, first-best

Variable neighbourhood search (VNS) A3 Neighborhood-best
A4 First-best

Multistart local search (MLS) A5 Neighborhood operator O1, neighbourhood-best
A6 Neighborhood operator O2, neighbourhood-best
A7 Neighborhood operator O3, neighbourhood-best

Algorithm portfolios NoF No forecasting, equally shared resources (plain portfolio)
SMA Simple moving average, k= 1
SES Simple exponential smoothing, α = 0.3
LES Linear exponential smoothing, α = 0.3, β = 0.8

Number of batches bmax 100 (1st stage), 50, 100, 150 (2nd stage)
Number of processing units C 36 (1 master node and 35 slave nodes)
Number of function evaluations emax 1010

Number of experiments per case ν 100
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neighbourhood-best and the other one on first-best. Note that this algorithm uses all four
neighbourhood operators, concurrently. Contrary to this, multistart local search assumes
a single operator and its only search power stems from the neighbourhood search. For this
reason, we considered three variants using the O1, O2, and O3 neighbourhood operator,
respectively, but all under the neighbourhood-best search scheme in order to enhance the
effectiveness of local neighbourhood search.

All seven algorithms were incorporated into four heterogeneous algorithm portfolio
schemes. Specifically, we considered a plain portfolio without performance forecasting,
henceforth denoted as NoF, as the baseline for the assessment of our proposed approach.
Its constituent algorithms are concurrently executed without any information exchange,
equally sharing the available resources.We also considered three algorithm portfolios with
performance forecasting, namely one for each forecasting technique. The portfolio using
the simple moving average technique is henceforth denoted as SMA, the one with the sim-
ple exponential smoothing is denoted as SES, and the one with the linear exponential
smoothing as LES. The shape of the forecasted performance curves, which are expected
to rapidly change at the beginning and gradually decline as the execution of the algorithm
proceeds, was considered as the guideline for the selection of the forecasting parameters.
Thus, SMA assumed the random walk approach with predictions being made using only
one previous observation, while α = 0.3 was used for SES in Eqution (2), and α = 0.3,
β = 0.8 were used for LES in Equations (3)–(5).

The simulations were conducted on an heterogeneous Beowulf cluster consisting of
sixth and seventh generation Intel� i7 processors. Each portfolio occupied C=36 CPUs,
namely 1 master node and 35 slave nodes. Initially, each one of the seven algorithms of the
portfolio occupied five CPUs. In theNoF portfolio, this allocation was retained throughout
the whole experiment, while in the rest of the portfolios the assignments were changed at
each batch according to the forecasted performance, according to the procedures described
in Section 3.

Each portfolio was assessed on the 12 CW(n, k2) problems reported in Table 1, con-
sisting of sequences of length n=33–130 and weights k2 = 9–49. All test problems are
reported as solvable in [5] and they constitute hard permutation optimization tasks since
the corresponding search spaces are huge. For each test problem, ν = 100 independent
experiments were conducted. The total computational budget per experiment was equal
to emax = 1010 function evaluations and the algorithms were restarted to a new random
position after 103 evaluations with no improvement of the best solution. Finally, the com-
putational budget was allocated in bmax = 100 batches to the algorithms according to our
presentation in Section 3. In a second stage of experiments, the best-performing portfolio
was analysed also for bmax = 50 and 150 batches to reveal the effect of this parameter on
its performance.

Figure 2 illustrates the number of function evaluations per problem and portfolio. The
boxplots illustrate the sample of the required function evaluations in 100 experiments per
test problem. The main body of the box contains 50% of the observed values (25th–75th
percentile), the horizontal middle line is the median of the sample, and notches define the
corresponding confidence intervals for themedian. Outliers are denoted as crosses outside
of the sample’s whiskers. The exact average values and standard deviation of the observed
performances are reported in Table A1 of Appendix. According to the experimental data,
the performance of the portfolios seems to be problem-dependent. Thus, a reasonable



OPTIMIZATION METHODS & SOFTWARE 13

Figure 2. Number of the required function evaluations per problem and algorithm portfolio in 100
experiments.
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validation of the portfolios can be considered only by averaging their performance over
all test problems. Moreover, there are clear overlaps in the confidence intervals depicted in
Figure 2, which may render some of the observed differences statistically insignificant.

For these reasons, we conducted Wilcoxon rank-sum tests for each pair of portfolios
and test problem. A favourable comparison for portfolio A, i.e. smaller average number
of function evaluations and statistically significant difference from a competitor portfo-
lio B, was counted as a win for A and loss for B. Otherwise, a tie was counted for both of
them. Obviously, for each one of the four considered portfolios, three comparisons were
conducted per test problem. Thus, the maximum number of wins, losses, or ties for each
portfolio, summed over all 12 test problems, was 36. Table 2 reports these values. As we can
see, the more sophisticated the forecasting approach was, the best was the performance of
the algorithm. The simplistic SMA approachwhere predictionswere based only on the pre-
vious observed value was only slightly better than the plain NoF (no forecasting) portfolio.
In fact, it achieved only one additional win and a few additional ties. However, the SES and
LES portfolios doubled the number of wins, with LES exhibiting clear superiority.

A ranking schemewas considered for the portfolios, primarily based on their number of
wins (in descending order), secondarily on the number of losses (in ascending order), and
eventually according to the mean number of function evaluations (in ascending order), for
each test problem. The ranks achieved by the portfolios averaged over all test problems
are illustrated in Figure 3. Note that smaller ranks denote better approaches. The evidence
verifies and firmly supports the previous findings, with LES occupying the first position,
followed by SES. This clearly suggests that the use of both level and trend information of

Table 2. Number of wins, losses, and ties per
portfolio summed over all test problems.

Wins Losses Ties

NoF 9 25 2
SMA 10 19 7
SES 20 13 3
LES 25 7 4

Figure 3. Average rank of each portfolio over all test problems (smaller values are better).
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the performance signal is highly important for effective performance forecasting in the
portfolios.

Another issue of interest was the constituent algorithm that eventually detected the
global minimizer for each portfolio and test problem. In the upper part of Figure 4, the
total number of times where each algorithm found the best solution per portfolio over all
experiments is illustrated. In the lower part of the same figure, we can see the percentage of
cases where each algorithmwas the best in the portfolio (i.e. it was the one that detected the
global minimizer). The algorithms are denoted as A1, . . . ,A7, according to the notation in
Table 1. This data offers some useful insight. As we observe, there is an indisputable dom-
inance of tabu search with neighbourhood-best search (algorithm A1) against the rest of
the algorithms in all portfolios. This verifies previous results on the CW(n, k2) problems,
which suggested that tabu search is probably the most efficient algorithm for this prob-
lem type [10,26,38]. The pie chart reveals that in more than half of the experiments the
specific algorithm was the one that attained the best solution. Interestingly, the same tabu
search but with first-best neighbourhood search (algorithm A2) failed in attaining optimal

Figure 4. Up: Number of times where each algorithm found the best solution per portfolio over all
experiments. Down: Rounded percentage of cases where each algorithm was the best in the portfolio.
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solutions in all cases. This indicates that it is highly probable to overshoot the optimal solu-
tion if the neighbourhood is only partially probed with the specific neighbourhood search
operator (i.e. the interchange O1 operator).

In contrast to tabu search, the variable neighbourhood search (algorithms A3 and A4)
seems to be only mildly affected from the use of either neighbourhood-best or first-best
search in the neighbourhoods. Indeed, the pie chart in Figure 4 shows that they attained
the best solution for the same fraction of experiments. This is a direct consequence of the
use of all four neighbourhood operators, which counterbalances the possible overshooting
of the solution. Thus, in the neighbourhood-best case the algorithm converges slower than
tabu search because the computational budget is shared among operatorsO1, . . . ,O4. In the
first-best case, the problem of overshooting the solution is evidently counterbalanced by
the use of the alternative operators in the same neighbourhood. Hence, first-best becomes
more efficient in variable neighbourhood search than in different algorithms. Eventually,
their overall performance is almost identical. However, it shall be noted that some perfor-
mance fluctuations are still observed for the two algorithms from one portfolio to another,
as we can see in the upper part of Figure 4.

Finally, the multistart local search (algorithms A5, A6, and A7), which all adopted
the neighbourhood-best search with their corresponding operator (i.e. O1, O2, and O3),
attained global minimizers almost twice as frequently as the variable neighbourhood
search approaches. However, although A5 adopted the same neighbourhood operator as
the tabu search algorithm, it exhibited significantly inferior performance. This can be
attributed to the lack of tabu list in the multistart local search, and connotes that cyclic
moves are highly probable under the interchange operator in the specific problem type.

Table 3. ANOVA table for comparisons between the algorithm.

Source SS df MS F Prob> F

Columns 4.229776681894434e+19 2 2.114888340947217e+19 1.4908 0.22534
Error 5.102946250301801e+22 3597 1.418667292271838e+19
Total 5.107176026983696e+22 3599

Note: SS: sum of squares, df: degrees of freedom, MS: mean squares, F: F ratio.

Figure 5. Number of times where each algorithm found the best solution for the LES portfolio with
different number of batches bmax = 50, 100, and 150.
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So far we showed that LES is the best-performing portfolio. We shall now concentrate
our attention on it. As we have seen, themain parameter of the proposed forecasting-based
portfolio model is the number of batches bmax. This is the only user-defined parameter
that is irrelevant to the externally available resources. The experimental results presented
so far were based on bmax = 100. In order to investigate the robustness of the algorithm,
we repeated the experiments for the best-performing LES portfolio also for bmax = 50 and
150. Then, the results for all three cases were compared through ANOVA and the rele-
vant output is reported in Table 3. The obtained p-value, p= .22534, implies the lack of
significant differences between the three different batch settings. Thus, additionally to its
efficiency, LES is characterized also by robustness. Finally, Figure 5 displays the effect of the
number of batches on the number of times where each algorithm found the best solution.
The similarity of the results with that of Figure 4 comes as a consequence of the robustness
of LES with respect to this parameter.

5. Conclusions

We proposed a new forecasting-based algorithm portfolio model. Time series forecasting
is employed to predict the performance of the portfolio’s constituent algorithms. Then,
computational resources (processing units) are allocated to the algorithms, accordingly.

The challenging problem of detecting circulant weighing matrices was selected as our
testbed for the empirical analysis of the proposed approach. Twelve problems of various
sequence lengths and weights were used for this purpose. Moving average and exponential
smoothing techniques were used with heterogeneous parallel algorithm portfolios based
on three state-of-the-art algorithms, namely tabu search, variable neighbourhood search,
and multistart local search.

The experimental evidence and statistical analysis suggest that the proposed portfolios
are very competitive to the standard ones, especially when sophisticated forecastingmodels
are considered. Moreover, the distinguished portfolios exhibited remarkable robustness to
the only user-defined parameter that is irrelevant to the externally available resources.

Further work will consider large-scale application of the proposed approaches on the
open circulant weighing matrices problems. Also, the online adaptation of the employed
forecasting model and parameters will significantly enhance its performance and broaden
its applicability.
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Appendix

Table A1 reports the mean and standard deviation of the required number of function evaluations
per portfolio and test problem in 100 experiments.

Table A1. Mean and standard deviations of the required number of function evaluations per
portfolio and test problem in 100 experiments.

Problem NoF SMA SES LES

CW( 33, 25) Mean 265,720,142.52 331,835,339.83 373,491,176.26 333,194,618.75
St.d. 176,831,228.50 326,614,780.47 307,813,895.15 271,396,704.86

CW( 42, 16) Mean 148,021,251.04 355,494,012.95 465,529,464.80 366,757,922.58
St.d. 87,457,702.84 197,920,978.26 337,829,868.56 283,411,559.00

CW( 48, 36) Mean 8,966,094,259.03 8,450,373,663.21 9,522,177,083.09 8,390,176,940.68
St.d. 1,628,783,111.09 2,534,472,164.43 941,549,683.09 2,623,454,572.03

CW( 52, 36) Mean 7,015,380,106.43 7,595,344,052.22 7,830,003,623.60 9,410,924,269.19
St.d. 3,365,230,663.40 3,019,641,613.58 3,106,607,178.10 1,541,947,163.22

CW( 57, 49) Mean 9,845,380,201.73 9,789,828,627.24 9,983,252,680.50 9,431,244,647.27
St.d. 347,688,544.57 554,744,648.62 41,628,397.33 1,362,108,847.45

CW( 62, 16) Mean 8,552,745,227.36 8,158,027,372.19 6,086,237,122.05 5,169,643,847.51
St.d. 1,717,529,879.00 2,502,034,113.35 3,920,314,169.99 3,209,578,302.15

CW( 70, 16) Mean 9,535,375,684.45 7,017,255,759.94 7,203,123,536.62 6,464,505,353.24
St.d. 1,085,967,189.42 3,967,903,304.55 2,345,619,436.51 3,235,329,077.92

CW( 78, 9) Mean 78,308,049.92 118,582,116.69 115,282,916.32 182,774,996.53
St.d. 50,711,965.22 88,824,810.13 101,032,082.98 180,481,149.01

CW( 84, 16) Mean 4,429,933,493.29 1,235,246,337.81 654,610,865.80 822,054,389.19
St.d. 2,642,499,036.43 946,674,438.16 295,086,758.98 411,906,987.14

CW( 96, 9) Mean 5,899,585,917.93 6,820,004,192.95 7,494,804,612.15 5,024,175,677.24
St.d. 3,467,027,798.10 3,615,213,497.65 2,769,214,372.77 3,043,546,751.84

CW(112, 16) Mean 5,084,800,143.27 995,875,152.49 754,864,358.78 575,018,440.46
St.d. 1,255,391,314.54 633,616,476.51 755,194,567.19 304,936,921.11

CW(130, 9) Mean 881,997,544.89 900,147,336.62 649,903,262.95 795,164,721.09
St.d. 775,450,398.34 487,501,928.09 629,421,473.56 714,179,077.04
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