Optim Lett @ CrossMark
DOI 10.1007/s11590-015-0927-y

ORIGINAL PAPER

Circulant weighing matrices: a demanding challenge
for parallel optimization metaheuristics

D. Souravlias! - K. E. Parsopoulos! -
I. S. Kotsireas?

Received: 30 December 2014 / Accepted: 20 July 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Circulant weighing matrices constitute a special type of combinatorial
matrices that have attracted scientific interest for many years. The existence and deter-
mination of specific classes of circulant weighing matrices remains an active research
area that involves both theoretical algebraic techniques as well as high-performance
computational optimization approaches. The present work aims at investigating the
potential of four established parallel metaheuristics as well as a special Algorithm
Portfolio approach, on solving such problems. For this purpose, the algorithms are
applied on a hard circulant weighing matrix existence problem. The obtained results
are promising, offering insightful conclusions.

Keywords Circulant weighing matrices - Parallel metaheuristics -
Algorithm portfolios

1 Introduction

Circulant weighing matrices (CWMs) constitute a special type of combinatorial matri-
ces and a fruitful research area for decades [5]. Applications are met in diverse scientific

B 1. S. Kotsireas
ikotsire @wlu.ca

D. Souravlias
dsouravl@cs.uoi.gr

K. E. Parsopoulos
kostasp@cs.uoi.gr
Department of Computer Science and Engineering, University of Ioannina, 45110 Ioannina,

Greece

Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, ON, Canada

Published online: 06 August 2015 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-015-0927-y&domain=pdf

D. Souravlias et al.

fields spanning from coding theory, where they are used to construct linear codes with
good properties [4], to quantum information processing for the improvement of quan-
tum algorithms [9]. Applications can also be found in other research fields such as
statistical experimentation and optical multiplexing [22].

Most research has been focused on the (non-)existence of finite or infinite classes of
CWM matrices. For this purpose, a number of algebraic methodologies have been used
to identify necessary existence conditions [3,5,10,11,13]. Recent works have shed
light on the classification of specific CWMs [2,6,27]. Complementary to the theoretical
approaches, computational optimization methods have been used in cases where theory
cannot cover the entire spectra of CWMs. In such cases, the existence problem is
transformed into an equivalent discrete minimization problem [7,8,18,20,21].

The present work investigates the application of established as well as novel par-
allel metaheuristics on CWM problems. The employed algorithms are prevailing in
metaheuristics research. Specifically, we consider the trajectory-based Tabu Search
(TS) [14] and Variable Neighborhood Search (VNS) [23], as well as the population-
based Differential Evolution (DE) [30] and Particle Swarm Optimization (PSO) [24].
Parallelization of these algorithms is straightforward in a multi-trajectory or multi-
population framework, and allows the use of communication strategies that promote
cooperation in order to increase efficiency. Path-Relinking (PR) [26] is also employed
to enhance performance. Moreover, we consider a recently proposed Algorithm Port-
folio (AP) [29] approach, which is based on a parallel cooperative scheme with
information exchange procedures based on stock trading.

In the core of the studied parallel implementations lies a typical master-slave paral-
lelization model. In the TS, VNS, DE, and PSO approaches, each slave node executes
an identical copy of the corresponding algorithm and exchanges information with the
rest of the slave nodes through the master node. In this case, the parameters of the algo-
rithm are empirically defined after preliminary experimentation. In the AP approach,
a different configuration of the same algorithm on each slave node was found to be
superior, exempting the user from the preprocessing phase. For all algorithms, each
slave sends its best solution to the master node, where it is stored in an external archive.
The slave nodes periodically request to receive elite solutions from the master. The
acquired solutions are exploited either as initial conditions of new trajectories or as new
individuals in the populations. All algorithms are assessed on a challenging problem
of detecting CWMs of a specific class.

The rest of the paper is structured as follows: Sect. 2 presents the problem’s formu-
lation, while all algorithms are outlined in Sect. 3. Experimental settings and results
are reported in Sect. 4 and Sect. 5 concludes the paper.

2 Problem formulation

A weighing matrix W = W (n, k) of order n and weight k is an n x n square matrix
with entries w;; € {—1,0, 1}, which satisfies the condition W wT =k I,,, where
W T stands for the transpose of W, and I, is the n x n identity matrix. A Circu-
lant Weighing Matrix [5], denoted by CW(n, k), is a weighing matrix where each
row (except the first one) is obtained by applying a right cyclic shift to its preced-

@ Springer

Circulant weighing matrices: a demanding challenge...

ing row. If G = {g', g%,..., ¢"} is a cyclic group of order n, the columns CWy ;
of the first row of CW(n, k) can be labeled using the cyclic group G. If P =
{g/: cwij=1, j=1,....n} and N = {g/; CWi;=-1, j=1,....n}.
Then it clearly holds that |P| + |N| = k. By definition, the first row of a CWM is
adequate to define the complete matrix. Most works related to CWMs aim at inves-
tigating the existence (and the number) of circulant matrices C W (n, k) for specific
order n and weight k. Various theoretical developments that provide necessary condi-
tions for the existence of CW matrices of various weights are reported in [2,6,11,31].
Additionally, conditions for the existence of some infinite classes of CWMs are given
in [3,10,13,28].

In cases where theoretical approaches are not adequate, metaheuristics have been
applied on CWM problems. These approaches require a proper objective function that
is globally minimized on the appropriate ternary sequences (first rows of the CWMs).
On that account, we adopt the objective function formulation proposed in [19]. Specifi-
cally, for aternary sequencex € {—1, 0, +1}" oflength n, the Periodic Autocorrelation
Function (PAF) [19] is defined as:

n
PAFi(s) = > XiXits, s=0,1....n—1 1)
i=1

The present work considers only sequences of size n and weight k, with PAFy(s) = 0,
for all 5. Note that each ternary sequence x has a symmetric sequence, and both have
equal PAF values [18]. Let X,) denote the set of all ternary sequences of length n
that contain exactly k> non-zero elements from which, k(k + 1)/2 elements are equal
to +1 and k(k — 1)/2 elements are equal to —1. Then, the objective function can
be represented as a permutation minimization problem with half the number of the
ternary sequence elements:

[31-1 [31-11
min f@) = 3 IPAF| = 3 |D x|,)
EARA) 5=0 s=0 li=1

where i + s is taken modulo n when i + s > n. As example, consider a CW (24, 9)
matrix and let its first row be the sequence,

A=]0,0,-1,0,0,-1,1,0,0,0,1,-1,0,0,0,0,0,1,1,0,0,0, 1, 1].

The CW (24, 9) property dictates that PAFa(s) = 0, for s = 1,...,23, as can be
verified for A. Also, PAFa(0) = 9, since this quantity simply represents the sum of
the squares of the nine non-zero elements of sequence A. Alternatively to the absolute
value, squared sum of the PAF values can be used if quadratic objective functions
are desirable or required from the employed algorithm. In our case, the considered
algorithms do not impose such restrictions.

@ Springer

D. Souravlias et al.

3 Employed algorithms

In this section, we outline the employed metaheuristics. For all the algorithms, we
denote as X" an n-dimensional search space, f(x) the objective function under mini-
mization, and ¢ the iteration counter.

Tabu Search (TS) [14] is a local search algorithm, originally proposed to solve
combinatorial optimization problems. The algorithm is based on two essential com-
ponents, namely Local Search (LS) and a short-term memory, called the Tabu List
(TL). TS is initialized on a randomly selected position in the search space. At each
iteration, the current position moves to the best position of its neighborhood in terms
of objective value. Recently visited positions are included in TL and constitute pro-
hibited moves for the algorithm in order to prevent cyclic behavior. TS moves to the
best neighbor of the current position regardless of improving it. This property equips
TS with a hill-climbing capability, which is necessary for alleviating local minimizers.
Also, TS restarts after a number Tyoimp of non-improving iterations. The best position
that is visited by the algorithm is the approximation of the problem’s solution. TS
has been successfully used in combinatorial matrices problems. Our implementation
closely follows the one in [7].

Variable Neighborhood Search (VNS) [23] is another trajectory-based algorithm,
originally designed to solve combinatorial optimization problems [16]. The algorithm
couples an LS procedure with a perturbation mechanism, both guided by a systematic
change of K predefined neighborhood structures. Given an initial position x € X" and
an initial neighborhood index k = 1, the algorithm randomly perturbs x and receives
a new position X’ in its neighborhood Ny . Then, local search is applied to find the
best point x” € Ny ;. If x” does not improve x/, the local search is applied anew in
the k + 1 neighborhood. Otherwise, x” becomes the new x’ and the index k is reset to
1, continuing the same procedure for the new x'. If there is no success after exceeding
all the K neighborhoods, the algorithm backtracks to the original x and changes its
neighborhood. If all neighborhoods are exceeded without success, the algorithm is
applied on a new initial point x for k = 1 . For the studied permutation problems, we
consider the basic VNS in [16]. The k-th neighborhood of a sequence is defined as
the set of all sequences produced through k distinct interchanges of mutually different
components of X. VNS is also restarted after a number of non-improving iterations.

Differential Evolution (DE) [30] is a population-based algorithm originally pro-
posed for numerical optimization. The algorithm uses a population of N search
agents, called individuals, to probe the search space X by sampling new points
through mutation and crossover operators. DE employs two parameters, F' and
CR, which are user-defined scalars in the range [0, 1]. In this work, the mutation
operator DE/rand/1/bin is selected among various alternatives due to its nice diversity-
preserving properties. DE was originally designed for real-valued search spaces. Thus,
the question arises on how it can be applied on the studied permutation problems. This
is addressed by using the smallest position value (SPV) representation scheme [33],
which maps real-valued individuals into permutations of a predefined reference vec-
tor. Specifically, this scheme considers the real values as weights that determine the
priority of the corresponding components of the reference vector.

@ Springer

Circulant weighing matrices: a demanding challenge...

Particle Swarm Optimization (PSO) [12] is a population-based method that works
similarly to DE. PSO employs a population, called a swarm, of N search points, called
particles, to probe the search space. If S = {x1, X2, ..., Xy} denotes the swarm in
a given iteration, each particle is an n-dimensional vector x; € X that iteratively
moves to new positions according to adaptable position shifts v;, called the velocities.
Also, during its exploration, each particle stores in memory the best position p; it
has ever visited in X. The particles communicate among them with communication
channels that form neighborhood topologies. Thus, each particle updates its velocity
using both its own best position p; as well as the best position pg, discovered by its
neighbors. Detailed presentation of PSO and its variants can be found in [24]. The
SPV technique [33] is also adopted in PSO to transform the real-valued particles into
permutations of sequences.

3.1 Parallelization model

The employed metaheuristics can be easily parallelized with subsequent reduction in
running time and improved solution quality [1]. We adopt a parallelization framework
based on a typical master-slave model where each one of M slave nodes executes an
identical copy of the algorithm. Communication among the slave nodes is achieved via
the exchange of messages through the master node. The communication is inherently
asynchronous and exploits a migration scheme [1] that involves the periodic exchange
of solutions.

More specifically, the master node retains an external archive of M elite solutions,
one detected by each algorithm. When an algorithm discovers a new elite solution it
forwards it to the master node, replacing its previously stored solution. Periodically,
each algorithm requests to acquire the best elite solution stored in the archive of
the master node. The period is denoted by Tp;s. Next, the acquired elite solution is
incorporated in the algorithm either as a new starting point (TS and VNS) or as a new
population member (DE and PSO).

In addition, the acquired elite solution is used for a Path-Relinking (PR) phase [26].
In this context, PR is initiated with a user-defined probability ppg to locate the best per-
mutation between the slave node’s own best solution (starting point) and the acquired
one (target point). This is achieved by iteratively permuting the current solution such
that a new one with the lowest Hamming distance from the target point is discovered.
The best solution found by this local search procedure is used as a new initial point or
a new population member for the algorithm.

3.2 Algorithm portfolios

Algorithm Portfolios (APs) combine different algorithms (heterogeneous APs) or
different configurations of the same algorithm (homogeneous APs) to tackle hard
optimization problems [17]. Since their appearance, APs have gained increasing pop-
ularity [15,25,29,32]. The principle idea behind their development is based on the
concept of investment. This implies investment either on the algorithms that com-

@ Springer

D. Souravlias et al.

prise the portfolio [25,32] or, for population-based approaches, on the individuals that
compose the population [34].

In the present work, we adopt the AP framework proposed in [29], where a different
aspect of investment is explored. This AP framework consists of a number of M
metaheuristic algorithms that interact with each other during the optimization process
and act as investors. The AP is allocated a fixed budget of total running time and
employs a master-slave parallelization model where each algorithm runs on a single
slave. The total allowed running time is distributed equally among the algorithms
and each one divides its own running time into investment time Ti,, and execution
time Texec. The execution time is devoted to the specific algorithm’s execution. The
investment time is consumed by each algorithm on buying solutions discovered by the
other algorithms, if necessary.

The master node retains in memory an archive of the M elite solutions. Each elite
solution corresponds to the best solution discovered by each algorithm (slave node)
of the AP. The master node assigns a price to each elite solution in terms of the time
that will be demanded for an algorithm to buy it. Specifically, the master node sorts
the solutions in descending order with respect to their objective values. If p; is the
position of the i-th solution after sorting, then its cost is defined as,

Ci _ pi X BC ’
M
where BC = f Ti,y is a fixed base cost and 8 € [0, 1]. The slave nodes interact
with each other via the exchange of asynchronous messages through the master node.
Specifically, if the i-th slave discovers a new elite solution denoted by Xpew, it sends
the solution to the master where it replaces its previously stored one, x; [29].
Communication also occurs when an algorithm cannot improve its own elite solu-
tion for an amount of time, Tyoimp- In this case, the master node initiates a solution
selection mechanism to propose elite solutions to the algorithm that would like to make
a purchase (buyer algorithm). This mechanism is based on the Return On Investment
(ROI) index, defined as,

ROI; = f;ff', je{l,2, ..., M}
j

where f denotes the objective value of the algorithm’s own elite solution, f; is the
objective value of the candidate buying solution, and C; is its corresponding cost
determined by the pricing procedure described above [29].

Among the offered elite solutions, the buyer algorithm decides to buy the one that
maximizes the ROI index and has a better objective value than its own best solution.
If the buyer algorithm decides to acquire the j-th elite solution, X, then it pays to
the seller algorithm (the one that discovered it) an amount of time equal to C; (which
was the price of x ;). Specifically, the buyer algorithm reduces its own investment time
by C;, whereas the seller algorithm extends its own execution time by C;. This way
the better-performing algorithms dynamically gain more running time than the rest as

@ Springer

Circulant weighing matrices: a demanding challenge...

Table 1 Pseudocode of slave nodes for the AP approach

1: Initialize the AP with one algorithm per slave node.
2: Allocate to each algorithm execution time 7exec and investment time Tipy.
3: solFound « False
4: While (Texee >0 AND solFound = False) Do
5: Apply the algorithm for some iterations.
6: Send to master node a new elite solution Xy, if detected.
7: If (Xpew is global optimum) Then
8: solFound < True
9: Else if (No improvement is achieved for Toimp AND Tiy > 0) Then
10: Request to buy an elite solution from the master node.
11: If (Elite solution X; is successfully bought) Then
12: X ¢ Crossover (Xpew,X;)
13 : X, < mutation (X.)
14 : Incorporate the solution x,, in the algorithm.
15: End If
16 : End If

17: End While

Table 2 Pseudocode of master node for the AP approach

1 solFound < False

2 While (solFound = False) Do

3 Wait for requests from slaves.

4 If (slave i requests to send a new elite solution Xnew) Then

5: Replace x; with Xy, in the archive of elite solutions

6 Else if (slave i requests to buy a solution) Then

7 Sort elite solutions in descending order w.r.t. their objective values.
8 Price elite solutions.

9: Select elite solution x; with cost C;, j # i, with the maximum ROL
10 : Increase Texec of slave j by C;.
11: Decrease Tj,y of slave i by C;.
12: Send elite solution X; to slave i.
13: End If
14: If (x; is global optimum) Then
15: solFound « True
16 : End If

17: End While

they sell solutions more often. Yet, the total running time that is allocated to the AP
remains unchanged [29].

Moreover, for the CWM problems of interest, we can further enhance the solution
quality by combining the elite solution of the algorithm, Xy, and the one it purchases,
X ;. The combination is attained by applying crossover and mutation between the two
solutions. Specifically, crossover is implemented by retaining the solution components
that are equal in the two solutions, in a new vector X.. Then, mutation is applied on
the rest of the components through random permutations. The resulting new solution,
X, initiates a new trajectory (in TS and VNS) or replaces the worst particle of the
population (in DE and PSO), infusing stochasticity. Pseudocode of the procedures that
take place in the master and slave nodes is provided in Tables 1 and 2, respectively.

@ Springer

D. Souravlias et al.

Table 3 Parameter setting for the considered algorithms

Algorithm Parameters and Values

TS Tabu list size s7; = 48; Size of period Thoimp = 1000 iterations

VNS Number of neighborhoods K = 2; Size of period Thoimp = 1000 iterations

DE Population size N = 100; Mutation and crossover parameters F' = 0.7, CR = 0.3

PSO Swarm size N = 100; Parameters x = 0.729, ¢; = ¢ = 1.49; Neighborhood ring (radius 1)

Common Size of period Tyjg = 100 iterations; Probability ppg = 0.05
AP Investment time fraction 0.3 (i.e., 30 %); B = 0.05; Size of period Tyoimp = 5000 iterations

4 Experimental results

We considered parallel implementations of TS, VNS, DE, and PSO, based on the
description of Sect. 3.1, as well as an AP based on different variants of the TS, which
was identified as the best-performing algorithm. Table 3 reports the parameter config-
uration of the employed algorithms. All experiments were conducted onthe glacier
cluster of the WestGrid consortium (http://www.westgrid.ca), using 8 and
16 nodes (one master node and the rest were slave nodes). The implementation was
based on the OpenMPI project (http://www.open-mpi.org/). Also, two dif-
ferent running time budgets, namely 12 and 24 h, were considered for all algorithms.
A number of 25 independent experiments were conducted for each algorithm and test
case. Henceforth, we denote the experimental configurations with their corresponding
number of CPUs followed by the running time, i.e., 8/12, 8/24, 16/12, and 16/24,
respectively.

The primary objective of the experiments was to computationally verify the exis-
tence of ahard CWM class, namely the existence of C W (48, 36) matrices. A secondary
objective was the comparison between the algorithms. For this purpose, we recorded
the number of successful experiments (out of 25) as well as the number of unique
solutions detected by each algorithm, i.e., solutions that are not cyclic permutations
of other solutions detected by the same algorithm. An experiment was considered
as successful if a ternary sequence that defines a C W (48, 36) matrix was detected,
minimizing the objective function of Eq. (2). Regarding our first objective, overall the
algorithms detected the 22 unique solutions given below, with “—" denoting “—17,
and “+” denoting “+1":
0+++-0-++-+0-0-+0+++-0+-0-+++0++++-0+0-+0--+-0--
0++0+-++0-00--+-0-+-++--0++0-+++0+00+-++0++----+
+++-0-+0-+++0+-0-0+-++-0-+++0--0-+--0+-0+0-++++0
++-000-+---+-0+--+++00+++-+000-+++++-0--+-++00-+
+00-++--000-+-+-+-04--—++00+++++000-++-++-0-—+++
00-+-+--00++--=-++0+0-+-+00++-=+-00+++++++0-0+--+
-0+0+-++00+++++-00-+--++-0-0-+++00-++---00—-+++-+
0++--+++000-+-+-00+----~ O++++-++000+--++00+-++-+
+0-+++00+0-++-0+-0+-++++-0+++-00-0-+-+0+-0--—-—++
+0+--+00++-++-00++--+++0-0-+-+00-+----00++++-++0

00++--=-=0-+++-+-000+-+++00++++-+0-+-=++-000—+++~
—==+00++-++-00+++-+++0-0++-+00-+----00++-+-++0+0

@ Springer

Circulant weighing matrices: a demanding challenge...

Table 4 For each algorithm and

. . Algorithm Time (h) Number of CPUs
experimental configuration, the
number of successes (suc) over 8 (%) 16 (%)
25 experiments (and the
corresponding percentage) are TS 12 Suc 14 (56.0) 22 (88.0)
reported. Also, the number of Uni 7 (50.0) 5(22.7)
unique solutions (uni) and the
corresponding percentage with 24 Suc 20 (80.0) 24 (96.0)
respect to the total number of Uni 4(18.2) 6 (25.0)
solutions found by the algorithm y/Ng 12 Suc 3 (12.0) 4(16.0)
ted
are reporte Uni 1(333) 1(25.0)
24 Suc 5(20.0) 6 (24.0)
Uni 2 (40.0) 2(33.3)
DE 12 Suc 8(32.0) 10 (40.0)
Uni 1(12.5) 2 (20.0)
24 Suc 15 (60.0) 18 (72.0)
Uni 3(20.0) 4(22.2)
PSO 12 Suc 7 (28.0) 11 (44.0)
Uni 2 (28.6) 3(27.2)
24 Suc 13 (52.0) 17 (68.0)
Uni 4 (30.8) 5(29.4)
AP 12 Suc 15 (60.0) 25 (100.0)
Uni 7 (46.7) 10 (40.0)
24 Suc 15 (60.0) 25 (100.0)
Uni 5(33.3) 9 (36.0)
+-++000+++-+++0--++-+00-+---000++-+-++0+----+00+
-+0++++0++0-0+--+-0-+-+0--0++--0++0+0-+-++0++--0
00+++-=++0+-++-+00++--+000++-++++0----— +00-+-+-0
-+-0-00+++-0-++-+--0-+0+++-0+00-+++0++++--+0-+0-
+-4+--00+++--++0+0++-+00++--+-00++-++++0-0---+00-
0+0--++00+++++-00-++-++-0-0++++00-++---00-+—+-+~
-+0+-0+--—=+++0++++00+0-++-0+-0--++++-0-++-00-0-+
-+0++0-0---4++0-+-4+0-+0+++-0++0+0++-+-0++--0--0++
++-0-0-++--+-00-+++++00++-+0+0-+-+++-00---++-00+
-0++---0-0++0+-++0--0--++0-+-++0+0++0-+++0+-0+-+

Regarding the second objective, Table 4 reports the successes (both in number
and percentage over 25 experiments) of each algorithm. Additionally, the number of
unique solutions and the corresponding percentage with respect to the total number
of detected solutions are reported. A first reading of the results clearly shows that TS
outperforms the rest of the distinct algorithms by achieving significantly a higher num-
ber of successes. This is verified also for the number of unique solutions. Obviously,
the exhaustive local neighborhood search, along with the hill-climbing capabilities
and the cooperation of the parallel scheme, equipped TS with satisfactory trade-off
between exploration and exploitation.

However, all algorithms were outperformed by the AP in most test cases. In fact,
the AP was the only approach that achieved 100 % successes in half experimental
configurations. Even in the 8/24 case, where TS outperformed AP in successes, its

@ Springer

D. Souravlias et al.

REQUIRED TIME PER ALGORITHM

1.4E+5
1.2E+45
= 1.0E+5
O 8.0E+4 B MEAN
W 6.0E+4 ® MEDIAN
Z 40E+4 STD.
2.0E+4 -
0.0E+0
TABU VNS DE PSO AP

ALGORITHM

Fig. 1 Statistics for the required running time (in seconds) per algorithm for the successful experiments
over all problem configurations

unique solutions were 4 out of 20 successful experiments against 5 out of 15 successful
experiments of the AP. This evidence verifies the gain from the special solution trading
scheme implemented in the AP against the simple cooperation of the parallelized
algorithms. The rest of the algorithms, especially DE and PSO, could easily bypass
a solution. Yet, the performance between DE and PSO was very similar, with their
success percentages deviating by 6 % at most.

Table 4 also reveals a consistent improvement of the four algorithms when the
number of CPUs or the running time is doubled. In fact, increasing the running time
appears to be more effective than increasing the number of CPUs in most cases.
However, this is not verified for the AP, where the number of CPUs seems to be of
primary importance. At first sight, this observation appears to contradict the previous
one. However, it can be easily explained by the evidence illustrated in Fig. 1, which
reports the required running time (in seconds) per algorithm only for the successful
experiments over all problem configurations. As we can see, the AP approach requires
only a small fraction of the running time required by the rest of the algorithms to detect
a solution. Thus, providing additional time does not have a crucial impact. On the other
hand, adding slave nodes increases the search capacity of the AP with a consequent
surge in successes.

We further investigated the reported running times by conducting Wilcoxon
ranksum tests for each pair of algorithms (only for the successful experiments) at sig-
nificance level 95 %. The tests revealed that only the AP had statistically significant
differences in running time with the rest of the algorithms. Overall, the AP approach
was shown to be the most efficient and effective among the considered ones. Given
that AP differs from the simple parallel TS only in the sophisticated solution trading
scheme, we can infer that the proposed AP framework can be highly beneficial.

5 Conclusions

Circulant weighing matrices (CWMs) have been a fertile research area for several
decades. We proposed a framework for the application of parallel metaheuristics on
a challenging problem that emerges in this research area. Our approach included
four essential metaheuristics as well as an Algorithm Portfolio scheme that employs
a sophisticated solution-trading mechanism. The experimental results were highly

@ Springer

Circulant weighing matrices: a demanding challenge...

promising, providing a number of solutions on a CWM existence problem. This offers
motivation for further research on the application of efficient metaheuristics on com-
binatorial matrices problems.

Acknowledgments The authors would like to thank the Shared Hierarchical Academic Research Com-
puting Network (SHARCNET) as well as the WestGrid HPC consortium for offering the necessary
computational resources.

References

—_

10.

11.
12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley, London (2005)

Ang, M., Arasu, K., Ma, S., Strassler, Y.: Study of proper circulant weighing matrices with weigh 9.
Discrete Math. 308, 2802-2809 (2008)

Arasu, K., Dillon, J., Jungnickel, D., Pott, A.: The solution of the waterloo problem. J. Comb. Theory
Ser. A 71, 316-331 (1995)

Arasu, K., Gulliver, T.: Self-dual codes over fp and weighing matrices. IEEE Trans. Inf. Theory 47(5),
2051-2055 (2001)

Arasu, K., Gutman, A.: Circulant weighing matrices. Cryptogr. Commun. 2, 155-171 (2010)

Arasu, K., Leung, K., Ma, S., Nabavi, A., Ray-Chaudhuri, D.: Determination of all possible orders of
weight 16 circulant weighing matrices. Finite Fields Appl. 12, 498-538 (2006)

Chiarandini, M., Kotsireas, I., Koukouvinos, C., Paquete, L.: Heuristic algorithms for hadamard matri-
ces with two circulant cores. Theor. Comput. Sci. 407(1-3), 274-277 (2008)

Cousineau, J., Kotsireas, I., Koukouvinos, C.: Genetic algorithms for orthogonal designs. Australas. J.
Comb. 35, 263-272 (2006)

van Dam, W.: Quantum algorithms for weighing matrices and quadratic residues. Algorithmica 34,
413-428 (2002)

Eades, P.: On the existence of orthogonal designs. Ph.D. thesis, Australian National University, Can-
berra (1997)

Eades, P., Hain, R.: On circulant weighing matrices. Ars Comb. 2, 265-284 (1976)

Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings Sixth
Symposium on Micro Machine and Human Science, pp. 39-43. Piscataway, NJ (1995)

Geramita, A., Sebery, J.: Orthogonical designs: quadratic forms and hadamard matrices. Lecture Notes
in Pure and Applied Mathematics (1979)

Glover, E.: Future paths for integer programming and links to artificial intelligence. Comput. Oper.
Res. 13(5), 533-549 (1986)

Gomes, C.P.,, Selman, B.: Algorithm portfolio design: theory vs. practice. In: Proceedings Thirteenth
conference on Uncertainty in artificial intelligence, pp. 190-197 (1997)

Hansen, P., Mladenovié, N., Brimberg, J., Moreno Pérez, J.A.: Variable neighborhood search. In: M.
Gendreau, J.Y. Potvin (eds.) Handbook of Metaheuristics, vol. 146, chap. 3. Springer, Berlin (2010)
Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems.
Science 27, 51-53 (1997)

Kotsireas, I.: Algorithms and metaheuristics for combinatorial matrices. In: P. Pardalos, D.Z. Du, R.L.
Graham (eds.) Handbook of Combinatorial Optimization, pp. 283-309. Springer, New York (2013)

. Kotsireas, I., Koukouvinos, C., Pardalos, P., Shylo, O.: Periodic complementary binary sequences and

combinatorial optimization algorithms. J. Combin. Optim. 20(1), 63-75 (2010)

Kotsireas, 1., Koukouvinos, C., Pardalos, P., Simos, D.: Competent genetic algorithms for weighing
matrices. J. Combin. Optim. 24(4), 508-525 (2012)

Kotsireas, I., Parsopoulos, K., Piperagkas, G., Vrahatis, M.: Ant-based approaches for solving autocor-
relation problems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 7461 LNCS, pp. 220-227 (2012)

Koukouvinos, C., Seberry, J.: Weighing matrices and their applications. J. Stat. Plan. Inference 62(1),
91-101 (1997)

Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097-1100
(1997)

@ Springer

D. Souravlias et al.

24.

25.

26.

27.

28.

29.

30.

31.

33.

34.

Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization and Intelligence: Advances and Appli-
cations. Information Science Publishing (IGI Global), Hershey, USA (2010)

Peng, F.,, Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for numerical optimization.
IEEE Trans. Evol. Comput. 14(5), 782-800 (2010)

Ribeiro, C., Resende, M.: Path-relinking intensification methods for stochastic local search algorithms.
J. Heuristics 18(2), 193-214 (2012)

Schmidt, B., Smith, K.W.: Circulant weighing matrices whose order and weight are products of powers
of 2 and 3. J. Comb. Theory Ser. A 120(1), 275-287 (2013)

Seberry, J., Whiteman, A.: Some results on weighing matrices. Bull. Aust. Math. Soc. 12, 433-447
(1975)

Souravlias, D., Parsopoulos, K.E., Alba, E.: Parallel algorithm portfolio with market trading-based
time allocation. In: Proceedings International Conference on Operations Research 2014 (OR2014)
(2014)

Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 11(4), 341-359 (1997)

Strassler, Y.: The classification of circulant weighing matrices of weight 9. Ph.D. thesis, Bar-Ilan
University (1997)

. Tang, K., Peng, F., Chen, G., Yao, X.: Population-based algorithm portfolios with automated constituent

algorithms selection. Inf. Sci. 279, 94-104 (2014)

Tasgetiren, F., Chen, A., Gencyilmaz, G., Gattoufi, S.: Smallest position value approach. Stud. Comput.
Intel. 175, 121-138 (2009)

Yevseyeva, 1., Guerreiro, A.P., Emmerich, M.T.M., Fonseca, C.M.: A portfolio optimization approach
to selection in multiobjective evolutionary algorithms. Proc. PPSN 2014, 672-681 (2014)

@ Springer

	Circulant weighing matrices: a demanding challenge for parallel optimization metaheuristics
	Abstract
	1 Introduction
	2 Problem formulation
	3 Employed algorithms
	3.1 Parallelization model
	3.2 Algorithm portfolios

	4 Experimental results
	5 Conclusions
	Acknowledgments
	References

