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a b s t r a c t

We propose a quality-driven cross-layer optimization scheme for wireless direct sequence
code division multiple access (DS-CDMA) visual sensor networks (VSNs). The scheme
takes into account the fact that different nodes image videos with varying amounts of
motion and determines the source coding rate, channel coding rate, and power level for
each node under constraints on the available bit rate and power. The objective is to
maximize the quality of the video received by the centralized control unit (CCU) from each
node. However, since increasing the power level of one node will lead to increased
interference with the rest of the nodes, simultaneous maximization of the video qualities
of all nodes is not possible. In fact, there are an infinite number of Pareto-optimal
solutions. Thus, we propose the use of the Nash bargaining solution (NBS), which
pinpoints one of the infinite Pareto-optimal solutions, based on the stipulation that the
solution should satisfy four fairness axioms. The NBS results in a mixed-integer
optimization problem, which is solved using the particle swarm optimization (PSO)
algorithm. The presented experimental results demonstrate the advantages of the NBS
compared with alternative optimization criteria.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Wireless video communications suffer from a number
of network resource constraints, including bandwidth,
energy and computational complexity limitations. Data
imaging, processing and transmission are recognized as
power-consuming operations that can affect the perfor-
mance of visual sensor networks (VSNs). Also, the available
bit rate for video transmission can be limited in a wireless
mmenou),
arsopoulos),
channel due to limited bandwidth and adverse channel
conditions. VSNs consist of a number of spatially distrib-
uted nodes, each one equipped with a camera. The nodes
are able to image and detect fields of different motion
levels, depending on the specific application. The main
challenge in VSNs is the coordinated behavior of each node
constituting the network, such that it maximizes the
overall system performance within the various resource
constraints.

In general, game theory expands in two sharply differ-
ent directions, namely non-cooperative game theory and
cooperative game theory. The first branch is mainly con-
cerned with the mutual interactions among intelligent
individuals, striving to achieve their own goals. Several
applications of non-cooperative game theory in wireless
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networks are provided in [1–4]. In all these works, the
Nash equilibrium appears as the solution achieved when
the players compete with each other. A Nash equilibrium is
reached when the strategy of each player is the best
response to the strategies of the other players. However,
such selfish behaviors often lead to suboptimal solutions,
in the sense that user collaboration could promote an
improved outcome, favorable for all players of the game.

In5 cooperative game theory models, the players coordi-
nate their strategies by forming coalitions, in order to agree
on a mutually acceptable division of the payoff. This aspect of
game theory is also used in wireless networks for obtaining
unbiased and efficient resource allocation schemes, avoiding
disproportional allocations or resource depletion. Coopera-
tive game theory concepts have been used to solve the
opportunistic spectrum access problem [5]. Also, the issue of
multi-radio resource allocation in generic heterogeneous
wireless networks has been addressed based on the idea of
network technologies cooperation [6]. Moreover, bargaining
theory, which is highly associated with cooperative game
theory, was applied to distribute resources at a relay node to
multiple source nodes [7]. In [8], the problem of downlink
resource allocation for a multi-user multiple-input multiple-
output orthogonal frequency division multiple access system
was considered through the bargaining perspective, while
different fairness policies targeting at efficient resource
management have been proposed [9–11].

The different nodes of a wireless VSN image videos
with varying amounts of motion. When the employed
network access method is the direct sequence code division
multiple access (DS-CDMA), all nodes can transmit at the
same time, sharing the same available bandwidth. How-
ever, a node transmission causes interference to the
transmissions of the other nodes, deteriorating the quality
of the video they transmit. If a node captures a video with
low motion, then it may use fewer bits for source coding
(video compression). This will leave more bits available for
channel coding. Stronger channel coding will allow the
transmission to tolerate a higher bit error rate. Thus, the
transmission power of that node may be lower.

On the other hand, if a node captures a video with high
motion, it will use more bits for source coding and fewer bits
for channel coding, thus requiring a higher transmission
power. Aiming at the achievement of high video quality, the
transmission power should be adequately high to permit
reliable data transmission and maintain the quality of the
video reception. On the contrary, given that sensor nodes are
battery-operated systems, it needs to be low enough to
enhance the battery life of the nodes and keep interference
to the other nodes' transmissions to low levels.

Additionally, DS-CDMA systems are interference limited
and do not have a fixed limit on the number of users that can
access the channel. Hence, low-motion nodes that transmit
at low power will cause limited interference
with the rest of the nodes, thus maintaining good overall
system performance and allowing a larger number of nodes
to use the channel. Thus, our consideration of the level of
motion in the captured videos in the optimization makes DS-
CDMA a clear choice as a wireless multiple access system.

In our previous work [12], we proposed a cross-layer
optimization algorithm, under a centralized setting [13–15],
able to select the source coding rate, channel coding rate,
and power level for each node, assuming constraints on the
available bit rate and power. The objective was the max-
imization of the quality of the videos received by the
centralized control unit (CCU) from each node. For this
purpose, in [12] we used two optimization criteria; the
minimized average distortion (MAD) criterion and the
minimized maximum distortion (MMD) criterion.

As it is declared by their names, the MAD and MMD
minimize the average and the maximum distortion of the
nodes, respectively. Thus, they are rather focused on the
overall or worst-case behavior of the network. Also, in
[12], all parameters to be optimized (source coding rates,
channel coding rates, power levels) assumed values from
discrete sets. Therefore, a combinatorial optimization pro-
blem was formulated and solved. Furthermore, the MAD
and MMD criteria were also used in [16], where the power
levels assumed values from a continuous set, resulting in a
mixed-integer optimization problem, which was solved
using the particle swarm optimization (PSO) algorithm.

In [17], we applied axiomatic bargaining game theory
[18], which belongs to the broader category of cooperative
games. Axiomatic bargaining defines the properties (axioms)
that shall be adhered to by the optimal solution, and they
serve as criteria for rejecting other candidate solutions, until
a unique optimal solution is finally selected. Specifically, in
[17], we proposed the use of the Nash bargaining solution
(NBS) in the game of resource allocation in a wireless VSN
that uses DS-CDMA. In that work [17], the disagreement point
(dp), which is the vector of minimum utilities that each
node expects by joining the game without cooperating with
the other nodes, was assumed to be the Nash equilibrium.
Furthermore, finding the NBS involves solving an optimiza-
tion problem where the Nash product is maximized. In the
same paper [17], all parameters to be optimized (source
coding rates, channel coding rates, power levels) were
assumed to take values from discrete sets.

In the present paper, we apply cooperative game theory
by using the Nash bargaining solution. The objective is to
ameliorate the quality of the videos received by the CCU
from each node, taking into account the fact that different
nodes image videos with varying amounts of motion. Since
the simultaneous maximization of the video qualities of
all nodes is not possible, we employ the NBS in order to
pinpoint one of the infinite Pareto-optimal solutions,
based on the stipulation that the solution should satisfy
four fairness axioms. Specifically, this solution promises
fairness for all nodes, taking into account the amounts of
motion in the videos they capture.

Compared to our previous work [17], the current paper
deals with a mixed-integer optimization problem, since it
involves both continuous (power levels) and discrete (source
coding rates and channel coding rates) nodes' transmission
parameters. Clearly, allowing power levels to take values
from a continuous set offers flexibility to the CCU to perform
better management of the nodes' transmission parameters,
achieving in this way better end-to-end video quality for
each node. Additionally, driven by the fact that, in a
considered game, users' collaboration promotes improved
outcomes favorable for all players participating in the game,
in this work, we take careful treatment to the optimal setting
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of the disagreement point. Particularly here, it is set by the
system designer and it is does not correspond to the Nash
equilibrium.

A preliminary version of this paper was presented in
[19]. However, compared to [19], the current paper brings
the following contributions. We introduce two versions of
the NBS that differ in the definition of the bargaining
powers. The first variant (NNBS) treats equally each
individual node of the VSN, while the second variant
(CNBS) provides equal treatment to each class of nodes.
The proposed optimization schemes can be used for any
wireless VSN with a centralized topology that uses DS-
CDMA for data transmission. They keep low computational
complexity, especially after the assumption of node clus-
tering, based on the amounts of the detected motion in the
videos recorded by the nodes. Given this assumption,
fewer parameters need to be estimated and thus, less time
is required for their computation. Additionally, the specific
schemes not only provide Pareto-optimal solutions, but
also guarantee fairness for all nodes of the VSN, as their
fairness axioms state.

Traditional optimization algorithms on mixed-integer
problems like the ones of this work may exhibit declining
performance. For example, traditionally, infeasible primal-
dual interior-point methods have had two main perceived
deficiencies, i.e., lack of infeasibility detection capabilities,
and poor performance after a warmstart [20]. On the other
hand, specialized solutions may require significant imple-
mentation effort and expertise. Alternatively, such problems
can be straightforwardly addressed by stochastic, popula-
tion-based algorithms. Our previous experience with the
particle swarm optimization algorithm [21] has verified its
potential to tackle these optimization tasks [16,19], efficiently
and effectively. Due to this, in this work we apply the PSO
algorithm to the problem indicated by the NBS, under a
cooperative game-theoretical perspective.

For the sake of paper's completeness, the performance of
PSO is compared here with the performance of three
deterministic optimization methods, which were used as
benchmarks, such as active-set (AS) [22,23], interior-point (IP)
[24,25] and trust-region-reflective (TRR) [26,27]. The con-
ducted statistical tests showed that PSO greatly outperforms
these classical deterministic algorithms, offering strong
motivation for its use as the main optimizer in this work.

Additionally, in this paper, we experiment with various
dp values in order to find this value that behaves equally
fairly to each node and do not favor more some specific
nodes. Also, the optimization problems of this work are of
higher dimension compared to our previous works and
our proposed methods are tested for more diverse para-
meter settings. The accuracy of the obtained results con-
firmed our belief that the NBS can be applied to any
similar application in a wireless DS-CDMA VSN.

The rest of the paper is structured as follows: Section 2
provides a description of the network infrastructure con-
sidered in our study. Source and channel coding issues as
well as the model used for the estimation of the video
distortion are analyzed in Section 3. Section 4 is devoted to
the proposed game-theoretic approaches, while Section 5
offers a brief presentation of PSO. Section 6 exposes the
experimental part of our study, including configuration of
system parameters as well as presentation and interpreta-
tion of the obtained results. Finally, Section 7 summarizes
the key concepts of the study and highlights the derived
conclusions.

2. Network infrastructure

In this section, we present the cross-layer design as
well as the wireless channel access method adopted in the
considered network.

2.1. Cross-layer design

The cross-layer design used in the considered wireless
VSN differs from the standard models like open systems
interconnection or transmission control protocol/internet
protocol. In these traditional architectures, a set of defined
layers interact with each other, following the strict ordering
of the assumed layer hierarchy. In contrast, the proposed
design allows even non-adjacent layers to interact with each
other and exchange information. The use of such a flexible
scheme optimizes the end-to-end system performance, over-
coming possible network latency problems.

The use of the cross-layer design is essential in this
paper since the received video quality depends on deci-
sions made at different network layers. The multi-node
cross-layer technique assumes that the physical, data link,
network and application layers cooperate with each other,
optimizing network performance. At the physical layer, the
transmission powers of all nodes are determined, while at
the data link layer, the optimal channel coding rates are
selected. At the application layer, the compression rates
are chosen. The layer collaboration is coordinated by a
centralized control unit, which undertakes to communi-
cate with all nodes in order to request changes in trans-
mission parameters, according to their unique, content-
aware needs for resources. Fig. 1 gives an insight of a
wireless VSN with two diverse video priorities.

2.2. Direct sequence code division multiple access

The current work assumes that the nodes can access
the wireless VSN using the DS-CDMA channel access
method. In DS-CDMA, all nodes transmit over the same
bandwidth, while the transmission of each node is distin-
guished by the use of a different spreading code. An
advantage of such systems is the lack of fixed limit on
the number of nodes accessing the same bandwidth.
However, a node transmission causes interference to the
transmissions of the other nodes. Therefore, we are inter-
ested in achieving the ideal tradeoff between power
consumption and video viewing quality. On one hand,
spending less power will limit interference but, on the
other hand, low power amounts cannot guarantee suffi-
cient video quality. Hence, power control is considered
indispensable for a successful DS-CDMA system.

The power Sk, henceforth called power level, of node k,
refers to the power received by the CCU from node k.
It is defined as Sk ¼ Ek Rk and is measured in Watts (W).
The quantity Ek is the energy-per-bit and Rk is the total bit rate
utilized for both source and channel coding. The required
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Fig. 1. A wireless VSN with two diverse video priorities.
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transmission power Sktrans that will yield a power level Sk at the
receiver is determined by a power control algorithm that is
present in all practical DS-CDMA systems [28,29]. Power
control can track the attenuation due to the distance between
transmitter and receiver, as well as the effects of fading. The
bit rate for node k is given by the fraction Rk ¼ Rs;k=Rc;k, where
Rs;k represents the source coding rate and Rc;k stands for the
channel coding rate. The quantities Rs;k and Rk are measured
in bits per second (bps), and Rc;k, which is the ratio of the
information bits over the total number of bits, is dimension-
less, i.e., a single number without units of measure [30].

DS-CDMA systems are interference-limited [28]. Thus,
it is common to assume that the thermal and background
noise is negligible compared to the interference [31,32].
Furthermore, we assume that the interference can be approxi-
mated by additive white Gaussian noise [28,31,33]. We define
the energy-per-bit tomultiple access interference (MAI) ratio as

Ek
I0

¼ Sk=Rk

∑K
j ¼ 1;jakSj=Wt

; k¼ 1;2;…;K; ð1Þ

where I0=2 is the two-sided power spectral density due to
MAI, measured in Watts/Hertz (W/Hz). The quantity Wt

denotes the total bandwidth, measured in Hertz (Hz). The
subscript k refers to the current node, while j refers to the
interfering nodes.
3. Video coding and the expected distortion

In this section, the source and channel coding char-
acteristics are presented along with a discussion of the
considered model for calculating the expected video
distortion.

3.1. Source and channel coding

Source and channel coding are both necessary pro-
cesses for video encoding. Source coding faces the chal-
lenge of video data representation with the smallest
possible number of bits, ensuring tolerable levels of image
quality degradation. In our study, the H.264/advanced video
coding (H.264/AVC) standard was used to efficiently com-
press the video sequences imaged by the nodes. This
standard can provide good video quality at substantially
lower bit rates than earlier standards [34]. More specifi-
cally, the H.264/AVC Main profile was employed. This
profile was designed so as to provide high coding effi-
ciency. Therefore, it includes B-pictures, context-adaptive
binary arithmetic coding, context-adaptive variable-length
coding and interlaced coding tools. As the error rates after
forward error correction are not expected to be high, the
error resilience tools, i.e., flexible macroblock ordering,
arbitrary slice order, and redundant slices, are not included
in this profile [35].

Regarding channel coding, it aims to increase system
resistance to channel errors by adding redundant bits to a
video sequence. In this paper, channel coding is accomplished
by the use of rate compatible punctured convolutional codes
(RCPC codes) [36], which are families of codes with different
rates that can be decoded by the same Viterbi decoder.
However, other channel coding schemes can also be used.

We use Viterbi's upper bound of the bit error probability,
Pb, for RCPC codes [31,36–38], which satisfies the relation

Pbr
1
P

∑
1

d ¼ dfree

cdPd; ð2Þ

with

Pd ¼
1
2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffi
dRcEk
I0

s !
; ð3Þ

and

erfc xð Þ ¼ 2ffiffiffi
π

p
Z 1

x
exp �t2

� �
dt: ð4Þ

In Rel. (2), the parameter P is the period of the code; dfree is
the free distance of the code and cd is the information error
weight. In an additive white Gaussian noise channel that uses
the binary phase shift keying modulation scheme, Pd is the
probability that the wrong path at distance d is selected.
In Eq. (3), the parameter Rc is the channel coding rate and
Ek=I0 is the energy-per-bit to MAI ratio, for node k. The
complementary error function denoted as erfcðÞ, is given by
Eq. (4).

3.2. Modeling and estimation of the expected distortion

The video sequences received by the CCU are degraded
by both the lossy compression and the errors introduced by
the channel. Clearly, there is a direct relationship between
the bit error rate (bit error probability), Pb, and the distor-
tion of the video sequences. In this work, for the estimation
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of the expected video distortion, E½Dsþc;k�, for node k, we
used universal rate-distortion characteristics (URDC) [30].
These characteristics show the expected distortion,
E½Dsþ c;k�, as a function of the bit error probability, Pb, after
channel decoding. However, since video encoded with the
H.264 codec is designed to handle packet errors as opposed
to bit errors, we need to calculate the resulting packet loss
rate (PLR). We assume that the video bit stream is pack-
etized using the real-time transport protocol (RTP). RTP
provides a packet format for real-time data transmissions
[39]. We calculate an RTP PLR from a certain bit error rate
(BER), drop packets from the H.264 bitstream according to
the RTP PLR, and pass the corrupted H.264 bitstream to the
H.264 decoder to calculate the distortion of the video [12].

We assume that each RTP packet consists of a number of
link layer packets. The link layer packet size is LLsize,
measured in bits. Thus, the link layer PLR is PLRLL ¼
1�ð1�BERÞLLsize , where PLRLL is the PLR for a link layer
packet of size LLsize. Similarly, we calculate the RTP PLR with
PLRRTP ¼ 1�ð1�PLRLLÞRTPsize , where PLRRTP is the PLR for an
RTP packet of size RTPsize, measured in the number of link
layer packets. We assume that we know when a packet has
an error and we manually drop packets with any errors
from the H.264 encoded video stream, in accordance with
the PLRRTP calculated from the BER.

Since channel errors are random, the video distortion
Dsþc;k of node k, which is due to both the lossy compres-
sion and channel errors, is a random variable. Thus, it does
not suffice to calculate the video distortion for just one
realization of the channel. Therefore, we will consider the
expected value of the distortion, E½Dsþ c;k�. Alternatively,
instead of running repeated simulations in order to esti-
mate the expected distortion at the receiver, it is also
possible to estimate the expected distortion using the
recursive optimal per-pixel estimate algorithm [40].

The URDC model used in this work to estimate the
expected distortion is [12,19]

E Dsþc;k
� �¼ α log10

1
Pb

� �	 
�β

; ð5Þ

for node k. The parameters α and β are positive and they
are highly dependent on the video content characteristics
E Dsþc;k
� �

Rs;k;Rc;k; S
� �¼ α cbkð Þ log10 1

1
P

∑1
d ¼ dfree ðcbk Þ

cd cbkð Þ
1
2

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dRc;k

Sk=Rk
∑K
j ¼ 1;ja k

Sj=Wt

� �s ! !
2
66664

3
77775

�βðcbkÞ

; ð6Þ
as well as the source coding rate. Their values are deter-
mined in a preprocessing phase by using mean squared
error optimization for some ðE½Dsþc;k�; PbÞ pairs [12].

A significant constraint considered in our problem
setup refers to the total bit rate used by each node for
both source and channel coding. Specifically, each node
shall transmit data using the same maximum bit rate. This
constraint results from a fixed overall transmission chip
rate, Rchip, measured in chips per second, and using the
same spreading code length L, measured in chips, for all
nodes, since Rk ¼ Rchip=L. From the definition of Rk, it is
clear that source and channel coding rates are inversely
related quantities, i.e., higher source coding rates imply
fewer bits available for channel coding, and vice versa.

Concerning the values that the source coding rates and
channel coding rates can assume, it suffices to mention
that the channel coding rates can only take discrete values
from a set Rc [36]. Combining this assumption with the
definition of Rk, this implies that source coding rates can
also take discrete values from a set Rs. On the contrary, the
power levels assume continuous values from a predeter-
mined range, namely SkAP¼ ½smin; smax� �Rn

þ , meaning
that the power level values are bounded between smin

and smax.
Let us assume that the pair (Rs;k, Rc;k) takes discrete

values from a set:

Rsþc ¼ fðR1
s ;R

1
c Þ; ðR2

s ;R
2
c Þ;…; ðRM

s ;R
M
c Þg;

where the cardinality of Rsþc is equal to M. Hence, the sets
Rs, Rc and Rsþ c, have the same cardinality. Increasing the
cardinality of one of these sets would considerably
increase the corresponding optimization problem's search
space, further complicating the problem. Additionally, cbk
denotes the index of the selected source–channel coding
rate combination, for node k. For example, cbk ¼ 1 corre-
sponds to the source–channel coding rate ðR1

s ; R
1
c Þ.

Since the parameters α and β in the URDC model, for
node k, are functions of the source coding rate, they are
immediately dependent on cbk. Furthermore, the afore-
mentioned parameters are also closely related to the
motion detected in each video sequence. Higher motion
levels detected in a video sequence or higher source
coding rates correspond to higher values for the parameter
α. The free distance of the code, dfree, and the information
error weight, cd, in Pb’s equation depend on the channel
coding rate and, thus, they are also dependent on cbk.
Viterbi's upper bound of Rel. (2) is considered to be tight
[38], thus it can be used as an approximation of the bit
error rate Pb [31]. To be noted that taking Rel. (2) with
equality refers to a worst case analysis.

Substituting Pd into Rel. (2) (assuming it holds as
equality), and then Pb into Eq. (5), E½Dsþc;k� becomes
for node k. Evidently, the expected video distortion is a
function of the source coding rate, Rs;k, and the channel
coding rate, Rc;k, for node k, as well as of the power levels,
S¼ ðS1; S2;…; SK Þ> , of all K nodes participating in the
network.

4. Proposed game-theoretic approaches

In the following, we present the proposed game-theo-
retic approaches, after a brief introduction of the necessary
background information. In order to reduce the
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computational complexity of the solution, we assumed that
the K nodes of the network are clustered into C motion
classes, based on the amount of motion in the videos
detected by the nodes.

4.1. Background information

The utility function, Ucl, constitutes a measure of
relative satisfaction for each motion class cl. In our
problem, it is defined equivalently to the peak signal to
noise ratio (PSNR) [19]:

Ucl ¼ 10 log10
2552

E½Dsþc;cl�
; cl¼ 1;2;…;C; ð7Þ

and thus, it is measured in decibel (dB). The quantity
E½Dsþc;cl� represents the expected video distortion for
motion class cl, given by Eq. (6). Clearly, higher values of
the utility function correspond to higher received video
qualities.

The vector U ¼ ðU1;U2;…;UCÞ> contains the utilities
for all C motion classes. The feasible set, U, encompasses
all possible vectors U that result from all possible combi-
nations of the source and channel coding rates as well as
the power levels of all motion classes, when pure strate-
gies are allowed. (A pure strategy defines a deterministic
action of a player.) Also, it shall satisfy the following
conditions [5]:
(1)
 U�RC is comprehensive, closed and bounded-above.

(2)
 Free disposal is allowed.
The first condition stipulates that a set U�RC shall be
comprehensive. This means that if X is in U and YrX, then
Y is in U as well [41]. Additionally, the same set shall also
include all its boundary points (i.e., be closed) and be
bounded from above. A set U is bounded-above, if there
exists X such that YrX for all YAU.

Regarding the second condition, free disposal means
that each player is permitted to dispose of utility, if
required. The physical meaning in the case of video is that
a class of nodes is allowed to purposely add noise to its
video to degrade the video quality. Obviously, this is an
irrational decision and will never be chosen. However, in
our formulation we should not restrict the possible choices
of the players regarding the handling of their resources,
unless they lead to cases that are impossible to be
implemented. Specifically, if YrX, and X is a feasible
point for all classes of nodes, it follows that Y can be
achieved by the players also by mutually agreeing to
dispose of utility, unilaterally or multilaterally. In this
paper, we assume that free disposal is allowed for the
feasible set and therefore, this statement clearly implies
that the feasible set U is also comprehensive [5,41].

Each player expects by participating in a game that it
will receive at least as high a utility as it would get without
joining the game (without collaborating). This fact consti-
tutes an incentive for the players to negotiate. The
disagreement point is the vector of minimum utilities
that each player expects by joining the game without
cooperating with the other players, and it is what each
player will get even in cases of negotiation failure. It is
defined as dp¼ ðdp1;dp2;…; dpCÞ> , for all C players
(classes of nodes), and it also belongs to the feasible set.

The outcome of a game is said to be Pareto-optimal if
there is no other outcome that concurrently favors all
players. In this work, we refer to Pareto-optimality in the
strong sense, which implies that there is no other outcome
where at least one player strictly increases its utility and
no player decreases its utility. The Pareto-optimal points,
which are members of the feasible set and give each node
a utility that is greater than or equal to the disagreement
point, form the bargaining set.

4.2. Nash bargaining solution

In our problem, the Nash bargaining solution offers a
distribution rule in order to achieve a mutually agreeable,
fair and efficient allocation of the node classes' transmis-
sion parameters. Specifically, the NBS, denoted as FðU; dpÞ
for the feasible set U and the disagreement point dp, shall
adhere to the following axioms [41]:
(1)
 Individual rationality: FðU; dpÞZdp.

(2)
 Pareto-optimality: X4FðU; dpÞ ) X=2U.

(3)
 Invariance to affine transformations: Given any strictly

increasing affine transformation τðÞ, it holds that
FðτðUÞ; τðdpÞÞ ¼ τðFðU; dpÞÞ.
(4)
 Independence of irrelevant alternatives: If dpAYDU,
then FðU; dpÞAY ) FðY; dpÞ ¼ FðU; dpÞ.
The first two axioms imply that the NBS belongs to the
bargaining set and the third axiom stipulates that the
NBS is unaffected by affine transformation scalings of
the utility function. The last axiom states that, if the
bargaining solution, FðU; dpÞ, for the feasible set U also
belongs to a subset Y of the feasible set, then FðY;dpÞ
shall be the same as FðU; dpÞ, since none of the extra
elements of U were chosen as a solution when they were
available. Thus, their unavailability in Y should be
irrelevant.

Provided that the aforementioned conditions are satis-
fied, the NBS maximizes the Nash product [5,19,41]:

FðU; dpÞ ¼ arg max
UZdp

∏
C

cl ¼ 1
ðUclðRs;cl;Rc;cl; SÞ�dpclÞacl ; ð8Þ

subject to the following constraints:
1.
 Rk ¼ Rtarget (fixed bit rate).

2.
 SclAP¼ ½smin; smax� �Rn

þ (bounded power).

3.
 ∑C

cl ¼ 1acl ¼ 1; aclZ0; cl¼ 1;2;…;C.
The parameter acl assigned to each factor of the Nash
product is called bargaining power and declares the
advantage of each player in the considered game. Higher
bargaining powers imply more advantaged players, and
vice versa.

Since the determination of the bargaining powers is
crucial for the performance and efficiency of the NBS, in
this paper we propose two versions of the NBS, the NNBS
and the CNBS. For the NNBS, we assume that each node
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has the same advantage in the resource allocation game.
Practically, given the constraint that the sum of all bar-
gaining powers is equal to 1, and considering an equally
fair game for all nodes, it follows that each class of nodes cl
is assigned a bargaining power equal to acl ¼ 1=Kcl, with Kcl

representing the cardinality of class cl. For the CNBS, we
assumed that each class of nodes is put in a similar
position by the rules of the considered game. Therefore,
assuming C motion classes, and considering the constraint
for the total sum of the bargaining powers, it is implied
that acl ¼ 1=C, for the cl class of nodes.

Apart from the bargaining powers, another component
that directly affects the Nash product is the disagreement
point, as derived from Eq. (8). For this reason, we shall pay
attention to the appropriate determination of this vector.
In [17], we assumed that the disagreement point corre-
sponds to the vector of utilities that the motion classes get
if they behave selfishly, without collaborating with each
other. Following this reasoning, a class of nodes that desire
to achieve the best possible received video quality regard-
less of the intentions of the other classes will have to
transmit using the maximum power. However, if all
motion classes adopt this strategy, they will all select to
transmit at maximum power, thereby reaching a Nash
equilibrium. This occurs since each motion class adopts the
strategy that is the best response to the strategies followed
by the other classes.

However, such a selection for the disagreement point
heavily favors the classes of nodes that capture videos
with low motion, which get high utility and have no
incentive to collaborate [17]. For this reason, in the present
study we assume that the disagreement point is imposed
by the system designer and expresses the minimum
acceptable video quality for each class of nodes, for the
particular application.
5. Particle swarm optimization

Particle swarm optimization was initially introduced
by Eberhart and Kennedy [42,43], as a stochastic algo-
rithm for numerical optimization tasks. PSO uses a popu-
lation, called swarm, of search points, called particles, to
probe the search space, simultaneously. Each particle
assumes an adaptable velocity to move in the search
space. The velocity has the meaning of an adaptable
position-shift, rather than the corresponding physical
vector quantity.

Moreover, each particle retains a memory of the best
position it has ever visited, i.e., the position with the
lowest function value. This is the particle's experience to
be shared with its neighboring particles. For this purpose,
each particle is assigned a neighborhood, namely a set
of other particles, which defines its information-sharing
neighboring particles. Actually, the neighborhood is
denoted as a set of indices of its neighboring particles that
will share its experience, while it can also be depicted as a
graph of nodes, representing the particles, and edges,
representing their communication channels. The pattern
that defines the communication paths is often called
neighborhood's topology.
Putting it formally, assume the n-dimensional contin-
uous optimization problem:

min
xAX � Rn

f ðxÞ:

A swarm of N particles is a set of search points,
S¼ fx1; x2;…; xNg, where the i-th particle is defined as

xi ¼ ðxi1; xi2;…; xinÞ> AX; iAI¼ f1;2;…;Ng:
The velocity (position-shift) of xi is denoted as

vi ¼ ðvi1; vi2;…; vinÞ> ; iAI;

and its best position as

pi ¼ ðpi1; pi2;…; pinÞ> AX; iAI:

In the present paper, we adopted the ring neighborhood
topology. If r denotes the neighborhood's radius, the
neighborhood of the i-th particle is defined as

N i ¼ fi�r;…; i�1; i; iþ1;…; iþrg;
with indices recycling at the ends of their limits.

Let gi denote the index of the best particle in N i, i.e.,
gi ¼ arg minjAN i

f ðpjÞ, and t denotes the algorithm's itera-
tion counter. Then, the particle positions and velocities are
updated at each iteration according to the equations [44]:

vðtþ1Þ
ij ¼ χ½vðtÞij þc1R1ðpðtÞij �xðtÞij Þþc2R2ðpðtÞgij�xðtÞij Þ�; ð9Þ

xðtþ1Þ
ij ¼ xðtÞij þvðtþ1Þ

ij ; ð10Þ

i¼ 1;2;…;N and j¼ 1;2;…;n;

where χ is the constriction coefficient; c1 and c2 are
positive constants called cognitive and social parameter,
respectively; and R1, R2, are random numbers drawn from
a uniform distribution in the range ½0;1�. The PSO model
defined in Eqs. (9) and (10) was proposed by Clerc and
Kennedy in [44], and is considered as a state-of-the-art
PSO variant. For this reason, we adopted this model in the
paper at hand.

The best position of each particle is updated as follows:

pðtþ1Þ
ij ¼

xðtþ1Þ
ij if f ðxðtþ1Þ

ij Þo f ðpðtÞij Þ;
pðtÞij otherwise:

8<
: ð11Þ

Clerc and Kennedy [44] offered a thorough stability
and convergence analysis of the presented PSO model.
Based on this analysis, the parameter set χ ¼ 0:729, and
c1 ¼ c2 ¼ 2:05, has been considered as the default config-
uration. Alternative configurations were proposed by Tre-
lea in [45]. The swarm and velocities are usually initialized
randomly and uniformly within the search space.

6. System setup and experimental results

This section exposes the configuration of the system
parameters, experimental results and discussion. The
results from the NBS approaches were assessed in com-
parison with the results from the MAD and MMD criteria,
studied in [16].



Fig. 2. The used video sequences and the amount of motion described by
each of them.

K. Pandremmenou et al. / Signal Processing: Image Communication 29 (2014) 472–493 479
6.1. Configuration of system parameters

The VSN considered in this paper consisted of K¼102
nodes, which capture videos of various amounts of motion.
In order to simulate the various amounts of motion
included in the videos, we used a number of video
sequences, which were downloaded from [46]. The video
sequences used as well as the amount of motion in each
one is depicted in Fig. 2.

All video sequences were at quarter common intermedi-
ate format (QCIF) resolution and were encoded at 15
frames per second. From the “Salesman” video sequence
we kept only the first 300 frames in order to have the
same length for all video sequences.

Additionally, we assumed that the K nodes of the VSN
are clustered into C¼6 motion classes, with each sequence
being a representative of a motion class. For the node
distributions into the six motion classes we considered the
following cases:
�
 Case 1: Ka ¼ Kmd ¼ Ks ¼ Kh ¼ K f ¼ Kc ¼ 17.

�
 Case 2: Ka ¼ Kmd ¼ 25;Ks ¼ Kh ¼ K f ¼ Kc ¼ 13.

�
 Case 3: Ka ¼ Kmd ¼ K f ¼ Kc ¼ 13;Ks ¼ Kh ¼ 25.

�
 Case 4: Ka ¼ Kmd ¼ Ks ¼ Kh ¼ 13;K f ¼ Kc ¼ 25.
Ka denotes the cardinality of the class that is repre-
sented by the “Akiyo” video sequence, while Kmd, Ks,
Kh, K f and Kc denote the cardinality of the class that
is represented by the “Mother&Daughter”, “Salesman”,
“Hall”, “Foreman” and “Coastguard” video sequences,
respectively. In all four node distributions described above,
the total number of nodes is equal to K¼102 nodes. In Case
1, all classes include exactly the same number of nodes; in
Case 2 more nodes describe low amounts of motion; in
Case 3 more nodes describe medium amounts of motion
and in Case 4 more nodes describe high amounts of
motion. For the assessment of the perceived visual quality
of the video sequences, the PSNR video quality metric was
used, which is equal to the utility function of Eq. (7), and is
measured in dB.
The RCPC codes used for channel coding had a mother
code of rate 1=4 [36]. Also, two different cases were
considered for the bit rate Rk: (i) 96 kbps and (ii) 144 kbps.
Taking into account these bit rate constraints, it follows
that the source–channel coding rate combinations can
take the following discrete values:
(i)
 Rk ¼ 96 kbps

Rsþ c ¼ fð32;1=3Þ; ð38:4;4=10Þ; ð48;1=2Þ; ð64;2=3Þ; ð76:8;4=5Þg
cbcl ¼ 1⟶ð32;1=3Þ
cbcl ¼ 2⟶ð38:4;4=10Þ
cbcl ¼ 3⟶ð48;1=2Þ
cbcl ¼ 4⟶ð64;2=3Þ
cbcl ¼ 5⟶ð76:8;4=5Þ
(ii)
 Rk ¼ 144 kbps

Rsþ c ¼ fð48;1=3Þ; ð57:6;4=10Þ; ð72;1=2Þ; ð96;2=3Þ; ð115:2;4=5Þg
cbcl ¼ 1⟶ð48;1=3Þ
cbcl ¼ 2⟶ð57:6;4=10Þ
cbcl ¼ 3⟶ð72;1=2Þ
cbcl ¼ 4⟶ð96;2=3Þ
cbcl ¼ 5⟶ð115:2;4=5Þ:
The index clAfa;md; s;h; f ; cg denotes the class of nodes
that is represented by the “Akiyo”, “Mother&Daughter”,
“Salesman”, “Hall”, “Foreman” and “Coastguard” video
sequence, respectively. Concerning the power levels, they
can take continuous values from the set P¼ ½5:0;15:0�,
measured in Watts (W). For the bandwidth, Wt, we
examined the following values per bit rate constraint, Rk:
(1)
 Rk ¼ 96 kbps (2) Rk ¼ 144 kbps
(a) Wt ¼ 20 MHz (a) Wt ¼ 30 MHz
(b) Wt ¼ 15 MHz (b) Wt ¼ 22:5 MHz.
Since Rk¼144 kbps is 1.5 times the Rk¼96 kbps, the same
reasoning was followed for the bandwidth values. Speci-
fically, Wt¼30 MHz is 1.5 times the Wt¼20 MHz and
Wt¼22.5 MHz is 1.5 times the Wt¼15 MHz. This corre-
sponds to keeping the spreading code length the same for
both cases.

In order to maximize the Nash product, PSO is used to
minimize its negative. Specifically:

f ðxÞ ¼ �ððUaðcba; SaÞ�dpaÞaa � ðUmdðcbmd; SmdÞ�dpmdÞamd

�ðUsðcbs; SsÞ�dpsÞas � ðUhðcbh; ShÞ�dphÞah

�ðUf ðcbf ; Sf Þ�dpf Þaf � ðUcðcbc; ScÞ�dpcÞac Þ; ð12Þ

where the particle x¼ ðSa; Smd; Ss; Sh; Sf ; Sc; cba; cbmd;

cbs; cbh; cbf ; cbcÞ> consists of the power levels, as well
as the combinations of source and channel coding rates,
for all motion classes. The discrete components of the
particle, i.e., the source and channel coding rate combina-
tions, cba, cbmd, cbs, cbh, cbf , cbc, were let to assume
continuous values within the range R¼ ½0:6; 5:4�. How-
ever, they were rounded to the nearest integer whenever
the particle was evaluated.
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Regarding PSO, identical parameter settings were used
for both NNBS and CNBS criteria. Specifically, the default
parameter set defined in Section 5 was selected and a
Table 1
PSNR values for different dp, using PSO, for Rk¼96 kbps and Wt¼20 MHz.

Sequences NNBS

dp ¼ 28 dp ¼ 27 dp ¼ 26

Case 1 “Akiyo” 36.5112 36.6797 36.8173
“Mother&Daughter” 34.5452 34.6279 34.6957
“Salesman” 33.0986 33.0871 33.0777
“Hall” 33.8855 33.9285 33.9637
“Foreman” 33.5774 33.6097 33.6378
“Coastguard” 31.7825 31.6143 31.4685

Case 2 “Akiyo” 36.9809 36.8912 37.1221
“Mother&Daughter” 34.9393 34.8361 34.9994
“Salesman” 33.3904 33.2421 33.3045
“Hall” 34.2718 35.2623 35.4899
“Foreman” 35.0184 34.8631 35.1263
“Coastguard” 32.8463 32.6105 31.7981

Case 3 “Akiyo” 36.9558 36.8917 37.0031
“Mother&Daughter” 34.8905 34.8361 34.8806
“Salesman” 33.3543 33.2422 33.2158
“Hall” 34.2239 34.1341 35.3394
“Foreman” 34.0659 34.8633 33.9198
“Coastguard” 32.8041 32.6106 31.6680

Case 4 “Akiyo” 35.8036 36.1377 36.3882
“Mother&Daughter” 33.8701 34.0992 34.2704
“Salesman” 32.5969 32.6923 32.7593
“Hall” 33.2280 33.4080 33.5419
“Foreman” 32.6798 32.8640 33.0096
“Coastguard” 30.1005 29.8555 29.6511

Table 2
PSNR values for different dp, using PSO, for Rk¼96 kbps and Wt¼15 MHz.

Sequences NNBS

dp ¼ 26 dp ¼ 25 dp ¼ 24

Case 1 “Akiyo” 35.6945 35.9260 36.1113
“Mother&Daughter” 33.5979 33.7564 33.8830
“Salesman” 32.2508 32.3180 32.3695
“Hall” 32.8823 33.0063 33.1049
“Foreman” 30.2644 30.1824 30.1099
“Coastguard” 29.2214 29.0370 28.8818

Case 2 “Akiyo” 36.1434 36.3211 36.4657
“Mother&Daughter” 34.0389 34.1504 34.2403
“Salesman” 32.5823 32.6143 32.6382
“Hall” 33.3179 33.3982 33.4622
“Foreman” 30.6672 30.5615 30.4680
“Coastguard” 29.5215 29.3229 29.1539

Case 3 “Akiyo” 36.0155 36.2113 36.3704
“Mother&Daughter” 33.9130 34.0407 34.1441
“Salesman” 32.4877 32.5319 32.5659
“Hall” 33.1933 33.2889 33.3659
“Foreman” 30.5507 30.4550 30.3709
“Coastguard” 29.4348 29.2427 29.0802

Case 4 “Akiyo” 34.9081 35.2441 35.5041
“Mother&Daughter” 32.8337 33.0818 33.2741
“Salesman” 31.6736 31.8085 31.9101
“Hall” 32.1320 32.3380 32.4979
“Foreman” 29.5999 29.5560 29.5162
“Coastguard” 28.7254 28.5630 28.4288
swarm of N¼100 particles following the ring topology
with radius r¼1 was used. Moreover, since PSO is a
stochastic algorithm, its performance was evaluated over
CNBS

dp ¼ 25 dp ¼ 28 dp ¼ 27 dp ¼ 26 dp ¼ 25

36.9319 36.5112 36.6797 36.8173 36.9319
34.7521 34.5452 34.6279 34.6957 34.7521
33.0697 33.0986 33.0871 33.0777 33.0697
33.9929 33.8855 33.9285 33.9637 33.9929
33.6621 33.5774 33.6097 33.6378 33.6621
31.3413 31.7825 31.6143 31.4685 31.3413

37.2022 36.9424 36.9382 36.9356 36.9334
35.0243 33.6715 33.6401 33.6110 33.5875
33.2733 33.6637 33.6380 33.6148 33.5940
35.5408 35.8310 35.9345 36.0190 36.0895
35.1739 35.3444 35.3347 35.3289 35.3239
31.6474 32.7816 32.7745 32.7702 32.7665

37.1001 37.4139 37.5529 37.6663 37.7609
34.9213 35.4221 35.4903 35.5448 35.5896
33.1963 32.8240 32.8028 32.7937 32.7862
35.4096 33.1350 33.0680 33.0095 32.9582
33.9284 35.7753 35.7898 35.7631 35.7409
31.5307 33.1541 33.1083 33.0887 33.0725

36.5839 37.0979 37.5082 37.8145 38.0531
34.4030 35.1134 35.4458 35.6941 35.8869
32.8080 33.5191 33.6951 33.8216 33.9162
33.6446 35.5853 36.0320 36.3737 36.6444
33.1267 30.7193 30.5880 30.4715 30.3670
29.4783 29.8901 29.6107 29.3772 29.1796

CNBS

dp ¼ 23 dp ¼ 26 dp ¼ 25 dp ¼ 24 dp ¼ 23

36.2636 35.6945 35.9260 36.1113 36.2636
33.9863 33.5979 33.7564 33.8830 33.9863
32.4100 32.2508 32.3180 32.3695 32.4100
33.1850 32.8823 33.0063 33.1049 33.1850
30.0453 30.2644 30.1824 30.1099 30.0453
28.7496 29.2214 29.0370 28.8818 28.7496

36.5859 35.3258 35.3934 35.2294 35.4980
34.3142 32.5165 32.5537 33.0002 32.6025
32.6564 32.7412 32.7807 33.1431 32.8332
33.5142 33.5278 33.6192 34.1380 33.7512
30.3847 32.5214 32.6343 31.1627 32.8104
29.0087 29.6692 29.4868 29.6795 29.1970

36.5026 36.3045 36.4973 36.6539 36.7839
34.2294 34.1980 34.3268 34.4307 34.5161
32.5927 31.5356 31.5615 31.5818 31.5980
33.4290 31.7751 31.7760 31.7738 31.7697
30.2964 32.8400 32.8961 32.9403 32.9756
28.9414 29.6321 29.4531 29.3008 29.1699

35.7124 35.8943 36.2671 36.5527 36.7796
33.4280 33.7938 34.0965 34.3282 34.5117
31.9892 32.3982 32.5737 32.7042 32.8046
32.6256 33.0756 33.3444 33.5502 33.7129
29.4799 29.0024 28.8656 28.7452 28.6382
28.3160 28.2780 28.0378 27.8366 27.6658
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30 independent experiments. At each experiment, the
algorithm was executed for Iter¼700 iterations (which
correspond to 70,000 function evaluations for the 100
particles) and the best solution was recorded. Hence, taking
into account that the number of particles (N) and the number
of iterations (Iter) both depend on the number of motion
classes (C), the complexity of PSO is OðC � N � IterÞ.

6.2. Presentation and discussion of results

We first explore the effect of the value of the disagree-
ment point vector in the results of the NBS-based criteria.
Tables 1–4 show the achieved PSNR values for the NNBS
and CNBS criteria, using the PSO as the optimization solver.
We test different selections of the dp vector, for the same bit
rate and bandwidth combination. The tested values for the
vector of the dp are also different for each bit rate and
bandwidth combination, since they must be feasible values
using the available bit rate and bandwidth, at each time.
Additionally, all the elements of a dp vector were equal.
Although this is not obligatory, we made this assumption in
an effort to be equally fair to all motion classes.

In practice, video that includes high amounts of motion
is particularly important in surveillance applications, since
this is where the action occurs. From the presented
experimental results, we confirmed that increasing the
values of the dp vector results in favoring the nodes that
image high motion levels more than the rest of the nodes,
a fact that is expounded by the achieved PSNR values
for each motion class. This is what the values in bold
denote in Tables 1–4. In addition, the amelioration of the
Table 3
PSNR values for different dp, using PSO, for Rk¼144 kbps and Wt¼30 MHz.

Sequences NNBS

dp ¼ 28 dp ¼ 27 dp ¼ 26

Case 1 “Akiyo” 36.4608 36.7424 36.9780
“Mother&Daughter” 34.5607 34.7048 34.8257
“Salesman” 33.6832 33.7449 33.7959
“Hall” 34.0215 34.1143 34.1915
“Foreman” 33.5108 33.5653 33.6114
“Coastguard” 30.9488 30.6709 30.4247

Case 2 “Akiyo” 36.9372 37.4978 37.6764
“Mother&Daughter” 34.9906 35.4015 35.4793
“Salesman” 34.0740 34.3847 34.4003
“Hall” 34.4212 34.7646 34.8034
“Foreman” 33.9734 34.3446 34.3610
“Coastguard” 32.7052 31.1199 30.8668

Case 3 “Akiyo” 36.9433 37.1866 37.3925
“Mother&Daughter” 34.9962 35.1135 35.2129
“Salesman” 34.0791 34.1199 34.1538
“Hall” 34.4263 34.4957 34.5540
“Foreman” 33.9795 34.0190 34.0526
“Coastguard” 31.2108 30.9324 30.6851

Case 4 “Akiyo” 35.4595 35.9111 36.2769
“Mother&Daughter” 33.6705 33.9479 34.1759
“Salesman” 32.8784 33.0533 33.1971
“Hall” 33.1952 33.4086 33.5836
“Foreman” 31.6048 31.5892 31.5741
“Coastguard” 30.4360 30.2016 29.9977
video quality becomes more perceivable in videos with
poor quality rather than in videos with good visual quality.
Therefore, we assigned to dp the highest values among the
tested ones for each combination of bit rate and band-
width. Thus, all our experiments with the NNBS and CNBS
have been conducted using:
(i)
dp

37
34
33
34
33
30

37
35
34
34
34
30

37
35
34
34
34
30

36
34
33
33
31
29
dp¼28 dB for the cases:
(a) Rk¼96 kbps and Wt¼20 MHz.
(b) Rk¼144 kbps and Wt¼30 MHz.
¼ 2

.178

.928

.838

.256

.650

.205

.830

.545

.412

.835

.373

.640

.569

.298

.1819

.603

.081

.464

.580

.366

.317

.729

.559

.819
dp¼26 dB for the cases:
(a) Rk¼96 kbps and Wt¼15 MHz.
(b) Rk¼144 kbps and Wt¼22.5 MHz.
In Tables 5–8 we report the results for the four different
node distributions and all considered criteria, solved by
PSO, for all bit rate and bandwidth combinations. The
reported quantities at each line of the tables are the power
level, S, the combination of source and channel coding
rate, (Rs, Rc), and the achieved utility, PSNR, per class. The
values in bold refer to the total power levels and achieved
PSNR values for all node distributions and criteria.

Studying the performance of NNBS and CNBS, we
observe that when all motion classes have the same
cardinality (Case 1), both NBS approaches offer exactly
the same solution, i.e, the same PSNR values to all motion
classes. In Case 2, the NNBS offers higher PSNR values
compared to the CNBS, to the nodes that describe low
amounts of motion. In Case 3, the same criterion (NNBS)
assigns higher PSNR values compared to the CNBS, to the
nodes that describe medium amounts of motion and in
CNBS

5 dp ¼ 28 dp ¼ 27 dp ¼ 26 dp ¼ 25

2 36.4608 36.7424 36.9780 37.1782
4 34.5607 34.7048 34.8257 34.9284
2 33.6832 33.7449 33.7959 33.8382
4 34.0215 34.1143 34.1915 34.2564
4 33.5108 33.5653 33.6114 33.6504
6 30.9488 30.6709 30.4247 30.2056

2 35.3652 35.4299 35.4863 35.5358
9 33.5877 33.5149 33.4510 33.3944
4 34.9117 34.9451 34.9743 34.9999
7 35.2744 35.3324 35.3829 35.4272
9 34.9981 35.0481 35.0932 35.1340
1 33.5649 33.4763 33.3962 33.3237

2 37.6623 37.9145 38.1293 38.3148
2 35.6522 35.7891 35.9063 36.0077

32.6142 32.4898 32.3800 32.2823
3 32.9227 32.8314 32.7509 32.6794
2 34.7077 34.7907 34.8639 34.9287
6 33.3202 33.2569 33.1990 33.1457

6 36.6970 37.2631 37.7171 38.0907
6 34.7734 35.1841 35.5176 35.7938
1 33.8763 34.1849 34.4358 34.6434
4 34.2192 34.5617 34.8392 35.0684
0 30.8078 30.6425 30.4941 30.3591
0 29.8923 29.5397 29.2286 28.9526



Table 4
PSNR values for different dp, using PSO, for Rk¼144 kbps and Wt¼22.5 MHz.

Sequences NNBS CNBS

dp ¼ 26 dp ¼ 25 dp ¼ 24 dp ¼ 23 dp ¼ 26 dp ¼ 25 dp ¼ 24 dp ¼ 23

Case 1 “Akiyo” 34.1645 34.4186 34.5889 34.6786 34.1645 34.4186 34.5889 34.6786
“Mother&Daughter” 32.0453 32.1855 32.3602 32.5980 32.0453 32.1855 32.3602 32.5980
“Salesman” 31.1217 31.1968 31.2682 31.3454 31.1217 31.1968 31.2682 31.3454
“Hall” 31.5210 31.6229 31.8874 31.9786 31.5210 31.6229 31.8874 31.9786
“Foreman” 29.2876 29.2015 29.0012 28.9201 29.2876 29.2015 29.0012 28.9201
“Coastguard” 28.0057 27.7981 27.5629 27.3057 28.0057 27.7981 27.5629 27.3057

Case 2 “Akiyo” 34.8552 35.0496 35.2546 35.5378 33.1191 33.2324 33.3648 33.5678
“Mother&Daughter” 32.6833 32.7767 32.9886 33.2501 31.0925 31.0872 31.2674 31.3897
“Salesman” 31.7107 31.7459 31.8761 32.0452 32.6571 32.7461 32.8964 33.1562
“Hall” 32.1199 32.1790 32.3564 32.5648 33.0788 33.1889 33.3617 33.4879
“Foreman” 29.8588 29.7500 29.6420 29.5273 30.8089 30.7803 30.6348 30.2468
“Coastguard” 28.4254 28.2047 28.1036 28.0010 29.1200 28.9639 28.7464 28.5560

Case 3 “Akiyo” 34.5609 34.7806 34.8978 35.1762 35.7362 36.0013 36.2564 36.5963
“Mother&Daughter” 32.4107 32.5241 32.7896 32.9968 33.5056 33.6763 33.7888 34.2165
“Salesman” 31.4588 31.5112 31.7862 31.9689 30.0895 30.0402 30.2658 30.5986
“Hall” 31.8640 31.9414 32.3619 32.6891 30.4669 30.4470 30.6790 30.8970
“Foreman” 29.6126 29.5140 29.3456 29.2165 30.6207 30.6106 30.0631 29.7532
“Coastguard” 28.2447 28.0299 27.8962 27.6031 28.9827 28.8393 28.6866 28.4650

Case 4 “Akiyo” 33.0309 33.3978 33.5698 33.8938 34.4020 34.8576 35.1395 35.4443
“Mother&Daughter” 31.0128 31.2392 31.0012 30.8964 32.2639 32.5963 32.3363 32.1161
“Salesman” 30.1727 30.3207 30.6896 30.8896 31.3233 31.5783 31.8622 32.1116
“Hall” 30.5520 30.7328 30.9863 31.3489 31.7262 32.0093 32.4658 32.6874
“Foreman” 28.4022 28.3533 28.0130 27.7985 27.4835 27.3023 27.1542 26.9868
“Coastguard” 27.3516 27.1656 26.8543 26.6366 26.6678 26.3748 26.2010 26.0012
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Case 4, higher PSNR values are assigned to the nodes that
describe high amounts of motion, using also the NNBS
compared to the CNBS. In all other cases, the CNBS “beats”
the NNBS, by assigning higher PSNR values compared to
the latter.

Continuing, the performance of the NNBS and CNBS
criteria was compared with the performance achieved by
the MAD and MMD criteria proposed in our previous work
[16]. The MAD criterion minimizes the average distortion
of the videos received by all nodes. For the Cases 2 and 3, a
wise selection between NNBS and CNBS can always give
higher PSNR results compared to the MAD, to all motion
classes. For Cases 1 and 4 the same can also be done, but
with some exceptions.

The MMD criterion minimizes the maximum (worst)
distortion among all the videos captured by the nodes and
this solution is achieved when all nodes have the same
distortion. In the considered DS-CDMA wireless VSN,
reducing the distortion of a node by increasing its trans-
mission power increases the interference with the other
nodes and thus, their distortion is increased. Hence, if we
want to minimize the worst distortion among the nodes,
we have to increase the transmission power of the “worst”
node. Typically, this criterion offers the same utilities to all
nodes. From the obtained results we observe that the
MMD in all examined cases assigns exactly the same PSNR
values to both classes of nodes that describe high amounts
of motion. Also, in the large majority of the cases, the same
PSNR values are also assigned to the sequence/sequences
that describe medium amounts of motion. Last but not
least, there are also some cases where all motion classes
enjoy exactly the same PSNR values.
However, these results reveal that there are some cases
where some nodes receive a lower distortion than that of
the other nodes. At the same time, in these cases, these
nodes need the lowest possible transmission power. Spe-
cifically, they need 5.0000 W, which is the low bound of
the considered power level range. As a result, these nodes
achieve lower distortions than the rest of the nodes,
despite the fact that they use the least possible power.
Evidently, if we had allowed a smaller low bound for the
power level range, the specific nodes would use even less
power and thus, all nodes would receive exactly the same
distortion (thus, the same PSNR).

Comparing the performance of the MMD criterion with
the performance of the NNBS and CNBS criteria, the latter
can be wisely used so as to assign higher PSNR values to
the low and medium video sequences, with some excep-
tions for the case of Rk¼96 kbps and Wt¼20 MHz.

Additionally, the higher the amounts of motion included
in a sequence, the higher the power level that is required and
also, the lower the PSNR value that is achieved. At this point,
we should point out that the PSO algorithm is able to detect
a number of optimal solutions for the power levels of all
motion classes, all of which can attain the optimum value for
the Nash product. Indeed, from Eq. (1), it follows that the
multiplication of all power levels with the same constant
leaves the ratio Ek=I0 unaffected. This is because we assumed
that thermal and background noise is negligible compared
with the interference. In our results, we have normalized the
power levels so that the lowest allocated power is equal to
5.0000W.

However, the source–channel coding rate combinations
were unique in all examined cases. The nodes that



Table 5
Experimental results using PSO for Rk¼96 kbps and Wt¼20 MHz.

Sequences NNBS CNBS MAD MMD

S ðRs ; RcÞ PSNR S ðRs; RcÞ PSNR S ðRs ; RcÞ PSNR S ðRs; RcÞ PSNR

Case 1 “Akiyo” 5.0000 (32,1/3) 36.5112 5.0000 (32,1/3) 36.5112 5.0000 (32,1/3) 36.2808 5.0000 (32,1/3) 37.0690
“Mother&Daughter” 6.1970 (32,1/3) 34.5452 6.1970 (32,1/3) 34.5452 6.3500 (32,1/3) 34.4621 5.0000 (32,1/3) 33.7349
“Salesman” 5.8840 (32,1/3) 33.0986 5.8840 (32,1/3) 33.0986 6.2000 (32,1/3) 33.1756 5.2662 (32,1/3) 32.9946
“Hall” 6.8140 (32,1/3) 33.8855 6.8140 (32,1/3) 33.8855 7.0500 (32,1/3) 33.8988 5.4199 (32,1/3) 32.9946
“Foreman” 14.0260 (48,1/2) 33.5774 14.0260 (48,1/2) 33.5774 14.6000 (48,1/2) 33.6466 12.2326 (48,1/2) 32.9946
“Coastguard” 14.4270 (48,1/2) 31.7825 14.4270 (48,1/2) 31.7825 15.0000 (48,1/2) 31.8157 15.0000 (64,2/3) 32.9946

Total 52.3480 203.4004 52.3480 203.4004 54.2118 203.2796 47.9187 202.7823

Case 2 “Akiyo” 5.0000 (32,1/3) 36.9809 5.0000 (32,1/3) 36.9424 5.0000 (32,1/3) 36.9572 5.0000 (38.4,4/10) 35.0808
“Mother&Daughter” 6.1387 (32,1/3) 34.9393 5.0555 (32,1/3) 33.6715 6.1150 (32,1/3) 34.8931 5.0000 (32,1/3) 34.2562
“Salesman” 5.8296 (32,1/3) 33.3904 6.2451 (32,1/3) 33.6637 6.0468 (32,1/3) 33.5344 5.8396 (32,1/3) 33.8069
“Hall” 6.7451 (32,1/3) 34.2718 8.3800 (38.4,4/10) 35.8310 6.8460 (32,1/3) 34.3374 5.6838 (32,1/3) 33.8069
“Foreman” 14.5715 (64,2/3) 35.0184 15.0000 (64,2/3) 35.3444 14.5421 (64,2/3) 34.9341 12.0802 (48,1/2) 33.8069
“Coastguard” 15.0000 (64,2/3) 32.8463 15.0000 (64,2/3) 32.7816 15.0000 (64,2/3) 32.8065 15.0000 (64,2/3) 33.8069

Total 53.2849 207.4471 54.6806 208.2346 53.5499 207.4627 48.6036 204.5646

Case 3 “Akiyo” 5.0000 (32,1/3) 36.9558 5.2132 (32,1/3) 37.4139 5.0000 (32,1/3) 36.9399 5.0000 (32,1/3) 37.4428
“Mother&Daughter” 6.1139 (32,1/3) 34.8905 6.4668 (32,1/3) 35.4221 6.0062 (32,1/3) 34.7674 5.0000 (32,1/3) 34.1410
“Salesman” 5.8058 (32,1/3) 33.3543 5.0000 (32,1/3) 32.8240 5.9207 (32,1/3) 33.4298 5.7001 (32,1/3) 33.6265
“Hall” 6.7184 (32,1/3) 34.2239 5.4524 (32,1/3) 33.1350 6.7194 (32,1/3) 34.2095 5.6214 (32,1/3) 33.6265
“Foreman” 13.6258 (48,1/2) 34.0659 14.9177 (64,2/3) 35.7753 13.6744 (48,1/2) 34.0777 12.1153 (48,1/2) 33.6265
“Coastguard” 15.0000 (64,2/3) 32.8041 15.0000 (64,2/3) 33.1541 15.0000 (64,2/3) 32.7774 15.0000 (64,2/3) 33.6265

Total 52.2636 206.2945 52.0501 207.7244 52.3207 206.2017 48.4368 206.0898

Case 4 “Akiyo” 5.0000 (32,1/3) 35.8036 5.0000 (32,1/3) 37.0979 5.0000 (32,1/3) 35.6996 5.0000 (32,1/3) 36.0568
“Mother&Daughter” 6.1890 (32,1/3) 33.8701 6.2010 (32,1/3) 35.1134 6.3910 (32,1/3) 33.9843 5.0000 (32,1/3) 32.6348
“Salesman” 5.8750 (32,1/3) 32.5969 5.8895 (32,1/3) 33.5191 6.1889 (32,1/3) 32.7776 5.0000 (32,1/3) 31.9587
“Hall” 6.8130 (32,1/3) 33.2280 7.9245 (38.4,4/10) 35.5853 7.1161 (32,1/3) 33.4128 5.1498 (32,1/3) 31.5385
“Foreman” 14.4575 (48,1/2) 32.6798 9.4885 (32,1/3) 30.7193 15.0000 (48,1/2) 32.9506 12.6278 (32,1/3) 31.5385
“Coastguard” 12.6450 (32,1/3) 30.1005 9.9345 (32,1/3) 29.8901 12.2593 (32,1/3) 29.8803 15.0000 (48,1/2) 31.5385

Total 50.9795 198.2789 44.4380 201.9251 51.9553 198.7052 47.7776 195.2658
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Table 6
Experimental results using PSO for Rk¼96 kbps and Wt¼15 MHz.

Sequences NNBS CNBS MAD MMD

S ðRs ; RcÞ PSNR S ðRs; RcÞ PSNR S ðRs ; RcÞ PSNR S ðRs ; RcÞ PSNR

Case 1 “Akiyo” 5.0000 (32,1/3) 35.6945 5.0000 (32,1/3) 35.6945 5.0000 (32,1/3) 35.0168 5.0000 (32,1/3) 35.2312
“Mother&Daughter” 6.0230 (32,1/3) 33.5979 6.0230 (32,1/3) 33.5979 6.4010 (32,1/3) 33.3981 5.0000 (32,1/3) 31.7377
“Salesman” 5.5620 (32,1/3) 32.2508 5.5620 (32,1/3) 32.2508 6.1295 (32,1/3) 32.2877 5.0000 (32,1/3) 31.3134
“Hall” 6.5455 (32,1/3) 32.8823 6.5455 (32,1/3) 32.8823 7.0970 (32,1/3) 32.8212 5.1860 (32,1/3) 30.6941
“Foreman” 10.8655 (32,1/3) 30.2644 10.8655 (32,1/3) 30.2644 12.2990 (32,1/3) 30.4978 12.3134 (32,1/3) 30.6941
“Coastguard” 10.6320 (32,1/3) 29.2214 10.6320 (32,1/3) 29.2214 11.9025 (32,1/3) 29.3379 15.0000 (48,1/2) 30.6941

Total 44.6280 193.9113 44.6280 193.9113 48.8290 193.3595 47.4994 190.3646

Case 2 “Akiyo” 5.0000 (32,1/3) 36.1434 5.0000 (32,1/3) 35.3258 5.0000 (32,1/3) 35.2539 5.0000 (32,1/3) 35.8514
“Mother&Daughter” 6.0360 (32,1/3) 34.0389 5.4467 (32,1/3) 32.5165 6.3586 (32,1/3) 33.5627 5.0000 (32,1/3) 32.4116
“Salesman” 5.5710 (32,1/3) 32.5823 6.4488 (32,1/3) 32.7412 6.1069 (32,1/3) 32.4249 5.0000 (32,1/3) 31.7982
“Hall” 6.5600 (32,1/3) 33.3179 7.5948 (32,1/3) 33.5278 7.0575 (32,1/3) 32.9887 5.2294 (32,1/3) 31.4334
“Foreman” 10.8100 (32,1/3) 30.6672 15.0000 (48,1/2) 32.5214 15.0000 (48,1/2) 32.4018 12.6330 (32,1/3) 31.4334
“Coastguard” 10.5830 (32,1/3) 29.5215 12.2136 (32,1/3) 29.6692 11.9233 (32,1/3) 29.5011 15.0000 (48,1/2) 31.4334

Total 44.5600 196.2712 51.7039 196.3019 51.4463 196.1331 47.8624 194.3614

Case 3 “Akiyo” 5.0000 (32,1/3) 36.0155 5.5936 (32,1/3) 36.3045 5.0000 (32,1/3) 35.2806 5.0000 (32,1/3) 35.8273
“Mother&Daughter” 6.0325 (32,1/3) 33.9130 6.7573 (32,1/3) 34.1980 6.4400 (32,1/3) 33.6732 5.0000 (32,1/3) 32.3854
“Salesman” 5.5685 (32,1/3) 32.4877 5.0000 (32,1/3) 31.5356 6.1980 (32,1/3) 32.5171 5.0000 (32,1/3) 31.7793
“Hall” 6.5560 (32,1/3) 33.1933 5.7320 (32,1/3) 31.7751 7.1535 (32,1/3) 33.1013 5.2272 (32,1/3) 31.4039
“Foreman” 10.8230 (32,1/3) 30.5507 15.0000 (48,1/2) 32.8400 12.4530 (32,1/3) 30.8146 12.6201 (32,1/3) 31.4039
“Coastguard” 10.5970 (32,1/3) 29.4348 11.8194 (32,1/3) 29.6321 12.1445 (32,1/3) 29.6109 15.0000 (48,1/2) 31.4039

Total 44.5770 195.5950 49.9023 196.2853 49.3890 194.9977 47.8473 194.2037

Case 4 “Akiyo” 5.0000 (32,1/3) 34.9081 5.0000 (32,1/3) 35.8943 5.0000 (32,1/3) 34.3861 5.0000 (32,1/3) 33.7426
“Mother&Daughter” 5.9965 (32,1/3) 32.8337 6.0290 (32,1/3) 33.7938 6.3065 (32,1/3) 32.7405 5.0000 (32,1/3) 30.1199
“Salesman” 5.5440 (32,1/3) 31.6736 5.5665 (32,1/3) 32.3982 5.9745 (32,1/3) 31.7394 5.0000 (32,1/3) 30.1496
“Hall” 6.5155 (32,1/3) 32.1320 6.5520 (32,1/3) 33.0756 6.9585 (32,1/3) 32.1522 5.5550 (32,1/3) 29.7558
“Foreman” 10.9590 (32,1/3) 29.5999 8.8385 (32,1/3) 29.0024 11.9135 (32,1/3) 29.7447 12.8151 (32,1/3) 29.7558
“Coastguard” 10.7140 (32,1/3) 28.7254 8.6335 (32,1/3) 28.2780 11.3330 (32,1/3) 28.6895 15.0000 (32,1/3) 29.7558

Total 44.7290 189.8727 40.6195 192.4423 47.4860 189.4522 48.3701 183.2795
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describe high motion usually use more bits to compress
their data and leave fewer bits that can be used to protect
the sequence from transmission errors. In the following,
Tables 5–8 confirm our conviction that decreasing the
bandwidth while keeping the bit rate constant, the value
of Eq. (1) decreases, incurring a PSNR decrease to all
motion classes.

For the total consumed power, there is no specific
scheme that requires the highest amounts of power levels
in all cases of a specific bit rate and bandwidth combina-
tion, except for the case of Rk¼144 kbps and Wt¼
22.5 MHz, where the MMD criterion clearly needs far
more power compared to the other schemes. Furthermore,
it seems that Case 2 is the most demanding in resources
(in terms of power) compared to the other three cases,
when Rk¼96 kbps and Wt¼20 MHz, and Rk¼144 kbps
and Wt¼30 MHz. The same holds also in half cases of
Rk¼96 kbps and Wt¼15 MHz, and Rk¼144 kbps and
Wt¼22.5 MHz. Last but not least, the highest total PSNR
values are achieved in Case 2 of all examined bit rate and
bandwidth combinations, with only an isolated exception.

All of the optimization criteria examined in this paper,
i.e., the Nash bargaining solution (particularly here the two
approaches NNBS and CNBS), the MAD and the MMD
provide Pareto-optimal solutions. Specifically for the NBS,
let us assume that the provided solution (the solutions
from the NNBS and CNBS), i.e., the solution that maximizes
the Nash product is not Pareto-optimal. This means that
there is another solution where at least one node strictly
increases its utility and no node decreases its utility.
However, such a solution would lead to an even greater
Nash product, thus contradicting the fact that the NBS
maximizes the Nash product. Therefore, the solution
provided by the NBS criterion is Pareto-optimal.

Similar reasoning applies also to the MAD criterion. If
we assume that the solution given by the MAD is not
Pareto-optimal, this means that there is another solution
where at least one node receives lower distortion and no
node increases its distortion. However, such a solution
would lead to an even smaller average distortion, thus
contradicting the fact that the MAD criterion minimizes
the average distortion. Therefore, the solution provided by
the MAD criterion is Pareto-optimal.

As mentioned earlier, the MMD solution occurs when an
“equilibrium” is reached, i.e., when all nodes have the same
distortion (except in some cases when a node, i.e., motion
class, uses a power level at the lower end of the considered
power level range), and, increasing a node's transmission
power will increase the distortions of the other nodes, thus
leading to a higher maximum distortion.

If the solution given by the MMD is not Pareto-optimal,
this would mean that there exists another solution where



Table 7
Experimental results using PSO for Rk¼144 kbps and Wt¼30 MHz.

Sequences NNBS CNBS MAD MMD

S ðRs ; RcÞ PSNR S ðRs; RcÞ PSNR S ðRs; RcÞ PSNR S ðRs; RcÞ PSNR

Case 1 “Akiyo” 5.0000 (48,1/3) 36.4608 5.0000 (48,1/3) 36.4608 5.0000 (48,1/3) 35.9137 5.0000 (48,1/3) 34.5798
“Mother&Daughter” 6.0859 (48,1/3) 34.5607 6.0889 (48,1/3) 34.5607 6.3540 (48,1/3) 34.5109 6.3054 (48,1/3) 33.2093
“Salesman” 6.5475 (48,1/3) 33.6832 6.5475 (48,1/3) 33.6832 6.9400 (48,1/3) 33.7930 7.3095 (48,1/3) 33.2093
“Hall” 6.2033 (48,1/3) 34.0215 6.2033 (48,1/3) 34.0215 6.5390 (48,1/3) 34.0764 6.7042 (32,1/3) 33.2093
“Foreman” 10.9137 (72,1/2) 33.5108 10.9137 (72,1/2) 33.5108 11.5525 (72,1/2) 33.6666 12.5330 (48,1/3) 33.2093
“Coastguard” 10.4261 (48,1/3) 30.9488 10.4261 (48,1/3) 30.9488 10.9800 (48,1/3) 30.9864 15.0000 (48,1/3) 33.2093

Total 45.1795 203.1858 45.1795 203.1858 47.3655 202.9470 52.8521 200.6263

Case 2 “Akiyo” 5.0000 (48,1/3) 36.9372 5.0000 (48,1/3) 35.3652 5.0000 (48,1/3) 36.3332 5.0000 (48,1/3) 35.5691
“Mother&Daughter” 6.0765 (48,1/3) 34.9906 6.1183 (48,1/3) 33.5877 6.3770 (48,1/3) 34.9365 6.4225 (48,1/3) 34.3115
“Salesman” 6.5275 (48,1/3) 34.0740 8.1458 (48,1/3) 34.9117 6.9825 (48,1/3) 34.2124 7.5287 (48,1/3) 34.3115
“Hall” 6.1895 (48,1/3) 34.4212 7.7352 (48,1/3) 35.2744 6.5760 (48,1/3) 34.4928 6.8920 (48,1/3) 34.3115
“Foreman” 10.7665 (72,1/2) 33.9734 13.1513 (72,1/2) 34.9981 11.4865 (72,1/2) 34.1553 12.3809 (72,1/2) 34.3115
“Coastguard” 11.8530 (72,1/2) 32.7052 14.4449 (72,1/2) 33.5649 12.8185 (72,1/2) 33.0510 15.0000 (72,1/2) 34.3115

Total 46.4130 207.1016 54.5955 207.7020 49.2405 207.1812 53.2241 207.1266

Case 3 “Akiyo” 5.0000 (48,1/3) 36.9433 5.0000 (48,1/3) 37.6623 5.0000 (48,1/3) 35.9637 5.0000 (48,1/3) 35.1208
“Mother&Daughter” 6.0765 (48,1/3) 34.9962 6.0590 (48,1/3) 35.6522 6.3570 (48,1/3) 34.5617 6.3659 (48,1/3) 33.8065
“Salesman” 6.5275 (48,1/3) 34.0791 5.2935 (48,1/3) 32.6142 6.9450 (48,1/3) 33.8430 7.4243 (48,1/3) 33.8065
“Hall” 6.1890 (48,1/3) 34.4263 5.0040 (48,1/3) 32.9227 6.5435 (48,1/3) 34.1261 6.8021 (48,1/3) 33.8065
“Foreman” 10.7650 (72,1/2) 33.9795 10.5535 (72,1/2) 34.7077 11.5450 (72,1/2) 33.7248 12.4494 (72,1/2) 33.8065
“Coastguard” 10.3110 (48,1/3) 31.2108 11.5990 (72,1/2) 33.3202 12.8355 (72,1/2) 32.6268 15.0000 (72,1/2) 33.8065

Total 44.8690 205.6352 43.5090 206.8793 49.2260 204.8461 53.0417 204.1533

Case 4 “Akiyo” 5.0000 (48,1/3) 35.4595 5.0000 (48,1/3) 36.6970 5.0000 (48,1/3) 35.1774 5.0000 (48,1/3) 32.9847
“Mother&Daughter” 6.1155 (48,1/3) 33.6705 6.0830 (48,1/3) 34.7734 6.3125 (48,1/3) 33.7643 6.2398 (48,1/3) 31.6621
“Salesman” 6.5910 (48,1/3) 32.8784 6.5375 (48,1/3) 33.8763 6.8640 (48,1/3) 33.0576 7.1215 (48,1/3) 31.6621
“Hall” 6.2340 (48,1/3) 33.1952 6.1965 (48,1/3) 34.2192 6.4740 (48,1/3) 33.3461 6.5542 (48,1/3) 31.6621
“Foreman” 10.3350 (48,1/3) 31.6048 8.7005 (48,1/3) 30.8078 10.7305 (48,1/3) 31.7761 12.5792 (48,1/3) 31.6621
“Coastguard” 10.6795 (48,1/3) 30.4360 9.0040 (48,1/3) 29.8923 10.7025 (48,1/3) 30.2586 15.0000 (48,1/3) 31.6621

Total 44.9550 197.24444 41.5215 200.2660 46.0835 197.3801 52.4947 191.2952
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Table 8
Experimental results using PSO for Rk¼144 kbps and Wt¼22.5 MHz.

Sequences NNBS CNBS MAD MMD

S ðRs; RcÞ PSNR S ðRs ; RcÞ PSNR S ðRs ; RcÞ PSNR S ðRs ; RcÞ PSNR

Case 1 “Akiyo” 5.0000 (48,1/3) 34.1645 5.0000 (48,1/3) 34.1645 5.0000 (48,1/3) 33.1807 5.0000 (48,1/3) 30.1623
“Mother&Daughter” 5.8885 (48,1/3) 32.0453 5.8885 (48,1/3) 32.0453 6.1850 (48,1/3) 31.7519 6.6545 (48,1/3) 30.1623
“Salesman” 6.1985 (48,1/3) 31.1217 6.1985 (48,1/3) 31.1217 6.6445 (48,1/3) 31.0805 7.4745 (48,1/3) 30.1623
“Hall” 5.9185 (48,1/3) 31.5210 5.9185 (48,1/3) 31.5210 6.2885 (48,1/3) 31.3786 6.9120 (48,1/3) 30.1623
“Foreman” 9.4195 (48,1/3) 29.2876 9.4195 (48,1/3) 29.2876 10.4010 (48,1/3) 29.6193 13.2165 (48,1/3) 30.1623
“Coastguard” 8.8895 (48,1/3) 28.0057 8.8895 (48,1/3) 28.0057 9.9280 (48,1/3) 28.3462 14.8490 (48,1/3) 30.1623

Total 41.3145 186.1458 41.3145 186.1458 44.4470 185.3572 54.1065 180.9738

Case 2 “Akiyo” 5.0000 (48,1/3) 34.8552 5.0000 (48,1/3) 33.1191 5.0000 (48,1/3) 33.8512 5.0000 (48,1/3) 31.7686
“Mother
&Daughter”

5.8840 (48,1/3) 32.6833 5.8950 (48,1/3) 31.0925 6.2265 (48,1/3) 32.4322 6.4705 (48,1/3) 31.0979

“Salesman” 6.1905 (48,1/3) 31.7107 7.7055 (48,1/3) 32.6571 6.7150 (48,1/3) 31.7506 7.3337 (48,1/3) 31.0979
“Hall” 5.9135 (48,1/3) 32.1199 7.3670 (48,1/3) 33.0788 6.3480 (48,1/3) 32.0442 6.7650 (48,1/3) 31.0979
“Foreman” 9.3350 (48,1/3) 29.8588 11.4845 (48,1/3) 30.8089 10.5020 (48,1/3) 30.3640 12.8977 (48,1/3) 31.0979
“Coastguard” 8.8210 (48,1/3) 28.4254 10.8730 (48,1/3) 29.1200 10.1715 (48,1/3) 29.0056 15.0000 (48,1/3) 31.0979

Total 41.1440 189.6533 48.2950 189.8764 44.9630 189.4478 53.4669 187.2581

Case 3 “Akiyo” 5.0000 (48,1/3) 34.5609 5.2395 (48,1/3) 35.7362 5.0000 (48,1/3) 33.5194 5.0000 (48,1/3) 31.0367
“Mother&Daughter” 5.8860 (48,1/3) 32.4107 6.1590 (48,1/3) 33.5056 6.2060 (48,1/3) 32.0955 6.5748 (48,1/3) 30.7007
“Salesman” 6.1940 (48,1/3) 31.4588 5.2415 (48,1/3) 30.0895 6.6800 (48,1/3) 31.4189 7.4234 (48,1/3) 30.7007
“Hall” 5.9155 (48,1/3) 31.8640 5.0000 (48,1/3) 30.4669 6.3185 (48,1/3) 31.7148 6.8547 (48,1/3) 30.7007
“Foreman” 9.3705 (48,1/3) 29.6126 9.6730 (48,1/3) 30.6207 10.4530 (48,1/3) 29.9952 13.0894 (48,1/3) 30.7007
“Coastguard” 8.8500 (48,1/3) 28.2447 8.7360 (48,1/3) 28.9827 10.0510 (48,1/3) 28.6790 15.0000 (48,1/3) 30.7007

Total 41.2160 188.1517 40.0490 189.4016 44.7085 187.4228 53.9423 184.5402

Case 4 “Akiyo” 5.0000 (48,1/3) 33.0309 5.0000 (48,1/3) 34.4020 5.0000 (48,1/3) 32.2495 5.0000 (48,1/3) 28.7813
“Mother&Daughter” 5.8955 (48,1/3) 31.0128 5.8870 (48,1/3) 32.2639 6.1265 (48,1/3) 30.8076 6.5060 (48,1/3) 28.7813
“Salesman” 6.2120 (48,1/3) 30.1727 6.1960 (48,1/3) 31.3233 6.5465 (48,1/3) 30.1503 7.2135 (48,1/3) 28.7813
“Hall” 5.9260 (48,1/3) 30.5520 5.9170 (48,1/3) 31.7262 6.2070 (48,1/3) 30.4547 6.6985 (48,1/3) 28.7813
“Foreman” 9.5655 (48,1/3) 28.4022 8.0570 (48,1/3) 27.4835 10.2450 (48,1/3) 28.5880 12.8005 (48,1/3) 28.7813
“Coastguard” 9.0075 (48,1/3) 27.3516 7.5680 (48,1/3) 26.6678 9.5950 (48,1/3) 27.4337 13.6900 (48,1/3) 28.7813

Total 41.6065 180.5222 38.6250 183.8667 43.7200 179.6838 51.9085 172.6878
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at least one node receives a lower distortion and no node
increases its distortion. Such a solution would result in a
deviation from the “equilibrium”. Thus, the lower distor-
tion of one node would be a result of an increase of its
transmission power. This would lead to an increase of the
distortions of the other nodes. Therefore, an alternative
solution where at least one node receives a lower distor-
tion and no node increases its distortion cannot exist and
the MMD leads to a Pareto-optimal solution.

For comparison reasons, each examined criterion, except
for the PSO, it was also run using three competing optimiza-
tion algorithms, for all cases of node distributions (see
Section 6.1). Specifically, PSO's performance was compared
with that of the deterministic algorithms AS [22,23], IP
[24,25] and TRR [26,27]. Each of these methods was run
for the same maximum number of function evaluations
as PSO, i.e., 70,000 function evaluations. Furthermore,
30 independent experiments were also conducted for each
one of the aforementioned deterministic methods, starting
from a different, random starting point at each experiment,
within the range ½5:0; 15:0�.

In the following, Tables 9–12 provide statistical informa-
tion regarding the performance of all the aforementioned
algorithms, over all independent trials. Specifically, each
table presents the results for a particular bit rate and
bandwidth combination. The column “Case” refers to a
specific node distribution. The column “Success” shows
how many times each algorithm succeeds in finding the
optimal solution to a precision of six decimal digits, out of
30 independent trials. Columns “Min”, “Mean”, “Max” and
“Median” report the min, mean, max and median values of
the function, respectively, over the 30 experiments. The
standard deviation of the 30 values of the function is
presented under the column “Std”. We should note that
for the NNBS and CNBS criteria the objective function is the
one given by Eq. (12), assuming different bargaining powers
for each of them. Similarly, the objective functions of the
MAD and MMD criteria can be found in [16].

The last column of the tables presents the results of the
Wilcoxon rank sum hypothesis tests [47,48], having set the
significance level at 1%. More specifically, the obtained
values of these tests can be either 1 or 0. A value equal to 1
indicates rejection of the null hypothesis at the 1% sig-
nificance level, while a value equal to 0 indicates a failure
to reject the null hypothesis at the 1% significance level.
For each case of nodes' distribution, PSO was compared
with the respective case of the AS, IP and TRR algorithms,
and the results of the two-sided rank sum tests were
reported under the “Ranksum” column, next to AS, IP and
TRR algorithms, respectively. For example, for the case of



Table 9
Statistical results for PSO, AS, IP, TRR, Rk¼96 kbps and Wt¼20 MHz.

Criterion Algorithm Case Success Min Mean Max Median Std Ranksum

NNBS PSO #1 30 �5.726552 �5.726552 �5.726552 �5.726552 0.00 –

#2 30 �6.759974 �6.759974 �6.759974 �6.759974 0.00 –

#3 29 �6.138522 �6.138506 �6.138032 �6.138522 0.00 –

#4 24 �4.275103 �4.272522 �4.232132 �4.275103 0.01 –

AS #1 4 �5.726552 �0.121092 1.000000 1.000000 2.55 1
#2 2 �6.759974 0.482668 1.000000 1.000000 1.97 1
#3 4 �6.138522 0.048197 1.000000 1.000000 2.47 1
#4 7 �4.275103 �0.582531 1.000000 1.000000 2.46 1

IP #1 6 �5.726552 �0.345310 1.000000 1.000000 2.74 1
#2 1 �6.759974 0.482668 1.000000 1.000000 1.97 1
#3 3 �6.138522 0.286148 1.000000 1.000000 2.18 1
#4 9 �4.275103 �0.582531 1.000000 1.000000 2.46 1

TRR #1 0 �5.330930 �0.213350 1.000000 1.000000 2.28 1
#2 0 �5.908247 0.565973 1.000000 1.000000 1.66 1
#3 0 �4.873453 0.277376 1.000000 1.000000 1.88 1
#4 0 �3.367513 �0.163746 1.000000 1.000000 1.82 1

CNBS PSO #1 30 �5.726552 �5.726552 �5.726552 �5.726552 0.00 –

#2 30 �6.550393 �6.550393 �6.550393 �6.550393 0.00 –

#3 30 �6.409900 �6.409900 �6.409900 �6.409900 0.00 –

#4 30 �4.904941 �4.904941 �4.904941 �4.904941 0.00 –

AS #1 3 �5.726552 0.327345 1.000000 1.000000 2.05 1
#2 2 �6.550393 0.496640 1.000000 1.000000 1.92 1
#3 1 �6.409900 0.259011 1.000000 1.000000 2.26 1
#4 7 �4.904941 �2.149301 1.000000 �4.904939 3.00 1

IP #1 4 �5.726552 0.103126 1.000000 1.000000 2.33 1
#2 0 �6.550392 0.748320 1.000000 1.000000 1.38 1
#3 1 �6.409900 0.259010 1.000000 1.000000 2.26 1
#4 14 �4.904941 �1.755639 1.000000 1.000000 3.00 1

TRR #1 0 �4.964087 0.515564 1.000000 1.000000 1.51 1
#2 0 1.000000 1.000000 1.000000 1.000000 0.00 1
#3 0 �5.078231 0.442476 1.000000 1.000000 1.71 1
#4 0 �4.420913 �0.777876 1.000000 1.000000 2.41 1

MAD PSO #1 29 27.877986 27.903443 28.641710 27.877986 0.14 –

#2 30 22.105961 22.105961 22.105961 22.105961 0.00 –

#3 30 25.335557 25.335557 25.335557 25.335557 0.00 –

#4 28 38.152870 38.195643 38.921273 38.152872 0.17 –

AS #1 30 27.877986 27.877986 27.877986 27.877986 0.00 0
#2 30 22.105961 22.105961 22.105961 22.105961 0.00 0
#3 14 25.335557 27.840128 100.472675 25.335558 13.72 1
#4 30 38.152872 38.152872 38.152872 38.152872 0.00 0

IP #1 27 27.877986 27.877986 27.877987 27.877986 0.00 0
#2 30 22.105961 22.105961 22.105961 22.105961 0.00 0
#3 14 25.335557 25.335558 25.335558 25.335558 0.00 1
#4 30 38.152872 38.152872 38.152872 38.152872 0.00 0

TRR #1 0 35.459611 84.873294 590.658891 55.698445 105.48 1
#2 0 29.444823 31,922,142.648722 957,609,654.693354 198.978964 174,834,459.25 1
#3 0 29.759017 649.290198 13,790.047768 66.250344 2528.78 1
#4 0 45.894814 97.197020 428.296977 60.885126 103.30 1

MMD PSO #1 26 32.630183 32.681779 33.238361 32.630183 0.16 –

#2 30 27.063638 27.063638 27.063638 27.063638 0.00 –

#3 20 28.211844 28.375334 29.236985 28.211844 0.33 –

#4 29 45.627729 45.673158 46.990611 45.627729 0.25 –

AS #1 0 32.630184 32.727708 33.837196 32.630313 0.28 1
#2 0 27.063640 27.214074 28.781947 27.064162 0.40 1
#3 0 28.211845 28.277313 29.324319 28.214876 0.21 1
#4 1 45.627729 45.627799 45.628617 45.627735 0.00 1

IP #1 0 32.893982 32.921179 33.593664 32.894431 0.13 1
#2 0 27.286547 27.343641 27.381377 27.346057 0.01 1
#3 0 28.475167 28.483026 28.513347 28.482314 0.01 1
#4 0 45.992175 46.004366 46.080940 46.001779 0.01 1

TRR #1 0 63.809690 1473.410378 11,798.985887 735.239348 2557.98 1
#2 0 50.968639 871.311987 3926.881004 561.712215 990.35 1
#3 0 54.714794 5969.861550 162,460.812440 324.760820 29,562.79 1
#4 0 63.999563 166.903248 491.288336 128.784483 96.83 1
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Table 10
Statistical results for PSO, AS, IP, TRR, Rk¼96 kbps and Wt¼15 MHz.

Criterion Algorithm Case Success Min Mean Max Median Std Ranksum

NNBS PSO #1 30 �5.931049 �5.931049 �5.931049 �5.931049 0.00 –

#2 30 �6.884919 �6.884919 �6.884919 �6.884919 0.00 –

#3 29 �6.357387 �6.357375 �6.357014 �6.357387 0.00 –

#4 30 �4.644677 �4.644677 �4.644677 �4.644677 0.00 –

AS #1 10 �5.931049 �1.310350 1.000000 1.000000 3.32 1
#2 11 �6.884919 �2.679628 1.000000 1.000000 4.00 1
#3 2 �6.357387 �1.942954 1.000000 1.000000 3.67 1
#4 2 �4.644677 �2.386805 1.000000 �4.644673 2.81 1

IP #1 14 �5.931049 �2.234490 1.000000 1.000000 3.52 1
#2 13 �6.884919 �2.416798 1.000000 1.000000 3.97 1
#3 18 �6.357387 �3.414432 1.000000 �6.357387 3.67 1
#4 11 �4.644677 �1.069715 1.000000 1.000000 2.77 1

TRR #1 0 �5.622618 �2.655088 1.000000 �4.322057 2.89 1
#2 0 �6.486487 �1.237290 1.000000 1.000000 3.24 1
#3 0 �6.035897 �2.238168 1.000000 �3.305525 3.14 1
#4 0 �4.130423 �1.386533 1.000000 �2.321361 2.17 1

CNBS PSO #1 30 �5.931049 �5.931049 �5.931049 �5.931049 0.00 –

#2 19 �6.476440 �6.466387 �6.449022 �6.476440 0.01 –

#3 16 �6.374505 �6.357740 �6.338579 �6.374505 0.02 –

#4 30 �5.366147 �5.366147 �5.366147 �5.366147 0.00 –

AS #1 8 �5.931049 �1.541384 1.000000 1.000000 3.40 1
#2 6 �6.476440 �0.744503 1.000000 1.000000 3.22 1
#3 5 �6.374505 �0.229084 1.000000 1.000000 2.80 1
#4 5 �5.366147 �1.970868 1.000000 1.000000 3.23 1

IP #1 16 �5.931049 �2.696559 1.000000 �5.931049 3.52 1
#2 4 �6.476440 0.003141 1.000000 1.000000 2.58 1
#3 9 �6.374505 �1.212352 1.000000 1.000000 3.44 1
#4 14 �5.366147 �1.970869 1.000000 1.000000 3.23 1

TRR #1 0 �5.497558 �2.238326 1.000000 �3.878174 2.92 1
#2 0 �5.926976 �0.693331 1.000000 1.000000 2.67 1
#3 0 �5.030588 0.261632 1.000000 1.000000 1.92 1
#4 0 �5.104637 �1.385651 1.000000 1.000000 2.80 1

MAD PSO #1 30 42.715334 42.715334 42.715334 42.715334 0.00 –

#2 18 34.740266 34.741492 34.743331 34.740266 0.00 –

#3 30 38.678888 38.678888 38.678888 38.678888 0.00 –

#4 30 56.482854 56.482854 56.482854 56.482854 0.00 –

AS #1 8 42.715334 42.715335 42.715336 42.715335 0.00 1
#2 27 34.740266 34.740266 34.740267 34.740266 0.00 1
#3 17 38.678888 38.678888 38.678889 38.678888 0.00 1
#4 8 56.482854 56.482855 56.482855 56.482855 0.00 1

IP #1 30 42.715334 42.715334 42.715334 42.715334 0.00 0
#2 11 34.740266 34.740267 34.740267 34.740267 0.00 0
#3 30 38.678888 38.678888 38.678888 38.678888 0.00 0
#4 30 56.482854 56.482854 56.482854 56.482854 0.00 0

TRR #1 0 48.597923 67.903578 124.637931 59.695320 21.60 1
#2 0 41.072661 2,562,336.995613 76,818,946.290372 69.551001 14,024,836.44 1
#3 0 41.140134 55.932004 84.065159 55.987149 9.81 1
#4 0 59.823066 84.709830 142.269987 81.943355 21.17 1

MMD PSO #1 26 55.420774 55.516563 56.139190 55.420774 0.25 –

#2 30 46.745971 46.745971 46.745971 46.745971 0.00 –

#3 27 47.064096 47.260824 50.356854 47.064096 0.67 –

#4 30 68.786486 68.786486 68.786486 68.786486 0.00 –

AS #1 0 55.420775 213,734.132136 6,410,416.730469 55.420789 1,170,366.50 1
#2 2 46.745971 427404.773826 6410416.730469 46.746009 1626362.98 1
#3 0 47.064097 47.076131 47.414143 47.064110 0.06 1
#4 0 68.786488 68.954052 72.913638 68.786535 0.75 1

IP #1 0 55.788466 213,734.511989 6,410,416.730469 55.809086 1,170,366.43 1
#2 0 47.116362 47.135636 47.155817 47.136172 0.01 1
#3 0 47.373010 47.450356 47.459722 47.452354 0.01 1
#4 0 69.178991 69.180494 69.198662 69.179764 0.00 1

TRR #1 0 93.225285 214,326.061791 6,410,416.730469 337.734698 1,170,255.19 1
#2 0 78.373678 4090.934508 89,078.591611 343.627444 16,255.22 1
#3 0 105.814688 433,327.625626 6,410,416.730469 279.925460 1,624,953.58 1
#4 0 96.411897 181.725259 339.864507 149.604006 71.05 1
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Table 11
Statistical results for PSO, AS, IP, TRR, Rk¼144 kbps and Wt¼30 MHz.

Criterion Algorithm Case Success Min Mean Max Median Std Ranksum

NNBS PSO #1 28 �5.600859 �5.599407 �5.579073 �5.600859 0.01 –

#2 22 �6.723017 �6.719601 �6.710207 �6.723017 0.01 –

#3 30 �6.062459 �6.062459 �6.062459 �6.062459 0.00 –

#4 25 �4.144447 �4.121988 �3.845342 �4.144447 0.07 –

AS #1 5 �5.600859 �0.760229 1.000000 1.000000 2.97 1
#2 0 �6.723015 0.742566 1.000000 1.000000 1.41 1
#3 3 �6.062459 �0.177076 1.000000 1.000000 2.68 1
#4 0 �4.144446 �0.200370 1.000000 1.000000 2.21 1

IP #1 10 �5.600859 �1.200286 1.000000 1.000000 3.16 1
#2 1 �6.723017 0.742566 1.000000 1.000000 1.41 1
#3 5 �6.062459 �0.177076 1.000000 1.000000 2.68 1
#4 7 �4.144447 �0.200371 1.000000 1.000000 2.21 1

TRR #1 0 �5.020738 0.461282 1.000000 1.000000 1.65 1
#2 0 �4.769009 0.807700 1.000000 1.000000 1.05 1
#3 0 �5.326840 0.004166 1.000000 1.000000 2.27 1
#4 0 �3.502565 0.078349 1.000000 1.000000 1.71 1

CNBS PSO #1 28 �5.600859 �5.599407 �5.579073 �5.600859 0.01 –

#2 30 �6.572136 �6.572136 �6.572136 �6.572136 0.00 –

#3 29 �6.255745 �6.253124 �6.177124 �6.255745 0.01 –

#4 25 �4.746744 �4.729444 �4.584500 �4.746744 0.05 –

AS #1 5 �5.600859 �0.760229 1.000000 1.000000 2.97 1
#2 1 �6.572136 0.747595 1.000000 1.000000 1.38 1
#3 1 �6.255745 0.274426 1.000000 1.000000 2.21 1
#4 4 �4.746744 �0.340907 1.000000 1.000000 2.47 1

IP #1 10 �5.600859 �1.200286 1.000000 1.000000 3.16 1
#2 1 �6.572136 0.747595 1.000000 1.000000 1.38 1
#3 3 �6.255745 0.274425 1.000000 1.000000 2.21 1
#4 7 �4.746744 �0.340907 1.000000 1.000000 2.47 1

TRR #1 0 �5.020738 0.461282 1.000000 1.000000 1.65 1
#2 0 �3.896261 0.836791 1.000000 1.000000 0.89 1
#3 0 �4.803903 0.481003 1.000000 1.000000 1.59 1
#4 0 �4.448528 �0.132917 1.000000 1.000000 2.10 1

MAD PSO #1 30 28.671136 28.671136 28.671136 28.671136 0.00 –

#2 29 22.197505 22.203320 22.371955 22.197505 0.03 –

#3 19 25.781431 25.795943 25.821008 25.781431 0.02 –

#4 30 39.537574 39.537574 39.537574 39.537574 0.00 –

AS #1 29 28.671136 28.671136 28.671137 28.671136 0.00 0
#2 30 22.197505 22.197505 22.197505 22.197505 0.00 0
#3 23 25.781431 25.781431 25.781432 25.781431 0.00 0
#4 2 39.537574 39.537575 39.537575 39.537575 0.00 1

IP #1 30 28.671136 28.671136 28.671136 28.671136 0.00 0
#2 30 22.197505 22.197505 22.197505 22.197505 0.00 0
#3 30 25.781431 25.781431 25.781431 25.781431 0.00 1
#4 30 39.537574 39.537574 39.537574 39.537574 0.00 0

TRR #1 0 38.174917 80.084232 437.191990 54.975283 82.08 1
#2 0 33.022878 115.806950 658.762104 61.160962 131.73 1
#3 0 35.043037 136.701257 806.049917 74.006241 186.53 1
#4 0 46.219864 65.138385 125.127617 59.559891 18.31 1

MMD PSO #1 14 31.056458 31.151369 31.355355 31.057992 0.13 –

#2 26 24.095459 24.129881 24.612998 24.095459 0.12 –

#3 15 27.066388 27.242809 28.630456 27.066426 0.40 –

#4 29 44.347172 44.347172 44.347173 44.347172 0.00 –

AS #1 0 31.056462 31.078239 31.525284 31.056759 0.09 0
#2 0 24.095463 24.135839 24.835710 24.095768 0.14 1
#3 0 27.066398 27.224033 29.311025 27.072111 0.45 0
#4 0 44.347187 44.419303 45.299474 44.352565 0.23 1

IP #1 0 31.241349 31.244034 31.245254 31.244358 0.00 1
#2 0 24.279991 24.285232 24.287873 24.285217 0.00 1
#3 0 27.228921 27.248421 27.259118 27.249201 0.00 1
#4 0 44.524078 44.535475 44.598444 44.532140 0.01 1

TRR #1 0 94.109723 576.252212 3386.972994 288.327944 715.21 1
#2 0 87.636164 605.994373 3050.645396 269.316773 740.79 1
#3 0 45.631121 2812.207090 36,087.939245 627.444041 6679.12 1
#4 0 61.519355 208.647801 439.313149 185.546088 93.59 1
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Table 12
Statistical results for PSO, AS, IP, TRR, Rk¼144 kbps and Wt¼22.5 MHz.

Criterion Algorithm Case Success Min Mean Max Median Std Ranksum

NNBS PSO #1 26 �6.728280 �6.706684 �6.317561 �6.728280 0.08 –

#2 28 �7.817586 �7.817496 �7.814898 �7.817586 0.00 –

#3 27 �7.198682 �7.167147 �6.771945 �7.198682 0.11 –

#4 20 �5.259108 �5.158823 �4.178432 �5.259108 0.24 –

AS #1 3 �6.728280 �2.348921 1.000000 1.000000 3.90 1
#2 7 �7.817586 �2.820954 1.000000 1.000000 4.44 1
#3 5 �7.198682 �3.372630 1.000000 �7.198680 4.16 1
#4 13 �5.259108 �2.129554 1.000000 �2.129553 3.18 0

IP #1 13 �6.728280 �2.348921 1.000000 1.000000 3.90 1
#2 13 �7.817586 �2.820954 1.000000 1.000000 4.44 1
#3 16 �7.198682 �3.372630 1.000000 �7.198682 4.16 1
#4 15 �5.259108 �2.129554 1.000000 �2.129554 3.18 0

TRR #1 0 �5.920830 �1.691694 1.000000 1.000000 3.03 1
#2 0 �7.072670 �2.070224 1.000000 1.000000 3.61 1
#3 0 �6.461379 �2.447709 1.000000 �4.086208 3.33 1
#4 0 �4.428599 �1.096080 1.000000 �0.021107 2.28 1

CNBS PSO #1 26 �6.728280 �6.706684 �6.317561 �6.728280 0.08 –

#2 29 �7.494610 �7.494609 �7.494581 �7.494610 0.00 –

#3 30 �7.247564 �7.247564 �7.247564 �7.247564 0.00 –

#4 24 �5.968381 �5.879394 �5.345384 �5.968381 0.18 –

AS #1 3 �6.728280 �2.348921 1.000000 1.000000 3.90 1
#2 7 �7.494610 �2.680997 1.000000 1.000000 4.28 1
#3 14 �7.247564 �3.398701 1.000000 �7.247563 4.18 1
#4 2 �5.968381 �2.484190 1.000000 �2.484189 3.54 1

IP #1 13 �6.728280 �2.348921 1.000000 1.000000 3.90 1
#2 13 �7.494610 �2.680998 1.000000 1.000000 4.28 1
#3 16 �7.247564 �3.398701 1.000000 �7.247564 4.18 1
#4 15 �5.968381 �2.484190 1.000000 �2.484191 3.54 0

TRR #1 0 �5.920830 �1.691694 1.000000 1.000000 3.03 1
#2 0 �6.353936 �1.683354 1.000000 1.000000 3.18 1
#3 0 �6.700017 �2.361050 1.000000 �3.812727 3.26 1
#4 0 �5.471234 �1.591104 1.000000 �0.546628 2.75 1

MAD PSO #1 30 56.480888 56.480888 56.480888 56.480888 0.00 –

#2 30 44.424576 44.424576 44.424576 44.424576 0.00 –

#3 30 50.564936 50.564936 50.564936 50.564936 0.00 –

#4 30 78.125561 78.125561 78.125561 78.125561 0.00 –

AS #1 28 56.480888 56.480888 56.480889 56.480888 0.00 0
#2 28 44.424576 44.424576 44.424577 44.424576 0.00 0
#3 25 50.564936 50.564936 50.564937 50.564936 0.00 0
#4 29 78.125561 78.125561 78.125562 78.125561 0.00 0

IP #1 30 56.480888 56.480888 56.480888 56.480888 0.00 0
#2 30 44.424576 44.424576 44.424576 44.424576 0.00 0
#3 30 50.564936 50.564936 50.564936 50.564936 0.00 0
#4 30 78.125561 78.125561 78.125561 78.125561 0.00 0

TRR #1 0 70.058420 114.105190 305.226320 100.026179 49.94 1
#2 0 55.440766 95.548555 265.978810 83.776112 42.75 1
#3 0 62.454791 102.904933 297.469295 87.282984 50.16 1
#4 0 94.335021 142.020580 313.279410 126.272882 52.33 1

MMD PSO #1 26 62.640217 62.674556 63.670340 62.640217 0.19 –

#2 30 50.499656 50.499656 50.499656 50.499656 0.00 –

#3 29 55.336279 55.446682 58.648373 55.336279 0.60 –

#4 25 86.090121 86.138088 86.839018 86.090121 0.16 –

AS #1 0 62.640227 62.709359 64.231017 62.641429 0.29 1
#2 0 50.499664 50.597425 52.681553 50.501584 0.40 1
#3 0 55.336303 55.451090 56.332457 55.337953 0.28 1
#4 0 86.090138 86.298447 88.117830 86.106936 0.49 1

IP #1 0 62.667073 62.689967 62.702033 62.691908 0.01 1
#2 0 50.666813 50.843280 55.099470 50.695189 0.80 1
#3 0 55.484306 56.219901 76.256342 55.529304 3.78 1
#4 0 86.090126 86.249038 90.661932 86.090335 0.83 1

TRR #1 0 105.389738 661.950070 1853.695807 472.654046 473.79 1
#2 0 104.554625 684.388187 1739.286364 533.403263 513.81 1
#3 0 88.154391 650.196306 2273.759910 411.834949 534.75 1
#4 0 131.077527 515.742949 1396.314830 392.958246 297.15 1
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Rk¼96 kbps and Wt¼20 MHz, for the NNBS criterion,
having “1” under the “Ranksum” column to Case 1 of AS,
this means that the test rejects the null hypothesis of equal
medians for the 30 values of the NNBS function using the
PSO and the 30 values of the NNBS function using the AS,
at 1% significance level.

Observing the successes of each optimization method
over the 30 experiments for all considered bit rate and
bandwidth combinations, we can see that PSO far exceeds
the other methods, where in many cases its success rate is
100%. The great advantage of PSO compared to the other
methods is more obvious in the MMD criterion. While
PSO's success rate is in many cases 100%, the other
methods fail nearly always to reach the optimal solution.
However, there are a few cases where PSO's successes are
less than 30. In these cases, if we examine the other
statistic values of the tables, we will observe that the
min value of the function differs from the max value (of
the 30 values) in the third, second or first decimal digit.
This claim is also confirmed by the small values of the
standard deviation or by the fact that the min function
value is equal with the median function value or have a
slight difference in the fourth or third decimal digit.
However, even in cases where PSO achieves a near-optimal
solution, this solution is acceptable in practice, since it has
only a slight impact on the utilities achieved by the nodes.
Thus, all these statistical information reinforce our view about
the efficiency of PSO in solving such optimization tasks.

Also, PSO, AS and IP behave better with the MAD
criterion, noting better performance. As it was previously
referred, PSO far exceeds the other competing methods,
being able to nearly always reach the optimal solution.
Among the benchmarks that we used for comparison with
the PSO, the IP algorithm is the most efficient one,
followed in performance by the AS, and finally, by the
TRR, which fails always (in all examined cases) to reach the
optimal solution.
Table 13
PSO's convergence speed in terms of Best (Min), Average (Mean) and Worst (M

Bit rate – Bandwidth Case NNBS CNBS

Min Mean Max Min Me

#1 465 559.4 696 443 561
Rk ¼ 96 kbps #2 336 558.6 700 302 523
Wt ¼ 20 MHz #3 437 552.6 700 385 503

#4 500 588.8 692 404 582

#1 490 660.9 700 470 597
Rk ¼ 96 kbps #2 391 593.5 700 405 576
Wt ¼ 15 MHz #3 414 605.7 694 495 563

#4 447 621.9 700 374 598

#1 461 630.5 700 518 625
Rk ¼ 144 kbps #2 433 599.7 697 442 606
Wt ¼ 30 MHz #3 426 594.1 700 420 604

#4 500 659.8 700 421 592

#1 437 649.2 700 427 627
Rk ¼ 144 kbps #2 454 636.4 700 393 616
Wt ¼ 22:5 MHz #3 454 626.1 700 482 619

#4 509 658.2 700 453 652
The considerably low success rates of the deterministic
algorithms can be probably attributed to the shape of the
corresponding objective functions. Specifically, if they
include steep hills as well as large flat areas, this can trap
the deterministic approaches if they are initialized within
these regions. This means that the selection of the starting
point is very important for the performance of each
method. For example, if the functions are flat in a large
part, a starting point in this area does not lead any of the
three above methods to find the optimal solution. This fact
motivated us to use the PSO algorithm as the optimization
solver in this paper.

Lastly, experimental results of the PSO's convergence
speed are presented in Table 13. Specifically, this table
shows the time that PSO requires to find the optimal
solution with a precision of 6 decimal digits, in terms of
the number of iterations that the swarm is updated. Thus,
these statistics concern only the experiments where PSO
reaches the optimal solution. In this table are included
results for all node distributions of all considered bit rate
and bandwidth combinations, and for all tested criteria.
Due to the fact that PSO is a stochastic algorithm, we do
not only cite the average performance, i.e., the mean
number of iterations that the swarm is updated in order
to reach the solution (Mean), but we also present the best
case, i.e., the minimum number of iterations (Min) and the
worst case, i.e., the maximum number of iterations (Max).

The criterion that presents the fastest PSO's conver-
gence, requiring less iterations on average over all 30
experiments per case, is the MAD, which behaves better
than all the other competing schemes. On the contrary,
PSO confronts the biggest challenge in convergence, using
the MMD criterion. With an exception for the case of
Rk¼96 kbps and Wt¼15 MHz, in all other bit rate and
bandwidth combinations, the MMD requires much more
iterations on average compared to the other criteria.
Especially when the bit rate is equal to 144 kbps, the
ax) swarm update iterations.

MAD MMD

an Max Min Mean Max Min Mean Max

.4 682 366 482.7 650 518 611.7 700

.3 686 288 437.8 547 497 587.7 660

.1 666 307 402.1 646 536 620.6 699

.3 700 294 405.6 694 373 429.6 498

.9 697 310 421.9 695 389 463.8 561

.6 700 281 401.2 641 323 390.2 522

.9 681 361 532.1 680 364 424.9 546

.6 699 318 390.5 471 364 413.8 498

.1 700 383 505.3 679 687 697.6 700

.0 689 414 548.0 694 636 684.0 700

.7 697 418 592.2 700 691 698.4 700

.5 700 322 488.4 672 677 695.2 700

.2 699 376 506.3 681 691 697.9 700

.0 700 386 552.5 700 645 691.8 700

.0 700 396 560.0 686 667 693.5 700

.8 700 366 540.2 690 692 698.2 700
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lowest average iteration number equals 684 out of 700
iterations.
7. Conclusions

In this work, we considered the problem of optimal
resource allocation in wireless visual sensor networks. The
source coding rate, channel coding rate, and power level
were selected for each node of the network. Our setup
assumed that the nodes negotiate with the help of a CCU,
and the result of the negotiation is the NBS, which aims at
a fair distribution of system resources among the nodes.
The NBS utilizes a disagreement point, which corresponds
to the minimum acceptable video quality for each node.

We proposed two optimization criteria based on the
NBS, which differ in the way that the bargaining powers
are determined for the nodes. The first approach treated
each node as advantaged equally, while the second one
assumed the same advantage for each class of nodes. The
PSO algorithm was proved the best choice among other
conventional optimization methods for solving the mixed-
integer problems, resulting from the continuous values for
the power levels and the discrete values for the source and
channel coding rates, under the constraints of a fixed bit
rate and a bounded power for each node.

The performance of our proposed criteria was com-
pared with the performance of two other competing
schemes, the MAD and MMD. The MAD criterion mini-
mizes the average video distortion of the nodes without
regard to fairness. The MMD criterion typically results in
the same video distortion for all nodes, at the cost of a very
high power consumption compared with the other
schemes. This is a significant drawback of the MMD that
could prohibit its use in practical applications. On the
contrary, we confirmed that the NNBS and CNBS keep low
computational complexity and can be used to any wireless
VSN with a centralized topology that uses DS-CDMA.
Additionally, a wise selection between NNBS and CNBS
according to the needs of each application and the node
distribution produces worthwhile results that are prefer-
able to those of MAD and MMD.
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