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On the Computation of All Global Minimizers
Through Particle Swarm Optimization

Konstantinos E. Parsopoulos and Michael N. Vrahatis

Abstract—This paper presents approaches for effectively
computing all global minimizers of an objective function. The
approaches include transformations of the objective function
through the recently proposed deflection and stretching tech-
niques, as well as a repulsion source at each detected minimizer.
The aforementioned techniques are incorporated in the context of
the particle swarm optimization (PSO) method, resulting in an ef-
ficient algorithm which has the ability to avoid previously detected
solutions and, thus, detect all global minimizers of a function.
Experimental results on benchmark problems originating from
the fields of global optimization, dynamical systems, and game
theory, are reported, and conclusions are derived.

Index Terms—Deflection technique, detecting all minimizers,
dynamical systems, Nash equilibria, particle swarm optimization
(PSO), periodic orbits, stretching technique.

I. INTRODUCTION

HE MINIMIZATION of multimodal functions with

numerous local and global minima is a problem that
frequently arises in diverse scientific fields. This problem is
NP-hard in the sense of its computational complexity even in
simple cases [1]. However, in many cases, the value of the
global minimum of the objective function is a priori known,
due to the form of the function (quadratic, nonnegative, etc.).
For example, nonlinear least squares problems, as well as
feedforward neural network training are such problems, where
the involved objective functions have a priori known global
minimum, equal to zero.

In general, the nature of some applications is such that it is
necessary to detect not just one, but all the global minimizers.
Such an example is the computation of Nash equilibria in game
theory. Nash equilibria can be considered as steady state solu-
tions of a game. In a Nash equilibrium, each player selects the
optimal strategy given the strategies of all other players, i.e., the
strategy that yields the largest payoff. However, different Nash
equilibria correspond to significantly different outcomes of the
game. It is, therefore, necessary to compute not just one but all
the Nash equilibria in order to produce a reliable estimate of the
outcome that can be reached through playing a game.

An interesting application which requires the computation of
more than one global minimizer, is the computation of periodic
orbits of nonlinear mappings. Nonlinear mappings are widely
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used to model conservative, or dissipative dynamical systems.
A central role in the study of such mappings is played by points
which remain invariant under the mapping. These points are
called fixed points or periodic orbits of the mapping and they
may be further categorized into several types (stable, unstable,
etc.). Developing techniques for detecting all such points, or all
points of a specific type, is an area of intense ongoing research.

The last three decades have witnessed the development of
efficient and effective stochastic optimization algorithms. In
contrast to the traditional adaptive stochastic search algorithms,
evolutionary computation (EC) techniques exploit a set of
potential solutions, named a population, and detect the optimal
solution through cooperation and competition among the
individuals of the population. These techniques often detect
optima in difficult optimization problems faster than tradi-
tional optimization methods. The most frequently encountered
population-based EC techniques, such as evolution strategies
(ES) [2]-[7], genetic algorithms (GAs) [8], [9], genetic pro-
gramming [10], [11], and evolutionary programming [12], are
inspired from the evolutionary mechanisms of nature.

The particle swarm optimization (PSO) algorithm belongs
to the category of Swarm Intelligence methods. It was devel-
oped and first introduced as a stochastic optimization algorithm
by Eberhart and Kennedy [13]. During the last seven years,
PSO gained increasing popularity due to its effectiveness in per-
forming difficult optimization tasks. Among other applications,
it has been applied to tackle multiobjective problems [14]-[19],
minimax problems [20], [21], integer programming problems
[22], noisy and continuously changing environments [23]-[26],
£y errors-in-variables problems [27], existence of function zeros
[28], and numerous engineering applications [29]-[40].

This paper proposes a technique aiming to compute all global
minimizers, while avoiding local minimizers, through PSO.
This technique incorporates the recently proposed deflection
and stretching procedures to alleviate local minimizers. Some
of the problems that may arise when using these two techniques
are overcome by incorporating a repulsion technique. The
proposed approach can be used in combination with PSO to
detect all global minimizers effectively. The performance of
the algorithm is illustrated on test problems originating from
various scientific fields, such as global optimization, dynamical
systems, and game theory.

The rest of this paper is organized as follows. Section II is
devoted to the exposition of the PSO method and its variants. In
Section III, the proposed technique, as well as other established
approaches are described and analyzed. In Section IV, test prob-
lems from global optimization, dynamical systems, and game
theory are described, and experimental results are reported. The
paper closes with conclusions and ideas for further research in
Section V.

1089-778X/04$20.00 © 2004 IEEE
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II. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM

PSO belongs to the broad class of stochastic optimization
algorithms. The ideas that underlie PSO are inspired not by
the evolutionary mechanisms encountered in natural selection,
but rather by the social behavior of flocking organisms, such
as swarms of birds and fish schools. It has been observed that
the behavior of the individuals that comprise a flock adheres to
fundamental rules like nearest-neighbor velocity matching and
acceleration by distance [41], [42]. In this respect, it has been
claimed that PSO performs mutation with a conscience [43].

PSO is a population-based algorithm that exploits a popu-
lation of individuals to probe promising regions of the search
space. In this context, the population is called a swarm and
the individuals are called particles. Each particle moves with
an adaptable velocity within the search space, and retains in
its memory the best position it ever encountered. In the global
variant of PSO the best position ever attained by all individuals
of the swarm is communicated to all the particles. In the local
variant, each particle is assigned to a neighborhood consisting
of a prespecified number of particles. In this case, the best po-
sition ever attained by the particles that comprise the neighbor-
hood is communicated among them [41]. This paper considers
the global variant of PSO only.

Assume an m-dimensional search space, S C R™, and a
swarm consisting of N particles. The ith particle is in effect an
n-dimensional vector

. ,fliin)T €S.

The velocity of this particle is also an n-dimensional vector

Xi = (i1, a2, - .

V. = (’l}i17’l}i27. .. 7’Uz'n)—r es.

The best previous position encountered by the sth particle is a
point in S, denoted as

P; = (pi1,piz:-- -, Din) -

Assume g to be the index of the particle that attained the best
previous position among all the individuals of the swarm, and ¢
to be the iteration counter. Then, according to the first version
of PSO, as introduced in the pioneering work of Kennedy and
Eberhart [42], the swarm is manipulated according to the fol-
lowing equations:

Vilt + 1) = Vi(t) + e (Pi(t) = Xi(0))

+ cry (Py(t) — Xi(t)) (D
Xi(t+1) =X;(t) + Vi(t +1) 2
where ¢« = 1,2,..., N is the particle’s index, c is a positive

constant, called the acceleration constant, r1, ro are random
numbers, uniformly distributed within the interval [0,1], and ¢ =
1,2,..., indicates the iterations.

A drawback of the aforementioned version of PSO is associ-
ated with the lack of a mechanism responsible for the control
of the magnitude of the velocities, which fosters the danger of
swarm explosion and divergence [44]. To address the explosion
problem a threshold V},,,x on the absolute value of the velocity
that can be assumed by any particle was incorporated. This mod-
ification alone, however, proved inadequate in significantly en-
hancing the effectiveness of the algorithm. A closer inspection
of the operation of the algorithm indicated that although PSO
located the region of the optimum faster than different EC al-
gorithms, once in this region the algorithm progressed slowly,

due to the inability to adjust the velocity stepsize to continue the
search at a finer grain [44].

The aforementioned problem was addressed by further incor-
porating a weight parameter on the previous velocity of the par-
ticle. The resulting equations for the manipulation of the swarm
are [45]-[47]

Vit + 1) =wVi(t) + vy (P(t) — X(1))

+ cara (Py(t) — Xi(t)) 3
Xi(t+1)=X;(t)+ Vi(t + 1) (@)
where 1 = 1,2,..., N, w is a parameter called the inertia

weight, c; and cy are positive constants, referred to as cogni-
tive and social parameters, respectively, and r1, 7o are random
numbers, uniformly distributed in [0,1].

The inertia weight w in (3), is employed to manipulate the im-
pact of the previous history of velocities on the current velocity.
Therefore, w resolves the tradeoff between the global (wide
ranging) and local (nearby) exploration ability of the swarm. A
large inertia weight encourages global exploration (moving to
previously not encountered areas of the search space), while a
small one promotes local exploration, i.e., fine-tuning the cur-
rent search area. A suitable value for w provides the desired
balance between the global and local exploration ability of the
swarm and, consequently, improves the effectiveness of the al-
gorithm. Experimental results suggest that it is preferable to ini-
tialize the inertia weight to a large value, giving priority to global
exploration of the search space, and gradually decreasing w so
as to obtain refined solutions [46], [47]. This finding is also
intuitively very appealing. In conclusion, an initial value of w
around 1 and a gradual decline toward O is considered a proper
choice for w.

An alternative version of PSO incorporates a parameter called
the constriction factor and the swarm is manipulated according
to the equations [48]

Vit +1) =x (Vi(t) + exr (Pi(t) — Xa(t))

+ cary (Py(t) — Xi(t))) Q)
Xi(t+1) =X(t) + Vi(t + 1) (6)
where? = 1,2,..., N, x is the constriction factor, ¢; and ¢, de-

note the cognitive and social parameters, respectively, and 71, 12
are random numbers uniformly distributed in the interval [0,1].
The value of the constriction factor is typically obtained through
the formula [48]

2K

X e 19

for ¢ > 4, where ¢ = ¢; + c2, and k = 1. Different configura-
tions of y, as well as a theoretical analysis of the derivation of
(7), can be found in [48].

Proper fine-tuning of the parameters c; and co, results in
better performance of PSO. An extended study of the acceler-
ation parameter c, in the primary version of PSO, is provided
in [49]. As default values, ¢c; = c2 = 2 were proposed, but
experimental results indicate that alternative configurations,
depending on the problem at hand, may produce superior
performance.

The initialization of the swarm and the velocities, is usually
performed randomly in the search space, although more sophis-
ticated initialization techniques can enhance the overall perfor-
mance of the algorithm [50]. For uniform random initialization

N
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in a multidimensional search space, a Sobol sequence generator
can be used [51].

Thorough theoretical investigations of the convergence prop-
erties of PSO are provided in [48] and [52]. These studies first
consider a simplified deterministic model of the algorithm in
order to provide an understanding about how it probes the search
space, and then proceed to analyze the full stochastic system
[48], [52]. Generalized models of the algorithm are proposed,
and techniques for controlling the convergence properties of the
particle system by fine-tuning its parameters are analyzed in
[48] and [52].

III. ESTABLISHED APPROACHES AND
THE PROPOSED TECHNIQUES

Various techniques reported in the literature can be incorpo-
rated in the context of optimization algorithms in order to obtain
several minimizers of a function [53], [54]. A simple approach
is the multistart technique. Once the optimization algorithm has
converged to a minimizer, this technique reinitializes the algo-
rithm at a random point of the search space. On the other hand,
this approach includes no mechanisms to deter convergence to-
ward previously detected minimizers [54].

Alternatively, the detection of more than one minimizer can
be achieved by modifying the objective function, so as to con-
tain information concerning the position of the previously de-
tected minimizers, in its new form. In this context, Goldstein
and Price proposed an efficient algorithm for the minimization
of algebraic functions, which exploits higher order derivatives of
the involved polynomials [55]. The technique was later general-
ized for nonpolynomial problems using a transformation, which
involves the Hessian of the objective function. However, the nu-
merical computation of the Hessian is not always feasible and
in any case, it is computationally expensive. Thus, in its gen-
eral form, this approach is not widely applicable. Similar algo-
rithms were proposed by Shusterman [56], but, after the detec-
tion of a few minimizers, the objective function becomes very
flat and, thus, minimization is becoming increasingly difficult.
An interesting approach is the tunneling technique, proposed by
Vilkov et al. [57] for one-dimensional (1-D) functions, and gen-
eralized for the multidimensional case by Gomez and Levy [58],
and Montalvo [59]. However, the hypersurface constructed by
the tunneling algorithm becomes very flat as the number of the
detected minimizers increases, hindering further exploration of
the search space, after the detection of a few minimizers. A dif-
ferent technique for avoiding local minimizers is simulated an-
nealing that combines local search with Monte Carlo techniques
and simulates the annealing processes which are used to reveal
the low temperature state of materials [60].

Filled functions are another widely used approach for
avoiding local minimizers, developed by Ge [61], [62]. This
technique also requires a transformation of the given objective
function, according to the following equation:

2
Mz ==l

T(x;r,p) = f(z) + exp 5 ®)

r+ f(z) P
where z* is a detected minimizer and «, 7, p are arbitrary param-
eters. The first multiplier of (8) inverts the objective function,
and turns the local minimum at z* to a local maximum, while
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Fig. 1. Filled function transformation of the function defined in (9), at point
x* = 4.600955 89, for the parameter values &« = 200, = 0,and p = 1.
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Fig. 2. Filled function transformation of the function defined in (9), at point
r* = 4.600955 89, for the parameter values &« = 400,r = 0,andp = 1.

the second multiplier imposes a penalty when approaching z*.
The magnitude of the penalty is measured in units of p2. The
parameter « controls the extent of the impact of the transforma-
tion on f.

InFigs. 1 and 2, the effect of the filled function transformation
is illustrated for the 1-D function

f(z) = z* — 1223 + 472 — 60z + 25 9)

on the local minimizer z* = 4.60095589. The figures were
obtained for the fixed values r = 0 and p = 1, and for two
different values of a;, « = 200 and o = 400, respectively.

The filled function transformation introduces new local
minima at both sides of the detected minimizer. The new local
minimizers have higher function values than the detected one
and, thus, form a shape similar to a “mexican hat” around it,
causing optimization algorithms to get trapped to these local
minimizers.
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Alternative filled functions were proposed by Ge and Qin
[63], but it is not always evident which class of problems these
techniques can be applied [54].

“Deflection” and “stretching” are two recently proposed tech-
niques that also rely on the concept of transforming the objec-
tive function in a way that knowledge of previously detected
minimizers is incorporated in its new form. Preliminary experi-
mental results indicate that both of these techniques can be used
in the context of PSO to alleviate the problem of introducing
local minima and detect several global minimizers effectively
[64], [65]. Difficulties that may arise using these approaches,
may be overcome through a “repulsion” technique. In the fol-
lowing sections, the workings of the deflection, stretching, and
repulsion techniques are exposed and analyzed.

A. Deflection Technique
Let

f:S—=R, SCcR"

be the original objective function under consideration. Let

* , —
z;, +1=1,...,m

be m minimizers of f. Then, the deflection technique is defined
as

F(l’) :Tl ($;$I7/\1)_1---Tm (x;x:m)\m)_l f(‘T> (10)

where \;, ¢+ = 1,...,m are relaxation parameters, and
Ty,...,T,, are appropriate functions in the sense that the
resulting function F' has exactly the same minimizers as f,
except at points z7,...,z) . In other words, the functions
Ty, ...,T,, must be selected in such a way that any sequence
of points {z} 72, converging to any one of the minimizers =,
does not produce a minimum of F’ at x = z, while all other
minima of f remain unaffected. The functions

T; (z; 27, \;) = tanh (\; ||z — 27| 11

satisfy the aforementioned property, known as the deflection
property, as it is shown in [66].

The effect of the deflection procedure applied on the local
minimizer z* = 4.600 955 89 of the function defined by (9), is
illustrated in Figs. 3-5.

The 1-D objective function

f(z) = cos?(x) + 0.1

has the global minimum 0.1 at the global minimizers
x = k(m/2), with k = £1, 42, .. .. There are no other minima
(local or global). Suppose the minimizer * = (m/2) has
been detected, then the effect of deflection on f, for A = 1, is
exhibited in Fig. 6.

Alternative configurations of the parameter A result in dif-
ferent shapes of the transformed function. The deflection effect
for A = 10 and A = 0.1 is exhibited in Figs. 7 and 8, respec-
tively. It is clear that for larger values of A the effect of the de-
flection technique on the objective function is relatively mild.
On the other hand, using A < 1 results in a function F’ with con-
siderably larger function values in the neighborhood of the de-
flected minimizer, and may even affect the value of neighboring
minimizers, as exhibited in Fig. 8. In all figures, the deflection
transformation introduces new local minima at both sides of the

?
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Fig. 3. Deflection transformation of the function defined in (9), at the point
x* = 4.60095589, for A = 1.
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Fig. 4. Deflection transformation of the function defined in (9), at the point
x* = 4.60095589, for A = 10.

deflected minimizer, forming a “mexican hat” around the de-
flected point.

A point to notice is that the deflection technique should not
be used on its own on a function f, whose global minimum is
zero. The reason is that the function F' will also have zero value
at the deflected global minimizer, since f will be equal to zero
at such points. This problem can be easily alleviated by taking

f=f+c
where ¢ > 0 is a constant, instead of f. The function f pos-
sesses all the information regarding the minimizers of f, but the
global minimum is increased from zero to c. Alternatively, the
repulsion technique, which will be described later, can be used
to overcome this problem.

In conclusion, the deflection technique can be used in cases
where both global and local minimizers are required since it
alleviates only the detected minimizers.
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Fig. 5. Deflection transformation of the function defined in (9), at the point
x* = 4.60095589, for A = 0.1.
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Fig. 6. Deflection transformation of the function defined in (12), at the point
z* = (7/2),for A = 1.

B. Stretching Technique

A different recently proposed technique, developed to ad-
dress the problem of local minima, is the stretching technique
[26], [64], [67], [68]. This technique consists of a two-phase
transformation of the objective function. The first phase of the
transformation, stretches the objective function upwards, elim-
inating all minima with values higher than the value of the ob-
tained minimizer. In the second stage of the transformation, the
detected minimum is turned to a maximum. All minima with
lower values of the objective function remain unaltered by the
transformation.

Let 2* be an obtained minimizer of the objective function f.
Then, stretching is defined as [26], [64], [67], [68]

G(x) =f(x)+ylle—a"| (sign (f (x) - ( ))+1) 13)
H(a:):G(ar)+'yztzlgn(( ((Zg(w)f( Gz) 5 (14)

1.4 T T T T I r
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Fig. 7. Deflection transformation of the function defined in (12), at the point
x* = (n/2), for A = 10.
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Deflection transformation of the function defined in (12), at the point

where 71, v2, and p are arbitrary parameters. The sign(-) func-
tion is the well known three-valued sign function, defined as

-1, <0
sign(z) = 0, z=0.
1, z>0

The effect of the stretching transformation on the func-
tion defined in (9) is illustrated in Fig. 9, for v = (3/2),
vo = (1/2), and p = 107", The parameter ~; controls the
upward stretching of the objective function, performed by
G(z), in (13). Due to this transformation, the local minima
with function values higher than the one found are eliminated.
The effect of increasing the value of y; in the aforementioned
example, is exhibited in Fig. 10, for v; = (7/2). In practice,
high values of 7; [e.g., (10*/2)] are used in multidimensional
problems to ensure that the local minima with function values
higher than the detected one, will be eliminated.
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Fig.9. Stretching transformations G(x) (dashed line) and H () (dash-dotted
line) of the function defined in (9), at the point +* = 4.600955 89, for v; =
(3/2),72 = (1/2),and pp = 1071
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Fig. 10. Stretching transformations G(x) (dashed line) and H(z)

(dash-dotted line) of the function defined in (9), at the point +* = 4.600955 89,
fory; = (7/2),72 = (1/2),and p = 1071,

The parameters - and i determine the range of the effect and
the magnitude of the elevation, respectively. The effect of setting
Y2 to a larger value, v2 = (3/2), is exhibited in Fig. 11. It is
evident that a larger area around the local minimizer is affected
by increasing this parameter. The effect of decreasing i to 10™2
is illustrated in Fig. 12. Even slightly decreasing the parameter
14, the former local minimizer (and now local maximizer) takes
extreme function values. Usually, v; = (10%/2), vo = (1/2),
and p = 107 isa satisfactory setup, unless information for
the objective function implying a different parameter setup is
available.

The stretching transformation modifies neither local minima
with function values lower than the obtained one nor global
minima. It does, however, alleviate all minima with higher or
equal function values. Thus, it is proper for local minima, but if
it is applied on a global minimizer, then all other global mini-
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Fig. 11. Stretching transformations G(z) (dashed line) and H(x)

(dash-dotted line) of the function defined in (9), at the point +* = 4.600955 89,
foryi = (3/2),72 = (3/2),and p = 10~ 1.
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Fig. 12. Stretching transformations G(z) (dashed line) and H(x)

(dash-dotted line) of the function defined in (9), at the point z* = 4.600955 89,
for 71 = (3/2),72 = (1/2),and p = 102,

mizers are alleviated. This effect is displayed in Fig. 13, where
the stretching transformation is applied on the global minimizer
x* = (m/2) of the function defined in (12). It is clear that all
other global minimizers of the objective function are alleviated.

A very interesting point to note is that the “mexican hat” ef-
fect which appears in the deflection technique, is also present
in this setting. Proper fine-tuning of the stretching parameters
tends to alleviate this problem, but for a given function, infor-
mation concerning optimal parameter values or the appropriate
parameter configuration to avoid this problem, is not generally
available. If preprocessing for the determination of the proper
parameters is not feasible or desirable, then a “repulsion” tech-
nique can be used to prevent the swarm from converging to one
of the local minima artificially created due to the “mexican hat.”
A discussion of the “repulsion” technique is given in the next
section.
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Fig. 13. Stretching transformations G(x) (dashed line) and H(x)

(dash-dotted line) of the function defined in (12), at the point * = (7/2), for
71 =(3/2),v2 = (1/2),and pp = 10~ 1.

AT

Fig. 14. Original plot of the Levy no. 5 function in the range [—2, 2]2.

An application of the stretching transformation on a two-
dimensional (2-D) function, namely the Levy no. 5 function,
which is defined by

5 5
f(x)="licos ((i = w1 +0)]x Y [jcos ((j+1)ws + )]
i=1 j=1

+(z1 4 1.42513)% + (25 + 0.800 32)? (15)

is illustrated in Figs. 14-16. Fig. 14 illustrates the original plot
of the function. Fig. 15 illustrates the effect of stretching after
the application of the first transformation G(z), which is defined
in (13), on a local minimizer at the upper part of the figure. All
minima with lower function values are left unaffected. Finally,
the second transformation H (z), defined in (14), is illustrated
in Fig. 16, where the stretched minimizer is transformed to a
maximizer. The minima with lower function values have been
left unaffected.

Fig. 15. First stage G(x) of the stretching transformation (13) for the Levy
no. 5 function.

Fig. 16. Levy no. 5 function after the stretching transformation (14).

In conclusion, the stretching technique can be used in cases
where only the global minimizer is required since it alleviates
the local ones.

C. Repulsion Technique

As previously mentioned, in numerous cases the transforma-
tions applied to eliminate minimizers of the original objective
function f introduce new local minima in “mexican hat”-shaped
areas of the resulting function. Thus, even after the application
of the transformations, it is not certain that the swarm will not
converge to a neighborhood of one of the already detected min-
imizers, since particles are solely guided by the function values
of the positions they assume in the search space.

The repulsion technique can be used to alleviate this problem.
The underlying idea is intuitively appealing and its implementa-
tion is straightforward: after the detection of a minimizer, in ad-
dition to the application of deflection or stretching, as described
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TABLE 1
PSEUDOCODE OF THE REPULSION PROCEDURE

Input: X*,S,7; andp;j, i =1,...,N,andj =1,...,m
For (i =1: N) Do,
If (X* # () Then
Compute d;; = || X; - Xf||,j=1,...,m
For (j = 1:m) Do,

If (d” g Tij) Then
X;—X}

Set Z;; = —W]—,j =1,...,m
Set X; = X + pi; Zij
End If
End For
End If
End For

in the previous sections, the repulsion algorithm is activated.
This stage of the proposed approach, ensures that if a particle
moves toward one of the detected minimizers it will be repelled
away from it.

Let X* = {X};j = 1,...,m} be the set of already detected
minimizers, and S = {X;;4 = 1,..., N} be the swarm, at a
given iteration. The pseudocode of Table I is incorporated in
the PSO algorithm, and executed after the determination of the
new position of the swarm using (3) and (4), or, alternatively
(5) and (6). The procedure is straightforward. If some mini-
mizers have already been detected, then for the ith particle X,
i =1,...,N,do: compute the norm || X; — X || for every mini-
mizer X7,j = 1,...,m,tocheckif X; lies inits repulsion area,
whose range is determined by a prespecified parameter 7;;. If
the particle lies within the bounds of the repulsion area, then it
is repelled away from its center. This is achieved by adding the
vector p;; Z;; to X;, where p;; denotes a prespecified constant,
which determines the strength of the repulsion, and Z;; is the
unitary vector with direction from X} toward X;. The vector
Zij can be computed by dividing the vector (X; — X7) with
its norm. In practice, the values of 7;; and p;;, are often fixed
for all particles and detected minimizers. Clearly, information
about the distribution of the minimizers in the search space can
improve parameter configuration. If no information is available,
then small values are preferred, especially for r;;, to avoid en-
closing minimizers not yet detected within the repulsion area
of a detected minimizer. Moreover, p;; shall be selected large
enough to repel a particle away from the repulsion area of a
minimizer. This will be illustrated experimentally in the next
section.

The repulsion technique works in conjunction with the tech-
niques presented in previous sections, and can be easily incor-
porated in the PSO algorithm. Moreover, using repulsion, the
problem of applying deflection on a zero valued global mini-
mizer does not affect the performance of the algorithm, since
particles which move toward the detected minimizer will be re-
pelled away from it.

IV. EXPERIMENTAL RESULTS

Problems arising in diverse scientific fields were selected to
investigate the performance of the proposed approach. In all
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Fig. 17. Contour plot of the function defined in (16) and the rambling
movement of a single particle of the swarm.

problems, the global minimum of the objective function was
known a priori. The main goal was, thus, to detect several (or
all) global minimizers, while alleviating local ones through the
deflection and the stretching technique, in conjunction with the
repulsion approach.

A. Computing Several Global Minimizers of
Objective Functions

First, we have chosen a simple problem in order to better il-
lustrate our approach. This problem has the characteristic that
the objective function is identical in the neighborhoods of all
global minimizers.

Let f be the function defined by [65]

f(X) = cos?(x1) + sin®(z2)

where X = (z1,72)" € S = [-5,5]%. This is a simple func-
tion whose contour plot is illustrated in Fig. 17. This function
has only global minimizers, at points (k1 (7/2), ko), where
k1 = £1,£2,...,and ko = 0,£1,£2,.... Overall, there are
12 global minimizers in the region [—5, 5]2.

The plethora of equally attractive areas in the search space
often results in a rambling movement of the swarm, and in-
ability to converge toward a minimizer, also illustrated in Fig. 17
for a single particle [65]. Furthermore, there is no guarantee
that all minimizers will be detected after a number of inde-
pendent experiments, since no information concerning previ-
ously detected minimizers is made available to the swarm. These
problems can be efficiently alleviated through the proposed ap-
proach. Specifically, whenever a global or local minimizer of the
objective function is detected, the deflection or the stretching
technique is applied, respectively. Moreover, the detected min-
imizer becomes a repeller, applying the procedure described in
Section III-C.

For the test function defined in (16), the values for parame-
ters of the PSO, which were used in the experiments performed,
are reported in Table II. The selected values of w, ¢, c2, and ¥,
are considered proper default values and they are widely used
in the relevant literature. The Vi« parameter was set equal to

(16)
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TABLE 1I
PSO PARAMETER CONFIGURATION FOR THE
TEST PROBLEM DEFINED IN (16)

[y

9

2e

©

©

©

.
o
.

=

(x)

Swarm’s size 20
Accuracy 10—4
c1,C2 2.05
w 1—-01
X 0.729
Vinax 5
Maximum Iter. 2000
TABLE III

RESULTS FOR THE TEST PROBLEM DEFINED IN (16)

PSO minimizers mean total mean iterations

variant number iterations  per minimizer
PSO-Co 12 315 26.2
PSO-In 12 2533 211.1

half of the dynamic range of the particles. The desired accuracy
was four decimal digits. The fixed parameters 7;; = 0.5 and
pi; = 0.8 were used for all particles. The number of detected
minimizers, the total number of iterations required, as well as
the mean number of the iterations required per minimizer for
both the constriction factor and the inertia weight variants of
the PSO (denoted as PSO-Co and PSO-In, respectively), are re-
ported in Table III. All results are averaged over 30 independent
experiments. The obtained global minimizers are illustrated in
Fig. 18.

In all runs, all 12 global minimizers were obtained. Different
values of 7;; and p;; were also employed to investigate their ef-
fect on the algorithm’s performance. For this purpose, a small
value of 75, equal to 0.1, as well as a large value equal to 4 were
used. The obtained results under these configurations were in
line with the theoretically expected behavior of the algorithm
which is described at the end of Section III-C. Specifically, the
small value, 7;; = 0.1 could not prevent PSO from getting stuck
at the local minima introduced by the deflection transformation.
Thus, the algorithm was able to detect all 12 global minimizers
only in 21 out of 30 experiments. On the other hand, taking
r;; = 4 resulted in enclosing global minimizers in the repul-
sion area of already detected minimizers and preventing PSO to
converge to them. Consequently, the algorithm was able to de-
tect all global minimizers in just 3 out of 30 experiments. These
results support the claim that the optimal values of the repulsion
parameters are problem dependent. In the specific test function,
a choice of r;; higher than the mean distance of the global min-
imizers per dimension (which is around 3), was responsible for
the low performance of the algorithm. On the other hand, the
small value also resulted in decreased performance, but its effect
can be addressed by using additionally the stretching technique
or applying deflection on the artificially introduced local min-
imizers. Consequently, if no information is available regarding
the objective function, small values of 7;; are considered as a
good initial choice.

Further experiments were performed using different values
of the other repulsion parameter p; ;. Specifically, a very small
value equal to 0.1, as well as higher values equal to 3 and 5 were
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Fig. 18.  Global minimizers (marked with asterisks) of the function defined in

(16) that were obtained through the proposed approach.

used. The results verified that small values of p;; may deter the
particles from escaping from the repulsion area of a minimizer.
Using p;; = 0.1, PSO was able to detect all 12 minimizers in 22
out of 30 experiments, while using p;; = 3 and p;; = 5 resulted
in the detection of all minimizers in every experiment.

The filled functions technique was also investigated in order
to provide a benchmark for comparison with the proposed tech-
nique. The results produced were not very promising, since, for
all experiments, the maximum number of detected minimizers
never exceeded 4. Consequently, this approach was abandoned.

The proposed technique was further applied on the Levy no. 5
function, defined in (15), using the aforementioned parameter
setup. This function is considered hard due to the plethora of
local minimizers (it has approximately 760 local minimizers and
just one global in [—10, 10]?). Using the proposed technique,
both the constriction factor and inertia weight variant of PSO de-
tected the global minimizer 2* = (—1.307 132, —1.424898) T,
in all experiments, avoiding all local minimizers, and especially
a “bad” one at point z = (—1.306853,4.855487) ", which is
located nearby the global minimizer and has very low function
value. The number of detected minimizers, the total number of
iterations required, as well as the mean number of the iterations
required per minimizer for both the constriction factor and the
inertia weight variant of the PSO, for cases at which at least
one local minimizer was detected and alleviated, are reported in
Table IV.

Another interesting problem is the Levy no. 3 function, which
is defined as

f(z)= <Z icos ((i—1)zy —I—z)) X (Z 1COS ((i+1):172—|—i)> i

i=1
a7

This function has a multitude of global and local minimizers.
The proposed technique was applied in order to obtain 10 global
minimizers within [—10,10]2. The number of detected mini-
mizers, the total number of iterations required, as well as the
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TABLE IV
RESULTS FOR THE LEVY NO. 5 FUNCTION, DEFINED IN (15)

PSO minimizers mean total mean iterations
variant number iterations  per minimizer
PSO-Co 2 3026.5 1036.5
PSO-In 2 3246.5 1246.5
TABLE V

RESULTS FOR THE LEVY NO. 3 FUNCTION, DEFINED IN (17)

PSO minimizers mean total mean iterations

variant number iterations  per minimizer
PSO-Co 10 2913 291.3
PSO-In 10 6935 693.5

mean number of the iterations required per minimizer are re-
ported in Table V.

B. Computing Periodic Orbits of Nonlinear Mappings

Nonlinear mappings are used to model conservative or dis-
sipative dynamical systems [69]-[77]. Central role in the anal-
ysis of such mappings is played by points, which are invariant
under the mapping, called fixed points or periodic orbits. A
point X = (z1,...,2,)" is a fixed point of a mapping ®(X),
if ®(X) = X, and it is a periodic orbit of period p (or fixed
point of order p), if

X = 07(X) =0 (®(...(2(X))..).

p times

Computing periodic orbits of nonlinear mappings is one of the
most challenging problems of the nonlinear science, because
analytic expressions for evaluating periodic orbits can be ob-
tained only if the mapping is a polynomial of low degree and the
period is low. Traditional methods, such as the Newton-family
methods and related classes of algorithms, often fail, since they
are affected by the mapping evaluations assuming large values
in the neighborhood of saddle-hyperbolic periodic orbits, which
are unstable in the linear approximation. Generally, the failure
of these methods can also be attributed to the nonexistence of
derivatives or poorly behaved partial derivatives in the neigh-
borhood of the fixed point. The problem of finding more than
one periodic orbit of a specific type (stable or unstable [78]) is
very important, and cannot be tackled through the traditional al-
gorithms or PSO without any additional technique.

Computing periodic orbits can be equivalently addressed as a
global optimization problem. Indeed, if ® = (®,...,®,)" :
R™ — R™ is a nonlinear mapping, X = (x1,...,7,)' isa
periodic orbit of period p, and ©,, = (0,...,0)7 is the origin,
then it holds that

X)) =X=>P(X)-X =0,
or equivalently
27 (X) 1 0
: -1 =] (18)

n

0.5¢
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Fig. 19. Phase plot of the Hénon mapping for cos o« = 0.24.

Thus, the problem of computing periodic orbits is equivalent
to computing zeros of the nonlinear system

‘I)Il)(X) — T = 0
: (19)

P (X)— 2, =0

n

which, in turn, is equivalent to computing the global minimizers
of the nonnegative function

n

FX) =D (X)) —m:)” = 0.

i=1

(20)

The global minimizers of the function f have zero function
value, and the corresponding global minimizers are all periodic
orbits of period p, of the nonlinear mapping .

Consider the 2-D Hénon mapping, defined by

w00= (e ) (w2)

where « is the angle. This is an interesting model, which is re-
lated to the particle beams passing repeatedly through FODO
cells of magnetic focusing elements [74]—-[77].

The phase plot of the mapping for cos a = 0.24 is illustrated
in Fig. 19, while the contour plot of the corresponding objec-
tive function, defined in (20), for period p = 5, is displayed in
Fig. 20.

Another very interesting case is the 2-D Hénon mapping with
cosa = 0.8. The phase plot of this mapping is illustrated in
Fig. 21, while the corresponding objective function, for period
p = 1, is illustrated in Fig. 22. This is a very difficult problem,
because most algorithms tend to converge to the stable fixed
point located at the origin or they are attracted by infinity, ig-
noring the unstable periodic orbit which lies in the very narrow
channel at the right-hand side of the contour plot [74].

The aforementioned problems can be efficiently tackled
through the proposed technique. If a periodic orbit of a specific
type is computed, then all other periodic orbits of the same
period and type can be obtained by applying the mapping

COS «x (21)

sin o



PARSOPOULOS AND VRAHATIS: ON THE COMPUTATION OF ALL GLOBAL MINIMIZERS THROUGH PSO 221

0.5r

-1 - s s
-1 -0.5 0 0.5 1

Fig. 20. Contour plot of the objective function for the Hénon mapping for
period p = 5 and cos a = 0.24.
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Fig. 21. Phase plot of the Hénon mapping for cos o = 0.8.

on the periodic orbit. If the proposed technique is applied on
these points, then in the next run, convergence to any of these
periodic orbits will be avoided, and hopefully an orbit of a
different type will be computed.

The configuration of the PSO parameters for computing the
periodic orbits of period p = 5, of the Hénon mapping for
cosa = 0.24, are reported in Table VI. Once more, default
values for the parameters were selected. In total, 11 global min-
imizers of the corresponding objective function were detected,
five stable, five unstable, and a periodic orbit of period 1, lo-
cated at the origin, which, of course, has also period 5 (multitude
of p). For the repulsion technique, the values p;; = 0.08 and
r;; = 0.05 were selected, since the search space is smaller in
comparison to that of the previous test problem. The inclusion of
enhanced techniques, like Topological Degree theory [79]—[81],
may provide with a hint of the total number of global minimizers

0.5¢

-1 : - -
-1 -0.5 0 0.5 1

Fig. 22. Contour plot of the objective function for the Hénon mapping for
period p = 1 and cosa = 0.8.

TABLE VI
CONFIGURATION OF THE PSO PARAMETERS FOR
COMPUTING PERIODIC ORBITS OF PERIOD p = 5,

OF THE HENON MAPPING, FOR cos a = (.24

Swarm’s size 20

Accuracy 104

ey, C2 2.05

w 1-0.1

X 0.729

Vinax 1

Maximum Iter. 2000
TABLE VII

RESULTS FOR COMPUTING PERIODIC ORBITS OF PERIOD p = 5,
OF THE HENON MAPPING, FOR cos v = (.24

PSO minimizers mean total mean iterations

variant number iterations  per minimizer
PSO-Co 11 249 22.6
PSO-In 11 1671 151.9

of the problem and, thus, render the selection of proper repulsion
parameters easier. The total number of detected minimizers, the
total number of iterations required, and the mean number of the
iterations required per minimizer are reported in Table VII.

A second experiment, focused on the detection of periodic
orbits of period p = 1 of the Hénon mapping for cosa = 0.8.
The parameters’ configuration was unaltered from the previous
experiment. The proposed technique detected both periodic or-
bits. The total number of computed minimizers, the total number
of iterations required, and the mean number of the iterations re-
quired per minimizer, are reported in Table VIII.

C. Computing Nash Equilibria in Finite Strategic Games

A finite k-person strategic game is defined by a set
K = {1,...,k} of players, each of whom has a straregy
set S; = {Si1,...,Sim,}, consisting of m; pure strategies



222 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

TABLE VIII
COMPUTING PERIODIC ORBITS OF PERIOD p = 1,
OF THE HENON MAPPING, FOR cos v = 0.8

PSO minimizers mean total mean iterations
variant number iterations  per minimizer
PSO-Co 2 21 10.5
PSO-In 2 88 44.0
TABLE IX

CONFIGURATION OF THE PSO PARAMETERS FOR COMPUTING
NASH EQUILIBRIA OF THE “BATTLE OF SEXES” GAME

Swarm’s size 20

Accuracy 10~4
c1, G 2.05

w 1-0.1
X 0.729
Vinax 0.5
Maximum Iter. 2000

[82]-[84]. Each player has a payoff function, u; : S — R,
where S = S7 X -- - X S. The payoff function can be extended
to have domain R™, by the following relation:

ui(p) =Y p(s)ui(s)

seS

where p(s) = p1(S1) X -+ X pr(Sk), and p; is a probability
measure defined on S;. In general, p € P, where P = P; x
-« + X Py, and P; is the set of real valued functions on S;. The set
P is isomorphic to R™. Thus, we can write p = (p1,...,pk),
where p; = (pi1,...,Pim;) € Pi. If p € P and p}, € P;,
then the notation (p}, p_;) is used to denote the element g € P,
satisfying ¢; = pl, and ¢; = p;, for j # i.

A point p* € P is a Nash equilibrium of the game, if p* € A,
where A = Ay X -+ x Ag, with A; = {pi eP;: ijij =
1,p; = 0}, and for all ¢ € K and all p; € A,, the relation
u;i(pi, p;) < ui(p*) holds [83].

The computation of Nash equilibria can be transformed in the
problem of detecting global minimizers of an objective function.
Specifically, for any p € P, ¢ € K, and s;; € S;, we can define
the following functions:

z;ij(p) = wi(Sij,p—i) (22)
zij(p) = wij(p) — ui(p) (23)
9ij(p) = max {z;;(p),0}. (24)

Then, a Nash equilibrium is a global minimizer of the objective
function v : A — R, which is defined by [83]

o)=Y Y g

1EX 1S Sm;

(25)

The “Battle of Sexes” is a game of two players with two
strategies per player. The payoff matrix for each player is

2 0 10
=0 h) =)

This game has three Nash equilibria. Two of which are pure
strategy equilibria and one is a mixed strategy equilibium. Thus,

TABLE X
RESULTS FOR COMPUTING NASH EQUILIBRIA OF THE
“BATTLE OF SEXES” GAME

PSO minimizers mean total mean iterations
variant number iterations  per minimizer
PSO-Co 3 52 17.3
PSO-In 3 707 235.6
TABLE XI

RESULTS FOR COMPUTING NASH EQUILIBRIA OF THE GAME WITH
THREE PLAYERS AND TWO STRATEGIES FOR EACH OF THEM

PSO minimizers meantotal mean iterations

variant number iterations  per minimizer
PSO-Co 3 204 68.0
PSO-In 3 64 21.33

the corresponding four-dimensional optimization problem has
three global minimizers.

The configuration of PSO parameters for the “Battle of
Sexes” game is reported in Table IX and the results are reported
in Table X. Although two of the global minimizers are exactly
at the boundary of the search space, the proposed technique
was able to detect all three Nash equilibria efficiently.

The proposed approach was also applied on a different game
of three players with two pure strategies each. In this case, the
payoff matrices are three-dimensional (2 x 2 X 2) and they are

defined as
=5 V) w=(i )
= (1Y) v=(0 1)
1 (1 %), - )

The corresponding objective function is six-dimensional. The
proposed approach was applied to compute three Nash equi-
libria. The results are reported in Table XI. An interesting point
worth noting is that the proposed approach managed to detect
Nash equilibria that could not be detected by other established
techniques, which are based on deterministic algorithms.

V. CONCLUSION

In this paper, an approach aiming at the computation of all
global minimizers, while avoiding local minimizers, in the con-
text of the PSO algorithm, is proposed and its performance on
several problems originating from diverse scientific fields is
investigated. The approach incorporates the recently proposed
deflection and stretching techniques to overcome local mini-
mizers, as well as a repulsion technique to repel particles away
from previously detected minimizers. This approach contributes
to an expanding area of research of intense interdisciplinary
scientific interest. Experimental results indicate that this is an
effective approach for computing more than one global mini-
mizers that can be used to solve high-edge problems of non-
linear science and economic theory.

Incorporation of Topological Degree theory [79]-[81] to ob-
tain information on the number, as well as the location of the
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minimizers will be considered in future work to compute with
certainty all global minimizers of a function.
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