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Abstract—Online parameter control has proved to offer signif-
icant performance boost in metaheuristics. Common parameter-
ization methods (tuners) typically involve their own parameters
that affect their dynamics. Although the potential of completely
removing the user out of the tuning cycle is questionable, taking
more informative autonomous decisions is highly desirable as
part of the general pursuit of artificial intelligence. Towards this
goal, we propose an enhanced version of a recently proposed
gradient-based parameter adaptation method that can be used
by any population-based metaheuristic. The enhancement lies in
the use of reinforcement learning to adapt the tuner’s parameters,
offering overall performance gains. The REINFORCE family of
algorithms is considered in the present paper as the proof-of-
concept approach. The proposed method is demonstrated on
the differential evolution algorithm, which stands among the
most popular metaheuristics. Experimental assessment on an
established test suite offers promising results, also verifying
previous evidence regarding the tuner’s robustness and simplicity.

Index Terms—parameter tuning, metaheuristics, differential
evolution, reinforcement learning

I. INTRODUCTION

Metaheuristics have been long established as state-of-the-art
solvers for demanding optimization problems. Their increasing
popularity lies in their ability to detect (sub-)optimal solutions
in manageable time, while requiring only trivial information
on the problem at hand. Early works such as [9] have verified
the dependence of metaheuristics’ performance on their proper
parameterization. To this end, parameter tuning has become
an essential part of the relevant practice, which is frequently
based on resource-consuming, trial-and-error procedures. A
variety of tuning methods has been developed to support
the user in the laborious parameter setting phase, which is
conducted either offline or online.

Early parameter tuning methods operate offline. They are
typically based on a preprocessing phase, which aims at
identifying proper parameter values through preliminary ex-
perimentation of the metaheuristic on the studied problem
or similar ones. Statistical analysis of the algorithm’s perfor-
mance can offer insights on parameter values that, on average,
promote nice performance on problems of similar type and

dimension. Among the most popular methods of this type are
the design of experiments [2], F-race [4], and paramILS [17].
Nevertheless, the reusability of parameter values comes at the
cost of resource-intensive procedures that may become more
demanding than solving the studied problem itself.

In contrast to offline tuning, online parameter adaptation
(also known as parameter control) methods are not based on
preprocessing. Instead, they take advantage of online feedback
of the algorithm’s performance in order to adapt its parameters
during its run. Obviously, the outcome is not reusable because
it is tightly related to the specific performance profile of the
metaheuristic each time. Nevertheless, dynamically modifying
the parameters based on current performance has proved to
offer efficiency and effectiveness to the metaheuristic. Most
of the online parameter adaptation methods consist of ad hoc
procedures suited to the specific metaheuristic. The reader is
referred to [9], [10], for a comprehensive presentation.

Recently, an algorithm-independent parameter adaptation
method was proposed in [33]. The advantage of the method is
its generality, which renders it applicable to any population-
based algorithm since it is not tightly related to the algorithm
itself [32], [34], [35]. The core mechanism of this method lies
on grid search in the discretized parameter space. The method
was successfully demonstrated on two population-based meta-
heuristics, namely differential evolution and particle swarm
optimization, with significant results [34], while its sensitivity
was preliminarily studied in [36].

The method was further evolved by substituting the pa-
rameter grid search with an approximate gradient approach
with line search [37], while maintaining some of its previous
features to handle also categorical parameters. The method
was assessed on established test suites, exhibiting competitive
performance against dominant state-of-the-art algorithms [37].

Parameter control methods such as the ones above involve
also a few parameters on their own, which influence their
behavior. Thus, on the one hand, the main goal of parameter
controllers is to ameliorate the burden of tuning the algorithm
while, on the other hand, the controller needs proper setting
itself. Although this necessity may seem somehow counter-
intuitive, it can offer significant gains if the controller is less
sensitive to its parameters than the tuned algorithm. The user’s
experience on the controller is proved to be beneficial for978-1-7281-2547-3/20/$31.00 ©2020 European Union
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this purpose. Nevertheless, making more informative decisions
with limited computational cost would be highly desirable.

In the era of artificial intelligence, this goal can be achieved
by using online learning methodologies. Following this line,
the present paper proposes an enhanced version of the afore-
mentioned gradient-based parameter adaptation method, where
reinforcement learning is incorporated into its core mechanism
in order to adapt the parameters of the control method itself.
The established REINFORCE algorithm is considered for this
purpose. The derived method is demonstrated on the differ-
ential evolution algorithm, which was the main application
algorithm of the method in previous works. Experimental
assessment on an established test suite serves as proof-of-
concept, verifying its competitive performance against its
precursor as well as other tuned algorithms.

The rest of the paper is organized as follows: background
information is provided in Section II. The proposed method
is thoroughly described in Section III, and implementation
details for the differential evolution algorithm are exposed in
Section IV. Experimental results are presented in Section V,
and the paper concludes in Section VI.

II. BACKGROUND INFORMATION

Brief descriptions of the gradient-based parameter adapta-
tion method and the differential evolution algorithm are pro-
vided in the following paragraphs for completeness reason. We
assume that the algorithms are applied on the n-dimensional
bound-constrained minimization problem:

min
x∈X

f(x), (1)

where X ⊂ R
n is a continuous search space.

A. Differential Evolution

Differential evolution was introduced by Storn and
Price [27] and it has been long established as one of the most
popular metaheuristics for continuous optimization tasks. It
employs a population of search points, P = {x1, x2, . . . , xN},
where each search point is a candidate solution in X:

xi = (xi1, xi2, . . . , xin) ∈ X, i ∈ I � {1, 2, . . . , N} .
The population is iteratively updated according to three evolu-
tionary operators: mutation, crossover, and selection. Mutation
and crossover are responsible for the production of new can-
didate solutions by combining existing ones, while selection
retains the best candidate solutions in the population.

Each iteration t of the algorithm starts with mutation. For
each individual x

(t)
i of the current population, a new vector

u
(t+1)
i is produced following a mutation operator. There is a

variety of mutation operators [11], [33]. The most common
ones are as follows:

DE/Best/1:

u
(t+1)
i = x(t)

gt + F
(
x(t)
r1 − x(t)

r2

)
, (2)

DE/Rand/1:

u
(t+1)
i = x(t)

r1 + F
(
x(t)
r2 − x(t)

r3

)
, (3)

where F is a user-defined parameter of the algorithm, also
called the scale factor [7]. The index gt denotes the best
member of the current population in terms of function value:

gt = argmin
i∈I

{
f
(
x
(t)
i

)}
,

while indices rk are taken randomly in I such that:

rk �= rl �= i, ∀ k, l.
Crossover implements genetic information fusion between the
new vector and the original one by combining their compo-
nents. Thus, a new trial vector is componentwisely produced
as follows:

v
(t+1)
ij =

⎧⎨
⎩

u
(t+1)
ij , if rand( ) � CR or j = Ri,

x
(t)
ij , otherwise,

(4)

for all j = 1, 2, . . . , n, where CR is a user-defined parameter
of the algorithm, rand( ) is a uniform random number gener-
ator in the interval [0, 1], and Ri ∼ U(I) is a random index
independently sampled from the set I for each i and t, which
ensures that v(t+1)

i will not be identical to x
(t)
ij . This type of

crossover is also called the binomial crossover. An alternative
operator is the exponential crossover [33].

After the generation of all trial vectors v
(t+1)
i , i ∈ I , the

iteration is completed with the selection phase, which updates
the population as follows:

x
(t+1)
i =

⎧⎨
⎩

v
(t+1)
i , if f

(
v
(t+1)
i

)
� f

(
x
(t)
i

)
,

x
(t)
i , otherwise,

(5)

for all i ∈ I . The algorithm iterates until a termination
condition is satisfied. Termination is usually related to a
predefined solution quality or a prescribed maximum number
of iterations, tmax.

There is an abundance of variants of differential evolution
in the relevant literature [12], [31]. Indicatively, we mention
some relevant approaches that will be later considered for
comparisons with the proposed method: in [42] a variant
called jDElscop was introduced by implementing a population-
reduction mechanism, combining different strategies. A self-
adaptive and a memetic variant were proposed in [5] and [26],
respectively. A different approach called JADE, which uses an
external archive for the parameter adaptation, was proposed
in [44]. In the same vein, a modified version of JADE, called
SHADE [30], is one of the most popular self-adaptive variants,
where the algorithm guides parameter adaptation by taking
advantage of historical data. Finally, a different approach is
adopted in EPSDE [22] in which, parameter adaptation is
based on a survival procedure applied on pools of different
mutation strategies and parameter settings.

B. Gradient-based Parameter Adaptation with Line Search

The method of gradient-based parameter adaptation with
line search (denoted as GPALS) was proposed in [37], extend-
ing its grid-based predecessor [33]. The method applies online

361

Authorized licensed use limited to: University of Ioannina. Downloaded on April 27,2021 at 09:25:34 UTC from IEEE Xplore.  Restrictions apply. 



adaptation of the parameters of the considered algorithm
through approximate gradient search in the parameter space.
For this purpose, performance estimations based on short
runs of the algorithm are used. Also, the step size on the
approximate gradient direction is determined using line search.

Assume that we wish to control the real-valued, population-
wide parameters, ρ1, ρ2, . . . , ρζ , of a given algorithm during
its run when solving a problem of the type of Eq. (1). For
demonstration purposes, we will henceforth assume that we
selected a population-based algorithm similar to differential
evolution. Let N be the population size of the algorithm, and
let the prescribed range for each parameter be:

ρi ∈ [li, ui], i = 1, 2, . . . , ζ.

Then, the parameter domain is defined as the hyperbox:

G = [l1, u1]× [l2, u2]× · · · × [lζ , uζ ] .

The population of the algorithm is randomly initialized in
the search space X . Also, initial values are assigned to its
parameters ρi, i = 1, 2, . . . , ζ, either randomly selected in G
or according to previous experience (if any). The center of
the parameter domain G may be used for non-informative
initialization. The initial population is called the primary
population and denoted as Ppri. Also, the initial parameter
vector is denoted as ρ̂0 = (ρ01, ρ

0
2, . . . , ρ

0
ζ) ∈ G.

After its initialization, the primary population runs for a
specific number of iterations, tpri, using the given parameter
set. This phase is also called the dynamic deployment phase.
The user-defined parameter tpri depends on several factors
such as the tuned algorithm, the available computational
resources (function evaluations), the difficulty of the problem
at hand, etc. In previous works [33], [37], tpri is related to the
problem’s dimension n, with:

tpri = 10n,

being suggested as promising empirical value that offered nice
results for the differential evolution algorithm on established
test suites. Naturally, better values may exist for different
experimental settings. Nevertheless, it is preferable to avoid
very low or high values of tpri.

When the dynamic deployment phase finishes, an average
quality measure of the primary population is calculated. In [37]
the selected measure was the average objective value, defined
as:

H (Ppri, ρ̂c) =
1

N

∑
x∈Ppri

f(x),

where ρ̂c denotes the current parameter vector of the primary
population (initially this is ρ̂0). The obtained average objec-
tive value is the outcome of tpri iterations of the primary
population Ppri, using the parameter values ρ̂c. Thus, ρ̂c
is reasonably considered as an influential variable of the
calculated performance measure.

The calculation of the average quality measure is the first
step of the performance gradient estimation phase, where the
goal is to estimate the negative gradient of the considered

performance measure in ρ̂c. The estimation is based on the
symmetric difference formula as follows:

−∇H (Ppri, ρ̂c) = −

⎛
⎜⎜⎜⎜⎜⎝

∂H(Ppri,ρ̂c)
∂ρc

1

...

∂H(Ppri,ρ̂c)
∂ρc

ζ

⎞
⎟⎟⎟⎟⎟⎠ , (6)

where the partial derivatives are defined as:

∂H (Ppri, ρ̂c)

∂ρci
=

H (Ppri, ρ̂c + λei)−H (Ppri, ρ̂c − λei)

2λ
,

(7)
for all i = 1, 2, . . . , ζ, where ei is the i-th row of the ζ × ζ
identity matrix. The central difference was preferred against
forward differences for accuracy reasons.

Although the gradient notation resembles analytical deriva-
tives, we shall keep in mind that the performance measure:

H (Ppri, ρ̂c ± λei)

is the average objective value of the primary population Ppri

evolved with the specific parameters ρ̂c and, hence, it is the
outcome of a simulation procedure. Thus, 2ζ such simulations
shall be conducted to derive the approximate gradient vector,
either serially or in parallel. More specifically, following the
algorithm in [37], the primary population Ppri is copied into
2ζ secondary populations, denoted as Psecj , j = 1, 2, . . . , 2ζ.
Each secondary population Psecj is also assigned its corre-
sponding parameter values:

ρ̂cj =

{
ρ̂c + λej , if j = 1, 2, . . . , ζ,

ρ̂c − λej−ζ , if j = ζ + 1, ζ + 2, . . . , 2ζ,
(8)

where λ is the step size, and ρ̂c is the parameter vector of the
existing primary population. In other words, each secondary
population is assigned one of the perturbed parameter vectors
required for the derivation of the partial derivatives.

The next step is the evolution of the secondary populations
for a limited number of iterations, tsec. This is a simulation
step that can be conducted either serially or in parallel.
In [37], values of tsec ranginf from 5 to 10 were found to be
successful in established test suites, while the step size value
was set to λ = 0.1. Both these parameters are user-defined
and depend on the studied algorithm (differential evolution
in the specific case). It is also noted that all secondary
populations are evolved using the same sequence of random
numbers [37]. Eventually, the produced approximate gradient
vector is normalized in order to become unit vector, thereby
alleviating scaling issues [37].

The obtained (normalized) negative gradient vector is sub-
sequently used to update the primary parameter vector ρ̂c. The
new primary parameter vector is obtained as follows:

ρ̂c+1 = ρ̂c − sH (Ppri, ρ̂c) , (9)

where s > 0 is a proper step size determined through
line search. In [37], the golden section method was selected
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due to its rapid convergence properties. Initially a bracketing
procedure is applied, where four cut points of equal distance
are defined, s1 < s2 < s3 < s4. The first one is s1 = 0, which
corresponds to the current parameter vector ρ̂c in Eq. (9). The
last one, s4, corresponds to the intersection of the negative
gradient vector with the boundary of the search space. This
point can be easily estimated using a bisection search along
the negative gradient vector. Then, the rest is defined as:

s2 = s4 − ψΔ, s3 = s1 + ψΔ,

where Δ = s4 − s1, and ψ = (
√
5− 1)/2. These four points

are adequate to apply the golden section method. Each point
si corresponds to a different parameter setting (let us denote
it as ρ̂si ) derived from Eq. (9). The evaluation of si consists
of the same simulation steps as previously for the gradient
estimation. More specifically, a secondary population Psecsi

is
initialized as equal to the primary one, and it is assigned the
parameters ρ̂si . This population is evolved for tsec iterations,
and its performance measure, H

(
Psecsi

, ρ̂si
)
, is used as the

objective value for si. Using these values, the golden section
method proceeds accordingly. The line search iterates until
the subsequent inspected points become adequately close to
each other. Naturally, the user may adopt different line search
approaches.

Eventually, line search provides a desirable step size s∗ on
the direction of the negative gradient, and a new parameter
vector ρ̂c+1 is obtained from Eq. (9). Also, the corresponding
secondary population Psecs∗ becomes the new primary popu-
lation Ppri. This step completes a cycle of the method, which
iterates again from the dynamic deployment phase, following
the same steps as above.

The application of GPALS has proved to be very competi-
tive against top-performing algorithms. The reader is referred
to [37] for a thorough analysis.

III. PROPOSED METHOD

The presented GPALS method has three operational pa-
rameters, namely tpri, tsec, and λ. Their setting in [37]
followed empirical rules based on previous evidence for the
grid-based predecessor of the method [36]. According to that
evidence, higher values of tpri, λ, and lower values of tsec were
associated with superior performance. Although the method
exhibits mild sensitivity to its parameters, the issue of “tuning
the tuner” arises as in most parameter tuning methods. Since
the method is based on data generated during the run of the
algorithm, it is reasonable to wonder whether this data can be
used to better understand the dynamics induced by different
parameter values and adapt them accordingly.

In this framework, we propose an enhanced variant of
the GPALS method, which aims to ameliorate its parameter-
setting requirements. The proposed approach incorporates
reinforcement learning, and it will be henceforth denoted
as RL-GPALS. The use of reinforcement learning aims at
exploiting the data produced during the run of the algorithm,
in order to identify promising parameter values and modify
the parameters of GPALS on-the-fly.

REINFORCE is a well-known family of reinforcement
learning algorithms [3], [28]. Given a number of binary deci-
sion variables, it assigns a real-valued weight to each value (0
or 1) of each variable. The weights are used to proportionally
determine the selection probabilities of 0 and 1 for each binary
variable. Then, stochastic selection takes place to produce a
binary vector, where each binary variable has been assigned a
value. The system is evaluated and its quality is used to update
the weights of the binary values, accordingly. This way the
system is capable to learn probabilities that produce the best-
performing binary vector [29]. The method has been proved
to follow the stochastic hill-climbing property [40]. A variant
for multivalued variables has been successfully studied in [19].
This approach is of our interest in the present paper.

Reinforcement learning is better understood under dis-
cretized decision spaces. Thus, in the present preliminary
study, we consider only discretized values (referred to as
levels) of the three parameters of the GPALS method. Putting
it formally, let:

ξprii , ξseci , ξλi , i = 1, 2, . . . , q,

denote the i-th level value of tpri, tsec, and λ, respectively.
Without loss of generality, we assume that each parameter has
q candidate levels. Also, let:

wϕ
i , i = 1, 2, . . . , q, ϕ ∈ Φ � {“sec”, “pri”, “λ”},

be the corresponding positive, real-valued weight for each pa-
rameter level. Then, the selection probability of each parameter
level is given as follows:

oϕi =
exp (wϕ

i )
q∑

j=1

exp
(
wϕ

j

) ,

for all i = 1, 2, . . . , q, and ϕ ∈ Φ. Based on these selection
probabilities, the values ξ∗pri, ξ

∗
sec, and ξ∗λ, of tpri, tsec, and λ,

respectively, are stochastically selected among the available
ones through fitness proportionate selection (the well known
roulette-wheel selection). Note that this selection type allows
for some weaker parameter levels to survive the selection
process, thereby promoting better exploration.

Having set its parameters, a full cycle of GPALS is applied
as previously described. At this stage, a measure of goodness
of the assigned values of GPALS is needed in order to serve as
the reinforcement signal r that will be used for the adaptation
of the learned weights. The measure shall reflect the quality of
the GPALS outcome under the specific parameters, it shall be
easy to compute, and avoid scaling issues during the different
phases of the optimization procedure.

For the above reasons, in our demonstrative experiments
with differential evolution, we recorded the number of trial
points v

(t+1)
i produced by Eq. (4) that were eventually ad-

mitted in the offspring population by replacing their original
individuals x

(t)
i , for each iteration of differential evolution

in the dynamic deployment phase. We call these points the
successful points of the population, and their average number
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Fig. 1. Workflow of the proposed method.

TABLE I
PARAMETER LEVELS FOR THE REINFORCEMENT LEARNING PHASE OF

RL-GPALS.

Level
Parameter 1 2 3 4

tsec 5 10 15 20
tpri 5n 10n 15n 20n
λ 0.1 0.2 0.3 0.4

over these iterations is subsequently used to provide the
reinforcement signal. Naturally, this type of reinforcement
signal was guided by the specific metaheuristic (differential
evolution). Moreover, due to the hill climbing property of
the REINFORCE algorithm [40], the reinforcement signal in
our case needs to be reversed, because the average update
in parameter space lies in a direction for which the expected
value of r increases. Alternative measures of goodness can be
used in case of algorithms of different type.

After the end of GPALS, the learned weights are updated
as follows:

Δwϕ
i =

{
α (r − r̄) oϕi (1− oϕi )− δwϕ

i , if i = i∗,

−α (r − r̄) oϕi o
ϕ
k − δwϕ

i , if i �= i∗,
(10)

for each ϕ ∈ Φ. The index i∗ denotes the selected level value
of the corresponding parameter, and 0 < δ < 1. The positive
parameter α is the learning rate, r is the reinforcement signal
delivered by the GPALS method, and r̄ is the reinforcement
comparison:

r̄(t) = γ r̄(t− 1) + (1− γ) r(t),

where γ ∈ (0, 1] is the decay rate. The specific update scheme
promotes the selected parameter levels that responded with
positive reinforcement signals, while weakening the rest of the
values. Thus, it can dynamically drive the parameter setting
of GPALS based on its online outcome.

IV. APPLICATION DETAILS ON DIFFERENTIAL EVOLUTION

The differential evolution algorithm is used for the demon-
stration of the proposed RL-GPALS method. The selection

of the specific algorithm is motivated by its previous use
with GPALS in [37]. We will henceforth denote the studied
approach as RL-GPALS-DE. The prescribed ranges for the two
scalar parameters of the algorithm are F,CR ∈ (0, 1]. Thus,
the parameter domain G is defined as:

G = (0, 1]× (0, 1].

The RL-GPALS-DE method initializes the primary population
Ppri in the problem’s search space X , and assigns the center
of the parameter domain space, (CR,F ) = (0.5, 0.5), as the
current parameter vector ρ̂c of the primary population. At the
same time, reinforcement learning initializes all weights to
wϕ

i = 0 for all i and ϕ, hence the selection probabilities
become oϕi = 0.25. Drawing from the sensitivity analysis
of the GPALS parameters in [36], the four possible value
levels reported in Table I are assumed for each parameter. The
parameters are randomly initialized on one of these values.

After initialization, the primary population is evolved for
tpri iterations. Then, the performance gradient estimation
phase is initiated by evoking 4 secondary populations, in order
to calculate the negative gradient according to Eq. (6). Then,
line search is applied and a new primary population with its
corresponding parameter vector is obtained. Simultaneously,
the reinforcement signal r is calculated. Finally, the system
calculates the selection probabilities and updates the GPALS
parameters tpri, tsec, and λ. The method continues its iterations
with the same sequence of steps as described in the previous
sections until a termination condition is met. In our case,
this criterion is the available computation budget in terms of
function evaluations.

In our experiments (thoroughly presented in the following
section) the default parameters of the reinforcement learning
system:

a = 0.1, γ = 0.9, δ = 0.02.

were used, as proposed in [19]. It shall be noted that, due to
the properties of any REINFORCE algorithm, its parameters
typically control the convergence speed. Albeit the absence of
convergence theory, these algorithms tend to converge to local
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optima [40], [41]. Furthermore, as mentioned in [41], only
the parameter a seems to have performance impact. Higher
values of a tend to local optima convergence, while lower
values promote the exploration of the system state space. The
rest of the parameters were set on the above values that are
commonly used in similar cases. A graphical representation
of the proposed approach according to the above description
is given in Fig. 1.

V. EXPERIMENTAL RESULTS

The performance of the proposed RL-GPALS-DE method
was assessed on a variety of test problems of various dimen-
sions. Problems of higher dimension are usually more chal-
lenging. Thus, our reasonable expectation is that parameter-
adaptation methods such as RL-GPALS can be more beneficial
in such cases. For this reason, the test suite of the special issue
on large scale continuous optimization problems in [21] was
used. The test suite consists of 19 scalable, shifted, and hybrid
composition test problems. The considered dimensions were:

n ∈ {50, 100, 200},
for all the problems, and the maximum computation budget in
terms of function evaluations was:

τmax = 5000n,

following the test suite rules for comparisons. Note that this
budget is provided solely for running the algorithms, and does
not take into consideration the computational effort spent for
tuning the competitor algorithms.

The test suite setting recommends three base algorithms
for comparisons, namely differential evolution with expo-
nential crossover (denoted as DEexp), CHC [13], and GC-
MAES [1]. Complete results for these algorithms are provided
in the test suite to allow full statistical analysis. Moreover,
mean error values for 13 additional algorithms are provided
for comparisons, namely SOUPDE [39], DE-D40+Mm [14],
GaDE [43], jDElscop [6], SaDE-MMTS [45], MOS [18],
MA-SSW-Chains [23], RPSO-vm [15], Tuned IPSOLS [24],
EvoPROpt [8], EM323 [16], VXQR1 [25], and GODE [38].

The adopted performance measure was the solution value
error defined as:

ealg = f (xalg)− f (x∗) ,

where x∗ is the known optimal solution for each problem, and
xalg is the solution found by the algorithm. For each problem,
25 independent experiments were conducted, and the mean
error, as well as the standard deviation were recorded for each
one. In all cases, the population size was set to:

N = 60,

according to previous works [33], [37].
Comparisons among the algorithms were conducted in two

phases. In the first phase, the proposed RL-GPALS-DE method
was statistically compared against the base algorithms as well
as against the standard GPALS method [37] on each test

problem. Wilcoxon rank-sum tests at confidence level 95%
were used for this purpose. In the second phase, the proposed
method was compared against the 13 competitor algorithms in
terms of their average error.

In the first phase, differential evolution algorithm with bino-
mial crossover (denoted as DEbin) was included in the results,
in addition to its counterpart with exponential crossover, due
to its popularity. The quality of RL-GPALS-DE was assessed
based on pairwise comparisons with the base algorithms on the
19 test problems using the Wilcoxon rank-sum test. For each
test problem, a win (denoted as “+”) was counted whenever
RL-GPALS-DE had statistically different performance than
the competitor algorithm and attained better average error
value. Otherwise, a loss (denoted as “−”) was recorded. Draws
(denoted as “=”) were counted when the compared algorithms
had no statistical difference between them.

The results of the statistical tests are reported in Table II
(analytical results are omitted due to space limitation). As we
can observe, the proposed method exhibits superior average
performance against the base algorithms for all dimensions.
In most cases, the number of wins of RL-GPALS-DE is
higher than double the number of losses and draws together.
Moreover, the method significantly outperforms the DEexp

algorithm, which was reported to be the best-performing base
algorithm of the test suite [21]. It shall be noted that the
superiority of the proposed method was achieved against
algorithms that were already tuned for the specific problems,
without considering the additional computation cost.

Despite the superiority of the proposed method, similar
performance was observed for GPALS in [37], thereby raising
questions regarding the actual contribution of reinforcement
learning. For this reason, we conducted further statistical
comparisons of RL-GPALS-DE with the standard GPALS
method. The results are reported at the bottom of Table II,
and they clearly reveal that reinforcement learning is highly
beneficial, especially in higher dimensions. It is worth noting
that there was no test problem where the proposed method was
outperformed by its predecessor, while the number of wins was
always higher than that of draws.

In the second phase of experimentation, the provided aver-
age error values of the 13 additional competitor algorithms
included in the test suite [20] were used for comparisons
against the proposed method. Table III summarizes the results,
reporting the number of test problems where the proposed
method exhibited inferior (losses) or non-inferior performance
(wins or draws). Evidently, the proposed method achieved
competitive performance against all competitor algorithms,
including rather sophisticated schemes such as jDElscop and
GaDE. Also, it proved to be very competitive against different
algorithms such as GODE, SaDE-MMTS, SOUPDE, and DE-
D40+Mm, especially as dimension increases. Moreover, it
is worth noting that the proposed method outperforms also
algorithms that are not based on differential evolution, such
as EvoPROpt, MA-SSW-Chains, RPRSO-vm, Tuned IPSOLS,
and VXQR1, in all dimensions.
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TABLE II
NUMBER OF WINS (+), LOSSES (−), AND DRAWS (=) OF RL-GPALS-DE AGAINST THE BASE ALGORITHMS AS WELL AS THE GPALS METHOD.

Problem dimension
50 100 200

Algorithm + − = + − = + − =
DEbin 13 3 3 17 1 1 17 1 1
DEexp 11 6 2 13 4 2 13 5 1
CHC 19 0 0 19 0 0 19 0 0
GCMAES 16 3 0 16 3 0 16 3 0
GPALS 6 0 13 12 0 7 10 0 9

TABLE III
NUMBER OF PROBLEMS WHERE RL-GPALS-DE EXHIBITED INFERIOR (−) AND NON-INFERIOR (+ / =) AVERAGE SOLUTION VALUES AGAINST A

VARIETY OF ALGORITHMS.

+ / = −
Dimension Dimension

50 100 200 50 100 200
SOUPDE 11 13 13 8 6 6
DE-D40+Mm 13 13 13 6 6 6
GODE 13 14 14 6 5 5
GaDE 11 13 11 8 6 8
jDElscop 10 12 10 9 7 9
SaDE-MMTS 14 14 14 5 5 5
MOS 11 12 10 8 7 9
MA-SSW-Chains 14 16 17 5 3 2
RPSO-vm 18 18 18 1 1 1
Tuned IPSOLS 15 14 14 4 5 5
EvoPROpt 18 18 18 1 1 1
EM323 15 15 16 4 4 3
VXQR1 15 16 16 4 3 3

VI. CONCLUSIONS

Parameter tuning and control is a crucial aspect of meta-
heuristic design. It requires time-consuming and challeng-
ing procedures, sometimes offering questionable results over
different types of optimization problems. Moreover, in-depth
knowledge of the considered algorithm is usually needed by
the user in order to achieve competitive results. To this end,
parameter control methods have been proposed for the online
adaptation of the algorithm’s parameters. However, even the
control methods contain parameters or involve decisions from
the user side.

The present paper is a first attempt to enhance a recently
proposed parameter control method by using a simple rein-
forcement learning approach. The main goal is to ameliorate
the decision burden of the user regarding its parameters.
Reinforcement learning is used to learn and automatically
adapt the internal parameters of the tuner. The performance of
the enhanced method was proved to be significantly improved
using the REINFORCE reinforcement learning system, with-
out noticeable increase in running time of the overall approach.
This was verified on an established high-dimensional test suite,
following the setting of previous studies. The obtained results
revealed that the proposed method can serve as a decision-
support tool for the user toward the parameter setting and
adaptation of metaheuristics.

The use of a reinforcement learning in the field of parameter
control has opened various directions for further inquiry. A
broader application of the proposed method on a variety of test

problems and algorithms is under development. Furthermore,
the application of the method on real-world problems is also
under investigation.
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