On the Sensitivity of Grid-Based Parameter Adaptation Method

Vasileios A. Tatsis and Konstantinos E. Parsopoulos

Department of Computer Science & Engineering,
University of Ioannina, GR-45110 Ioannina, Greece,
{vtatsis,kostasp}@cse.uoi.gr

Abstract. The rising popularity of metaheuristics has placed their parameter tuning in the
center of research in the past decades. It is an important issue with significant implica-
tions on their overall performance, especially in demanding problems of high complexity.
On the one hand, inappropriate parameters may render the algorithm incapable of detecting
good quality solutions. On the other hand, parameter tuning through trial-and-error pro-
cedures expands the necessary experimentation time and consumes valuable computational
resources. Recently, a general-purpose parameter adaptation method based on grid search
in the parameter domain was proposed. The method was successfully demonstrated on two
metaheuristics, namely Differential Evolution and Particle Swarm Optimization, attaining
competitive performance against other methods. Similarly to other methods, the grid-based
search has also a few user-defined parameters. The present work offers a first study of its
sensitivity on these parameters. For this purpose, Differential Evolution is the tuned algo-
rithm and the analysis is conducted on the established CEC 2013 test suite. The results
verify previous evidence of the method’s tolerance on its parameters.

1 Introduction

Metaheuristics have served as efficient solvers for many decades [1]. Among them, evolutionary
algorithms have been distinguished for their effectiveness in a plethora of contemporary scien-
tific applications [2,3]. However, proper parametrization is usually the string attached to their
promised success [4]. This deficiency has been tackled through parameter tuning methods, which
are distinguished in offline and online methods.

Offline tuning requires a preprocessing phase where the employed metaheuristic is applied on
a prescribed set of test problems. Appropriate parameter values are detected through a trial-and-
error procedure where a number of different choices are considered and the algorithm’s performance
is assessed for each one on the test problems. Stochastic search algorithms require the iterative
application of this procedure in order to extract statistically sound conclusions. Despite the obvious
drawback of the high computational needs, offline approaches offer parameter values that can be
reusable in similar problems. On the other hand, failing to select diverse test problems may results
in over-specialization of the algorithm. Design of Experiments [5], F-Race [6], and ParamILS [7]
are among the state-of-the-art in offline tuning methods.

Contrary to offline tuning, online approaches adapt the parameter setting of the algorithm
during its execution, based on its performance during the specific experiment. Although they
alleviate the over-specialization problem, they do not offer a single parameter set that can be used
in different problem instances or algorithms. On the other hand, their clear advantage is less user
intervention in the whole procedure. Concise reviews of online adaptation approaches can be found
in [7, 8].

Recently, a general-purpose online parameter adaptation method was proposed in [9]. This
method conducts grid search in the parameters’ domain during the execution of the algorithm.
The search is driven by estimations of the algorithm’s neighboring parameter vectors and can be
used both for categorical, integer, or real-valued parameters. The method was validated on the
Differential Evolution algorithm, which is widely known for its sensitivity on its parameters, as
well as on Particle Swarm Optimization [9-11]. The large-scale test problems of the test suite
in [12] served as the corresponding testbed. Similarly to other approaches, the method involves a
small number of parameters that offer tunability.

The present work constitutes a first study on the sensitivity of the grid-based parameter tuning
method on its user-defined parameters. For this purpose, the Differential Evolution algorithm that

86 sciencesconf.org:meta2018:206608

V.A. Tatsis and K.E. Parsopoulos

offered interesting conclusions in previous works is adopted in the present study. Moreover, the
established CEC 2013 test suite is considered as the corresponding testbed. Several levels of the
basic parameters are considered and their influence on the algorithm’s performance is statistically
analyzed, offering interesting conclusions.

The rest of the paper is organized as follows: Section 2 briefly presents Differential Evolution,
and the grid-based parameter adaptation method is described in Section 3. The experimental
configuration for the sensitivity analysis along with the analysis of the results is offered in Section 4.
Finally, the paper concludes in Section 5.

2 Differential Evolution

Differential Evolution (DE) [13] is a population-based metaheuristic. After two decades of ongoing
development, it is currently considered among the state-of-the-art in evolutionary computation [14].
Given the unconstrained n-dimensional optimization problem

xer)r(nclllR” f(x) ’

DE utilizes a population of N search points,
P={x1,x2,..., %N}
Each population member is a candidate solution vector
X = (x,-1,x,-2,...,)cm)—r eXx, i=1.2,...,N,

and it is randomly and uniformly initialized in the search space X.

The population is evolved through the iterative application of mutation, crossover, and selection
procedures. Mutation consists of the generation of a new vector u; for each member x; of the
population. The new vector is generated by adding a weighted difference of randomly selected
members of the population on a base vector that varies from one mutation operator to another.
The baseline mutation operators for x; are as follows:

DE/best/1: uj=x+F (X, —xy,), (1)
DE/rand/1: wuj =x, +F (x,, —x,), (2)
DE/current-to-best: u; = x;j + F (xg —Xx; + X, —Xp,), (3)
DE/best/2: wuj=x,+F (x,l — Xpy + Xy —x,4) , (4)
DE/rand/2: w;=x,+F (xr2 — Xpy Xy, —Xr5) , (5)

where the index g denotes the best member of the population P in terms of function value, i.e.,

g—arg min {f(x)},
i=1,....N

and ri,r,...,rs, are mutually different, randomly selected numbers between 1 and N that differ
also from i. The scale factor F is a user-defined parameter that is crucial for the algorithm since it
controls the magnitude of the mutations.

Mutation is followed by crossover, where a trial vector v; is produced for each x; by randomly
selecting components from the original and the mutated vector. Binomial crossover is defined as
follows:

u;j, if rand() <CR or j=R;,
vij = (6)

X;j, otherwise,

87 sciencesconf.org:meta2018:206608

On the Sensitivity of Grid-Based Parameter Adaptation Method

where j € {1,2,...,n}; rand() is a uniform random number generator in the range [0,1]; CR € (0, 1]
is another user-defined parameter of the algorithm called the crossover rate; and R; € {1,2,...,n}
is a randomly selected index (different for each x; at each iteration). The crossover procedure is
responsible for the amount of information inherited from the original and the mutated vector,
while it ensures that at least one component of v; comes from the mutated vector. An alternative
is the exponential crossover, where x; is initially copied into v;. Then, a random component of v;
is selected and all subsequent components are replaced by those of the mutated vector u; until a
stochastic condition is satisfied.

The iteration of the algorithm is completed by selection, where each x; is replaced by the
produced trial vector v; if it achieves better objective function value.The population iteratively
evolves until a termination condition is satisfied and the best detected solution x, is reported.

3 Grid-Based Parameter Adaptation Method

The grid-based parameter adaptation method was initially proposed in [9] and used for the online
control of the scalar parameters F and CR of the Differential Evolution algorithm. The method
was expanded in [10] for the online adaptation of the mutation operator. The method was further
demonstrated for the Particle Swarm Optimization algorithm in [11]. The central idea is the dis-
cretization of the parameters’ domain and the adaptation of the algorithm’s parameter values to
neighboring values in the corresponding grid, based on short-run estimations of its performance.

Let us make our description more concrete by considering the Differential Evolution algorithm
and its two scalar parameters F and CR, along with two discretization steps Acg and Ag for their
domains, respectively. Also, let Scg, Sr, be the corresponding discretized sets. Then, the grid is
formed as follows:

G = {(CR,F); CR € Sy, F € SF}.

The algorithm starts from a parameter vector in ¢ (the central point is a reasonable choice), and
the population is randomly initialized in the search space of the problem at hand. This population
is also called the primary population and it is denoted as P,. Similarly, its parameter pair is called
the primary parameter pair and denoted as (CR,,F)). According to the suggestion in [9], P, is
evolved for a number of iterations,

ty=0axn,

where a > 1 is an integer and n stands for the problem dimension. In the original work [9], both
parameters were considered in the domain [0,1] with Acg = Ar = 0.1, and o = 10. After the ¢,
iterations, the primary population stops and the following three phases take place.

Phase I: Cloning

The primary parameter pair (CR,,F),) has eight neighboring parameter pairs in ¢ that are defined
as follows [9]:

CR =CR,+iAwr, F' =F,+jAr, i,je{-1,0,1}, (7)

where the case i = j =0 corresponds to the primary parameter pair itself. For each one of these
parameter vectors, a secondary population is defined by cloning the primary population. In [10],
the method included also the adaptation of the mutation operator. In this case, four additional
secondary populations, also called bridging populations, where defined by cloning the primary
population with the primary parameter pair but different mutation operator from the ones defined
in Egs. (1)-(5).

Thus, after the cloning phase we obtain 13 secondary populations denoted as Fy;, j=1,2,...,13,
which are identical with the primary one, but 9 of them have the parameter pairs defined in Eq. (7)
and same mutation operator with the primary population, while the remaining 4 populations have
the primary parameter pair but a different mutation operator each.

88 sciencesconf.org:meta2018:206608

V.A. Tatsis and K.E. Parsopoulos

Phase II: Performance Estimation

Each one of the 13 secondary populations is individually evolved for #; iterations in order to reveal
its dynamic with the new parameters. Typically, ¢, shall be significantly smaller than ¢, to spare
computational resources (function evaluations). The performance of the secondary populations can
be measured using various performance measures. In [9] the average objective value (AOV) of the
population was used, which is defined as follows:

1 N
AOVj:ﬁZf(xi)’ X €F;, i=12,...,N, j=12,...,13. (8)
i=1

This measure reveals the average improvement of the corresponding secondary population with its
new parameters. In addition, the objective value standard deviation (OVSD) was also considered
n [10], which is defined as follows:

1 N
OVSD]:\/NZ(f(xl)_AOVJ)Za xiGPSj? i=1,2,...,N, j=12,...,13. (9)
i=1

This performance measure determines the diversity of the population’s values, which is desirable
to alleviate rapid convergence in local minima.

The secondary populations compete using either AOV or both AOV and OVSD (in terms of
Pareto dominance when more than one measure is used) and the best one is distinguished. If there
are more than one dominant secondary populations, one is selected at random among them.

Phase III: Dynamic’s Deployment

The selected secondary population is evolved for ¢, iterations to fully reveal its dynamic with
the selected parameters. Then, if its AOV improves the AOV of the primary population for at
least € > 0, the evolved population along with its parameters replaces the primary population.
Otherwise, the primary population remains unaltered.

This step completes a full cycle of the method, and the whole procedure is repeated anew from
the cloning phase. The maximum number of cycles can be predefined according to the available
computational budget [9]. Pseudocode of the method, which is called Differential Evolution with
Grid-based Parameter and Operator Adaptation (DEGPOA) is provided in Algorithm 1.

4 Performance Analysis

The DEGPOA algorithm was validated on high- and low-dimensional test suites in [9, 10] with
promising results. Without any parameter tuning, the algorithm was capable to compete against
other algorithm, controlling its parameters throughout the search procedure. Regarding the grid
search parameters, the following values were proposed as default choices [9]:

t,=2>5, tp:10><n7 AZAF:ACRZO.L (10)

while the initial parameter vector was placed at the center of the grid, i.e., (CRp,F,) = (0.5,0.5),
and the initial primary operator was randomly selected from the ones in Egs. (1)-(5). Thus, the
main effect of DEGPOA’s parameters remains to be studied.

In the present work we considered three sets of parameter values for f, t,, and A:

S, =1{5,10,15,20}, S, ={5xn,10xn,15xn,20xn}, S; = {0.01,0.05,0.1,0.2}.

The previously used version with the parameters of Eq. (10) was considered as the baseline for
assessing the new grid search settings. DEGPOA was validated by changing one of its parameters
to a different level from the sets above, while keeping the rest of the parameters fixed to the baseline
values. This results in 12 new DEGPOA instances.

All experiments were conducted on the established CEC 2013 test suite [15]. This suite consists
of 28 unimodal, multimodal, and composite functions, henceforth denoted as fi-fg. The search
space for all test problems is [—100,100]", where n stands for the dimension. We considered the

89 sciencesconf.org:meta2018:206608

On the Sensitivity of Grid-Based Parameter Adaptation Method

Algorithm 1 DEGPOA: Differential Evolution with Grid-based Parameter and Operator Adapta-

tion
1: INITIALIZE(P,F,,CR,,0,)

2: EVOLVE(P,F,,CR,,0p,1,)

3: m<«13

4: while (NOT TERMINATION) do

5: /* Phase I: Cloning */

6: for (i=1:m) do

T if (i <9) then

8: /* Secondary population: same operator, different parameters (use Eq. (7)) */
9: (P,,F;,CR;,0;) + (P,F',CR’,0,)

10: else

11: /* Bridging secondary population: different operator, same parameters */
12: (P, F;,CR;, 0;) < (P,F,CR,0))
13: end if

14: end for

15: /* Phase II: Performance Estimation */
16: for (i=1:m) do

17: EVOLVE(P,, F;, CR;, Oj, 1,)

18: end for

19: /* Phase III: Dynamic’s Deployment */
20: (Poest, Foest, CRbest; Ovest) <— SELECT _BEST(Py,, F;, CR;, 0;, AOV,0VSD)
21: EVOLVE(Phest; Fhest; CRbest; Obest p)

22: /* Update primary population */

23 if (AOVp—AOVp,, > €) then

24: (P,Fy,CRp,0p) < (Pocsts Foest, CRoest, Obest)
25: end if

26: end while

most common cases n = 10 and n =30 in our study. Also, the guidelines of the test suite dictate
that the maximum computational budget is

Tonax = 10* x n,

while the performance is measured by using the error gap between the known optimal solution of
the problem, xop, and the solution x* achieved by the algorithm,

g = f(X*) -f (xopt) .

In order to avoid any bias imposed by the initial parameter set, the central parameter (CRp,F,) =
(0.5,0.5) was used in all cases. Note that according to the CEC 2013 requirements, a fixed popu-
lation size N = 60 was used and 51 independent experiments were conducted per problem.

Henceforth, we denote as DEGPOAy,s the baseline version of the algorithm, and the rest
are denoted with corresponding subscripts. For example, the instance with 7, =5, t, =5 x n, and
A =0.01, is denoted as DEGPOAs; 5, 0012

90 sciencesconf.org:meta2018:206608

V.A. Tatsis and K.E. Parsopoulos

Table 1. Comparisons of new DEGPOA instances with DEGPOAp,se.

n W L D W-L 1 NI

t; modified
DEGPOAs, 105 0.12 10 0 0 28 0 28 1.00
DEGPOAs; 19, 0.12 30 0 0 28 0 28 1.00
DEGPOA ¢ 10p 012 10 1 5 22 -4 24 0.86
DEGPOA o5 10p 0.12 30 1 2 25 -1 27 0.96
DEGPOA;s5; 105 012 10 0 11 17 -11 17 0.61
DEGPOA;5, 10p 0.12 30 2 3 23 -1 27 0.96
DEGPOA 10p 012 10 1 12 15 -11 17 0.61
DEGPOA, 10p 0.12 30 4 71T -3 25 0.89
absolute sum: 31
t, modified
DEGPOAs s, 0.12 10 0 4 24 -4 24 0.86
DEGPOAs; s, .12 30 0 2 26 -2 26 0.93
DEGPOAs, 19, 0.12 10 0 0 28 0 28 1.00
DEGPOAs; 19, 0.12 30 0 0 28 0 28 1.00
DEGPOAs 5, 0.12 10 1 1 26 0 28 1.00
DEGPOAs; 15, 0.12 30 1 0 27 1 29 1.04
DEGPOAs, 5, 0.12 10 2 1 25 1 29 1.04
DEGPOAs; 20, 0.12 30 3 1 24 2 30 1.07
absolute sum: 10
A modified
DEGPOAs, 10, 0.051 10 1 3 24 -2 26 0.93
DEGPOAs; 10, 0.0s2 30 1 2 25 -1 27 0.96
DEGPOAs, 19, 0.12 10 0 0 28 0 28 1.00
DEGPOAs; 19, 0.12 30 0 0 28 0 28 1.00
DEGPOAs, 10, 0.152 10 0 2 26 -2 26 0.93
DEGPOAs, 19, 0.152 30 2 0 26 2 30 1.07
DEGPOAs, 19, 022 10 0 6 22 -6 22 0.79
DEGPOAs; 10, 022 30 4 T 17 -3 25 0.89
absolute sum: 16

The twelve new DEGPOA instances were tested on the CEC 2013 test suite according to the
settings above, and their results were recorded and statistically analyzed in order to facilitate
comparisons with DEGPOA,.. For this purpose, Wilcoxon significance tests at confidence level
95% were used to compare the achieved solution errors. For each comparison of a new instance
with the baseline variant, a win was counted if it achieved statistically superior performance than
the baseline approach. In the opposite case, a loss was counted, while statistically insignificant
differences between algorithms were considered as ties.

Table 1 report the number of wins (denoted as “+7), losses (denoted as “—”), and ties (denoted
as “=") of the new DEGPOA instances against DEGPOAyae. The fourth column denoted as “W-
L” stands for the difference between the number of wins and loses, which provides the general
performance trend of the corresponding new instance against the baseline. High positive values
correspond to an instance that has far better performance than the baseline, while negative values
imply inferior performance of the new instance. The next column denoted as I reports the index
value

I=284+(W-L),

which characterizes the relevant performance of the corresponding DEGPOA instance against the
baseline over all the 28 test problems. The last column of the table denoted as NI is the normalized
index,

_ Index

NI
28 7

91 sciencesconf.org:meta2018:206608

On the Sensitivity of Grid-Based Parameter Adaptation Method

ts Sensitivity - 10 Dimension ts Sensitivity - 30 Dimension

1 1
09 09
08 0.8
07 07
0.6 0.6
05 05
04 0.4
03 03
0.2 0.2
01 0.1

° 5 10 15 20 0 5 10 15 20

(a) (b)
tp Sensitivity - 10 Dimension tp Sensitivity - 30 Dimension

08 o

06 .

04 o.

02 .

° 5xn 10xn 15xn 20xn o n 10xn 15xn 20xn
(c) (d)

A Sensitivity - 10 Dimension A Sensitivity - 30 Dimension

1
09
08
08
07
o6 0.
05
04 o
03
02 o.
01
0 o
005 010 015 020 010 015 020

Fig. 1. Values of the normalized index NI per dimension for the parameters f; (cases (a) and (b)),
tp (cases (c) and (d)), and A (cases (e) and (f)).

C

=

e

which offers a straightforward comparison measure between the competing algorithms (rounded
to 2 decimal digits). Obviously, NI = 1.00 when the two compared algorithms have statistically
equivalent performance (only ties in statistical tests), while it becomes NI > 1.00 whenever the
new DEGPOA instance is superior than the baseline, and NI < 1.00 when it is inferior. Since
0 < I <56, the normalized index is bounded in 0 < NI < 2.

In order to facilitate comparisons, Fig. 1 illustrates NI for the different parameter level and
dimension. The gray bar stands for the performance of DEGPOAy, while the blue bars refer to
the corresponding new instances. The figures offer some interesting conclusions. Firstly, we can
observe that t; can have significant impact on the algorithm’s performance in lower dimension
(n=10) as we can see in Fig. 1(a). Specifically, smaller values of #, offer better overall performance,
which implies that the estimations of the secondary populations are adequately accurate, sparing
computational budget for the dynamic’s deployment phase. On the other hand, in the higher-
dimensional case (n = 30) depicted in Fig. 1(b) this effect becomes milder as a direct consequence
of the increased complexity of the problems, which requires longer estimation runs. Nevertheless,
the value 7, = 5 that was used in previous works [9] verifies its superiority for the specific dimensions.

Regarding the parameter f,, we can observe in Figs 1(c) and 1(d) that values lower than
10 x n produce inferior performance, implying that the number is inadequate to reveal the primary
population and parameters’ dynamic. Instead, higher values are beneficial especially for the high-
dimensional case. However, the effect remains bounded within 10% of the corresponding baseline
value even after doubling the value of ¢,. This indicates that the effect of 7, is not highly for the

92 sciencesconf.org:meta2018:206608

V.A. Tatsis and K.E. Parsopoulos

Parameters impact on algorithm's Performance

mts WA mtp

54.39%

Fig. 2. Overall Parameters impact on algorithm’s performance

algorithm’s performance if the estimation evaluations #; retain a proper value. Recall that in all
experiments for different , values, the default (sub-optimal) £, =5 value was used.

For both #; and 7,, the main performance pattern (improving or worsening) was observed for
both dimensions. However, this is not the case for the third parameter A. Changing the dis-
cretization step from 0.1 to either lower or higher values produces inferior performance in the
10-dimensional case as illustrated in Fig. 1(e). This motif changes in the higher-dimensional case
as illustrated in Fig. 1(f), where slightly increasing A to 0.15 improves performance for 7%, while
different values produce inferior performance of comparable magnitude. Notice that A determines
the search accuracy in the parameter space and has actual dependence both on the algorithm as
well as the problem at hand. Thus, there is no clear explanation for this behavior, which is probably
the outcome of the interplay between the algorithm’s dynamic with the specific parameters and
the complexity of the problem itself.

The results show that DEGPOA can achieve stable performance under mild perturbations of
the proposed default parameters. In order to identify the overall most influential parameter for all
DEGPOA instances, we considered the sum of the absolute differences W — L for each parameter as
they are reported in Table 1. Then, we normalized these three values by dividing with their sum,
and we received the percentages that are graphically represented in Fig 2. Each normalized value
shows the participation of the corresponding parameter in the observed differences. The blue color
refers to the #; parameter, which proves to be the most influential one, followed by A and ¢,.

5 Conclusions

The rising popularity of metaheuristics has placed their parameter tuning in the center of research
in the past decades. It is an important issue with significant implications on their overall per-
formance, especially in demanding problems of high complexity. On the one hand, inappropriate
parameters may render the algorithm incapable of detecting good quality solutions. On the other
hand, parameter tuning through trial-and-error procedures expands the necessary experimenta-
tion time and consumes valuable computational resources. Recently, a general-purpose parameter
adaptation method based on grid search in the parameter domain was proposed. The method
was successfully demonstrated on two metaheuristics, namely Differential Evolution and Particle
Swarm Optimization, attaining competitive performance against other methods. Similarly to other
methods, the grid-based search has also a few user-defined parameters. The present work offers
a first study of its sensitivity on these parameters. For this purpose, Differential Evolution is the
tuned algorithm and the analysis is conducted on the established CEC 2013 test suite. The results
verify previous evidence of the method’s tolerance on its parameters.

Metaheuristics are part of the state-of-the-art in optimization literature for solving demanding
problems. However, their performance is strongly dependent on their parameters. This deficiency
has resulted in a variety of parameter adaptation methods. Most of them constitute ad-hoc proce-
dures designed for a specific algorithm.

The present work offered a first study of the sensitivity of the recently proposed grid-based
parameter adaptation method on the mainstream CEC 2013 test suite. The method was previously

93 sciencesconf.org:meta2018:206608

On the Sensitivity of Grid-Based Parameter Adaptation Method

validated on the Differential Evolution and Particle Swarm Optimization algorithm for the online
control of their parameters. The analysis reveals that the performance estimation phase is the most
sensitive one, while the rest of the parameters have only mild influence on the algorithm’s dynamic.
Also, it reveals that the previously proposed default parameters are very efficient.

Future work will expand the analysis in order to reveal possible interactions between the pa-
rameters by using methodologies such as the analysis of variance.

References

1. Gendreau, M., Potvin, J.: Handbook of Metaheuristics, 2nd edn. Springer New York Dordrecht,
Heidelberg London (2010)
2. Gogna, A., Tayal, A.: Metaheuristics: review and application. Journal of Experimental & Theoretical
Artificial Intelligence 25 (2013) 503-526
3. Torres-Jiménez, J., Pavén, J.: Applications of metaheuristics in real-life problems. Progress in Artificial
Intelligence 2 (2014) 175-176
4. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 3 (1999) 124-141
5. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The New Experimentalism.
Springer (2006)
6. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer (2009)
7. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In Hamadi, Y., Monfroy, E.,
Saubion, F., eds.: Autonomous Search. Springer, Berlin Heidelberg (2011) 37-72
8. Eiben, A.E., Smit, S.K.: Evolutionary algorithm parameters and methods to tune them. In Hamadi,
Y., Monfroy, E., Saubion, F., eds.: Autonomous Search. Springer, Berlin Heidelberg (2011) 15-36
9. Tatsis, V.A., Parsopoulos, K.E.: Differential evolution with grid-based parameter adaptation. Soft
Computing 21 (2017) 2105-2127
10. Tatsis, V.A., Parsopoulos, K.E.: Grid search for operator and parameter control in differential evolu-
tion. In: Proceedings of the 9th Hellenic Conference on Artificial Intelligence. SETN 16, New York,
NY, USA, ACM (2016) 7:1-7:9
11. Tatsis, V.A., Parsopoulos, K.E.: Grid-based parameter adaptation in particle swarm optimization. In:
Proceedings of the 12th Metaheuristics International Conference (MIC 2017). (2017)
12. Lozano, M., Herrera, F., Molina, D.: Scalability of evolutionary algorithms and other metaheuristics
for large-scale continuous optimization problems. Soft Computing 15 (2011) 2085-2087
13. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over
continuous spaces. J. Global Optimization 11 (1997) 341-359
14. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Transactions
on Evolutionary Computation 15 (2011) 4-31
15. : Complementary material: Special session & competition on real-parameter single objective optimiza-
tion at cec-2013. (http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm)

94 sciencesconf.org:meta2018:206608

