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Abstract—Optimal traffic light scheduling is a fundamental
problem in modern urban areas. It has severe impact on traffic
flow management, energy consumption and vehicular emissions,
as well as on urban noise. The vast number of traffic lights in
modern cities increases the complexity of the scheduling problem
and, at the same time, urgently needs for efficient algorithms
that optimize the light cycle programs. In this work, we propose
a solution for the traffic light scheduling problem by using
Differential Evolution, and investigate the benefits of parallelism
on this complex problem. For understanding the impact in the
city, the popular micro-simulator SUMO is used. We evaluate
our approach on close-to-reality problem scenarios consisting of
two large urban areas located in the cities of Málaga, Spain, and
Paris, France. Our results are promising and encourage further
investigation of parallel approaches to enable scalability.

I. INTRODUCTION

Urban traffic planning is a fertile area of Smart Cities to
improve efficiency, environmental care, and safety, since the
traffic jams and congestion are one of the biggest sources
of pollution and noise. Traffic lights play an important role
in solving these problems as they control the flow of the
vehicular network in the city. These devices are positioned at
road intersections, pedestrian crossings, and other locations to
control conflicting flows of traffic and avoid possible accidents.
At each intersection, all traffic lights are synchronized to
carry out a sequence of valid phases periodically. Each phase
consists of a combination of color’s states and has a time span
that vehicles are allowed to use a roadway. The assignment of
the time span for each phase in the phase sequence of all
intersections at an urban area is called a traffic light plan.

Finding an optimal traffic light plan is crucial for reducing
the number of stops for red lights, thereby minimizing the
travel time of vehicles through the road network. Intuitive
examples are the well-known green waves, which facilitate
a continuous traffic flow in one main direction. Reducing the
travel time prevents drivers from time-loss and late arrivals,
with subsequent economic impact. Also, it helps reducing the
fuel consumption and CO2 emissions while the vehicle is
stopped at red lights.

The many obvious benefits of optimal traffic light schedul-
ing have motivated a growing field of research related to

automatic traffic control signals. A number of industrial so-
lutions have been proposed for this problem, such as the
Cross Zlı́n [1] and ATC [2]. These solutions focus on the
real-time configuration of a single traffic light junction. Also,
they require the existence of infrastructures that provide online
information about the changing traffic situations. We here go
in a different direction, because the increasing number of
vehicles requires the transition from the local control of a
single intersection to a holistic approach considering a large
urban area, and because optimizing the existing traditional
traffic lights rests still much unexplored.

This holistic approach is only possible by using advanced
computational resources and techniques due to the complexity
of the problem, which is twofold. Firstly, the problem usually
offers huge theoretical search spaces. For example, a simple
intersection with 8 traffic light phases represents 558 (more
than 8.3×1014) possible solutions. Secondly, there is no closed
mathematical formulation of the problem to assess the quality
of candidate traffic lights configurations. Thus, the utilization
of simulators is necessary. However, simulators are usually
time-consuming, typically requiring from seconds up to a few
minutes per simulation. Hence, new and efficient algorithmic
tools become indispensable in real-world scenarios.

The present paper contributes in various aspects of the
traffic light scheduling problem. Firstly, we propose an ap-
proach based on an established algorithm, namely Differential
Evolution [3]. Several variants of the algorithm are tested
to distinguish the most competitive ones. Besides, parallel
versions are studied in order to improve efficiency and solve
large, realistic instances. Finally, the proposed approach is
evaluated on two large, real-world urban scenarios for the
cities of Málaga (Spain) and Paris (France). The latter instance
involves the optimization of more than 375 traffic lights, while
the largest instances tackled in previous works [4], [5] were
restricted to cases of up to 190 traffic lights.

The rest of the paper is structured as follows: in Section II
we describe the related mathematical model and review related
works. Then, we present the considered approaches in Sec-
tion III. Section IV discusses the experimental results on the
test cases of Málaga and Paris. Finally, Section V concludes



the paper and provides guidelines for future work.

II. TRAFFIC LIGHT SCHEDULING

Metaheuristics have been widely used to tackle traffic light
scheduling problems. Early attempts were mostly based on
Genetic Algorithms (GAs). The first study appeared in [6],
where a GA was employed to optimize the timing of the traffic
light cycles of nine intersections located in the city of Chicago
(IL), USA. The authors proposed further investigation of GAs
on larger problem instances. In [7], the authors studied the
reactions of drivers to changes of the traffic lights timing.
Their approach used a GA and it was evaluated on a case
study of the city of Chester, UK. A GA was used also in [8] to
optimize traffic light cycle programs. In this work, the authors
assumed that the traffic lights timing of each intersection
works independently of other intersections. They tested their
approach on a test case of a commercial area of the city of
Santa Cruz, Spain. Another work involving the application of
GAs on a traffic light scheduling problem appeared in [9].
The proposed approach tackled the problem of controlling
the traffic lights timing for vehicles and pedestrians under a
dynamic traffic load situation.

Recently, there has been a number of works focusing on
the application of the Particle Swarm Optimization (PSO)
algorithm on finding optimal traffic light schedules. In [10],
PSO was employed to train a fuzzy logic controller installed
at each intersection. Specifically, PSO was used to train the
membership functions and the rules of the controller, targeting
to detect the optimal duration of the green signal for each
phase of the traffic lights. In [11], the authors proposed a
PSO algorithm to discover isolation niches on a traffic light
scheduling problem. The proposed approach was evaluated on
a small problem instance, consisting of an one-way road with
two intersections. This work focused on the potential of the
algorithm to maintain its diversity, without trying to gain deep
insight on the problem at hand.

A multi-objective PSO algorithm that employed a predictive
model control strategy to optimize traffic light cycle schedules
was studied in [12]. The proposed algorithm was evaluated on
an urban network consisting of 16 intersections and 51 links.
In [4], [5], PSO was proposed for computing the optimal traffic
light cycle programs. The main objectives of these works
were the maximization of the number of vehicles that reach
their destinations, as well as the minimization of the total trip
time of the vehicles. The evaluation of the cycle programs
was based on the popular microscopic SUMO simulator. The
proposed algorithm was assessed on small/medium urban areas
located in the cities of Málaga and Sevilla, Spain, and in Bahı́a
Blanca, Argentina.

More recently, PSO algorithms were used for detecting traf-
fic light cycle programs, aiming at the reduction of fuel con-
sumption and vehicular emissions in metropolitan areas [13],
[14]. These approaches followed a traffic emission model
standardized by the European Union reference framework. The
proposed algorithm achieved significant improvements in the

considered objectives compared to traffic light cycle programs
designed by experts.

A. Mathematical Formulation

We use here the mathematical model presented in [4], [5] for
the traffic light scheduling problem. The considered problem
has multiple objectives. The first objective is to maximize
the number, VR, of vehicles that reach their destination or,
equivalently, minimize the number VNR of vehicles that do
not arrive at their destination, during a given simulation
time Tsim. A second objective is to minimize the total trip
time, Ttrip, of the vehicles, which is equal to the sum of
the trip times of all vehicles. The trip time refers to the
simulation time individually consumed by each vehicle to
arrive at its destination. Evidently, vehicles that fail to reach
their destination consume the whole simulation time.

A third objective is to minimize the sum of stop and wait
times of all vehicles, denoted by Tsw. The stop and wait time
refers to the overall time that each vehicle individually has to
stop at those intersections that have traffic lights in red color,
thereby delaying its trip. A final objective is to maximize the
ratio P of green and red colors in each phase state of all
intersections, which is defined as follows:

P =
intr∑
i=0

ph∑
j=0

di,j
gi,j
ri,j

, (1)

where intr denotes the number of all intersections; ph denotes
the number of all phases; and gi,j , ri,j , denote the number of
green and red signal colors, respectively, at intersection i and
phase state j, with duration di,j . The minimum value of ri,j
is set to 1 in order to prevent division by zero.

The intuition behind Eq. (1) lies in the effort to promote
green traffic signals at intersections overburdened by traffic
flow, and red traffic signals at intersections where low traffic
flow is observed. Traffic lights with extended times in red
color may overwhelm not only the intersection where they are
located, but also neighboring intersections, creating extensive
traffic flow problems in the city.

We combine all objectives into a single objective function
formulated as follows:

fobj =
Ttrip + Tsw + VNR Tsim

V 2
R + P

. (2)

It shall be noted that the quantities under minimization are
placed in the numerator of Eq. (2), whereas the ones under
maximization are placed in the denominator. Therefore, the
overall problem is a global minimization task. The term VR

is squared to prioritize over all other terms as it represents
the main (first) objective. Also, the number of non-arriving
vehicles VNR is multiplied by the simulation time Tsim to
induce a penalization for this undersided scenario.

III. PROPOSED APPROACH

In this section, we briefly describe the employed SUMO
simulator, the considered Differential Evolution and Particle



Swarm Optimization algorithms, as well as the proposed
parallel model.

A. SUMO: Simulator of Urban Mobility

As already mentioned, simulation plays a crucial role
in the assessment of optimization algorithms for the traf-
fic light scheduling problem. Simulator of Urban MObility
(SUMO) [15] constitutes a well established tool for this
purpose. SUMO is an open-source, highly-portable micro-
simulator used in a multitude of works. It requires a number
of input files in XML format that contain information about
the road scenarios to be simulated.

Specifically, there is a network file .net.xml that stores
information about the form of the map, namely nodes, edges,
and connection links among them. The route file .rou.xml
holds information about the journey of a vehicle from a
starting point (starting vertex) to an ending point (destination
vertex) as well as all intermediate points visited by the vehicle.
The .add.xml files contain additional information about
the map or the traffic lights. Finally, the .tripinfo.xml
contains information used to evaluate traffic light cycle pro-
grams. For instance, it contains information about the vehicles’
departure and arrival times that are used to compute each
vehicle’s total trip time.

A candidate solution vector (traffic light cycle program) is
forwarded to SUMO, which in turn computes its objective
value after a simulation procedure. SUMO starts the simula-
tion after transforming the input vector and the information
contained in its data files into real-world objects such as ve-
hicles, intersections, traffic lights, etc. When the simulation is
completed, SUMO returns all the information that is necessary
for the computation of the objective function value of the
specific traffic light cycle program for the city. Note that a
single SUMO call is adequate for computing the corresponding
function value because SUMO works in a deterministic way.
Deterministic traffic simulators are preferable to stochastic
ones as they acquire similar results at considerably lower
computational cost [8].

B. Differential Evolution

Differential Evolution (DE) is a well-studied population-
based algorithm used for continuous optimization. It was
introduced by Storn and Price in [3] and, since then, it has
gained increasing popularity [16]. The DE algorithm employs
a population of N candidate solutions,

P = {x1, x2, . . . , xN},

where each n-dimensional vector xi is called an individual.
The algorithm begins with an initialization phase, where
the individuals are randomly (usually uniformly) initialized
over the corresponding search space S. The cornerstone of
the algorithm is the exploration phase where the individuals
iteratively probe the search space by sampling new points
through mutation, crossover, and selection operators.

At each iteration g, a mutated vector vi is generated for each
individual xi by combining other individuals of the population.

In this work, we consider the following well-known mutation
operators:

DE1 : v
[g+1]
i = x

[g]
best + F

(
x[g]
r1 − x[g]

r2

)
, (3)

DE2 : v
[g+1]
i = x[g]

r1 + F
(
x[g]
r2 − x[g]

r3

)
, (4)

DE3 : v
[g+1]
i = x

[g]
i + F

(
x
[g]
best − x

[g]
i

)
+ F

(
x[g]
r1 − x[g]

r2

)
,

(5)

DE4 : v
[g+1]
i = x

[g]
best + F

(
x[g]
r1 − x[g]

r2

)
+ F

(
x[g]
r3 − x[g]

r4

)
,

(6)

DE5 : v
[g+1]
i = x[g]

r1 + F
(
x[g]
r2 − x[g]

r3

)
+ F

(
x[g]
r4 − x[g]

r5

)
,

(7)

where x
[g]
best denotes the individual with the best function value

at generation g. The indices,

rj ∈ {1, 2, . . . , N} \ {i}, j = 1, 2, . . . , 5,

are randomly selected and mutually different. The differential
weight F ∈ [0, 2] is a user-defined constant that controls the
degree of expansion towards the directions defined by the
difference vectors.

Mutation is followed by crossover, where a trial vector ui

is produced for each individual xi in the following way:

u
[g+1]
ij =

 v
[g+1]
ij , if R(j) 6 CR or j = RI(i),

x
[g]
ij , otherwise,

(8)

where CR ∈ [0, 1] is a user-defined scalar called the crossover
probability; R(j) ∈ (0, 1) is a random number uniformly
selected for each direction component, j = 1, 2, . . . , n; and
RI(i) ∈ {1, 2, . . . , n}, is a random integer uniformly selected
for each individual xi of the population.

Finally, selection decides whether the trial vector replaces
the corresponding original individual. Specifically, the replace-
ment occurs if the trial vector improves in function value the
original individual, i.e.,

x
[g+1]
i =

 u
[g+1]
i , if f

(
u
[g+1]
i

)
< f

(
x
[g]
i

)
x
[g]
i , otherwise.

(9)

The DE algorithm has been shown to be sensitive on its param-
eters N , F , and CR. Therefore, appropriate parameterization
has significant impact on its performance and it is highly
dependent on the considered problem. A concise presentation
of research related to the DE algorithm can be found in [16].



C. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a popular population-

based algorithm used for numerical optimization, initially
proposed by Eberhart and Kennedy [17]. The inspiration
behind the algorithm originates from the collective behavior of
socially organized living organisms. Up-to-date a significant
amount of work has been devoted to the theoretical and
empirical investigation of PSO [18], [19].

PSO employs a population, called a swarm, of N candidate
solutions,

P = {x1, x2, . . . , xN},

where each vector xi is called a particle. Initially, the n-
dimensional particles xi = (xi1, xi2, . . . , xin) are randomly
initialized within the search space S. Then, each particle
probes the search space iteratively, retaining in memory
the best position it has ever discovered, denoted by pi =
(pi1, pi2, . . . , pin) ∈ S. The movement of each particle is con-
ducted by adding to its current position an adjustable position
shift, called velocity, and denoted as vi = (vi1, vi2, . . . , vin).

Thus, at iteration g, each particle updates its position
according to:

x
[g+1]
ij = x

[g]
ij + v

[g+1]
ij , (10)

where,

v
[g+1]
ij = ωv

[g]
ij + c1R1

(
p
[g]
ij − x

[g]
ij

)
+ c2R2

(
p
[g]
best,j − x

[g]
ij

)
,

(11)
where p

[g]
best is the best particle of the swarm; ω is the inertia

weight of the particle; c1 and c2 are the cognitive and the
social parameters, respectively; and R1 and R2 are uniformly
distributed random variables in the range (0, 1).

At each iteration, each particle of the swarm updates also
its best position as follows:

p
[g+1]
i =

 x
[g+1]
i , if f

(
x
[g+1]
i

)
< f

(
p
[g]
i

)
p
[g]
i , otherwise

(12)

In the present work, the inertia weight changes linearly
throughout the optimization process according to the following
rule:

ω = ωmax −
(ωmax − ωmin) g

gmax
, (13)

where ωmin and ωmax define its range, g is the iteration
counter, and gmax is the maximum number of iterations. At
the beginning of the optimization process, Eq. (13) allows the
inertia weight to take high values, thereby promoting explo-
ration, whereas as ω reduces, better exploitation properties are
achieved.

As suggested in [4], [5], the update of the velocity can be
properly modified to tackle combinatorial problems. Specifi-
cally, each element of the velocity vector is transformed as
follows:

v
[g+1]
ij =

 ⌊v[g+1]
ij ⌋, if R 6 λ,

⌈v[g+1]
ij ⌉, otherwise,

(14)

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respec-
tively, and R is a random number uniformly distributed in the
range (0, 1). The parameter λ determines the probability of
using the floor or ceiling function in the computation of the
velocity. In our study, its value is set to 0.5. A comprehensive
presentation of the PSO algorithm can be found in [19].

D. Solution Enconding

Following the suggestions of previous works [4], [5], each
direction component of the solution vector represents a phase
duration of one state of the traffic lights of a particular
intersection. Specifically, each state of each phase duration is
encoded via an integer number, belonging to a simple vector
of integers. The proposed encoding is desirable for various
reasons. Firstly, the SUMO simulator itself employs integer
numbers to represent the discrete time steps of the simulation
procedure. Therefore, the mapping between the phase dura-
tion used by the data structures of SUMO and the solution
vector is simplified. Secondly, the employed population-based
algorithms can take into consideration the interdependence of
variables, representing traffic lights of the same intersection
as well as traffic lights of different intersections that exhibit
high proximity.

Regarding the initialization of DE and PSO, the candidate
solutions are initialized in the range [5, 60]. Each value in
this range represents the time units (in seconds) that the
corresponding traffic light will keep the same signal color, in
the case of red and green colors. As for the amber signal color,
we set its time interval to a constant value (4 seconds), which
remains unchanged during the optimization. The proposed
interval is selected according to various real-world traffic light
scenarios provided by the City Council of Málaga (Spain).

The two algorithms are typically used in continuous op-
timization, where solutions consist of real numbers. In this
work, the considered problem belongs to the class of com-
binatorial optimization problems. In order to tackle it, both
DE and PSO use a proper rounding of the solution vector at
each iteration, thus converting it to a vector of integer values.
This conversion is necessary also for implementation purposes,
since the SUMO simulator takes as input only integer values.

E. Parallel Model

Hard optimization problems require high computational
times. In the case of metaheuristics, the most costly part of
their execution is the evaluation of the objective function.
Parallel metaheuristics have been shown to mitigate this defi-
ciency [20]. Two parallelization strategies for population-based
metaheuristics have prevailed in the recent years. The first one
involves the parallelization of operations, where the operations
applied to each individual of the population are performed in
parallel. The second one, called parallelization of population



TABLE I
MÁLAGA AND PARIS PROBLEM INSTANCES.

Problem
instance

Number of
traffic logics

Number of
traffic lights

Number of
vehicles

Málaga 56 190 1200
Paris 70 378 1200

approach, proposes the division of the population into parts,
each one executed on a different processing unit.

In this work, we adopt the parallelization of population
approach, where the function evaluations of the population of
the algorithm are distributed evenly among the available pro-
cessors. Also, we employ a simple master/slave parallelization
model, where the main algorithm runs on the master node
and the slave nodes play a pivotal role in the computation
process. Specifically, the function evaluations of the population
are divided into equal parts, each one assigned to a slave node
running on a single processor. At each iteration, the algorithm
requires the function evaluation of the individuals. First, the
master sends the solution vectors (individuals) to the assigned
slaves. Then, each slave computes the function values of the
assigned individuals by performing a subsequent number of
SUMO calls. Note that each function evaluation requires a
single execution of SUMO. Eventually, each slave returns the
computed function values back to the master, where they are
further exploited for the next iteration of the algorithm.

The main reason for parallelizing the computation of the
individuals is due to the high computation times required
for each simulation run of SUMO. For example, we noticed
that a single execution of SUMO on the Málaga and Paris
problem instances required, on average, 1 s and 1.5 s, respec-
tively, using a modern computation environment. Note that
the employed parallel model does not affect the quality of the
detected solutions (nor it changes the search model) compared
to the serial algorithm. It is only a technological way to obtain
the same quality of results, although in significantly less time.

IV. EXPERIMENTAL RESULTS

Our parallel approach is particularly suitable for tackling
real-world urban scenarios. For this reason, we evaluated
the proposed approach on two close-to-reality problem cases
consisting of large metropolitan areas located in Málaga
(Spain) and Paris (France). The considered problem cases were
created by extracting information from real digital maps. The
first problem instance involves the optimization of 190 traffic
lights, whereas the second one contains 378 traffic lights.
Previous works [4], [5] tackled problem instances with no
more than 190 traffic lights. The dimension of each problem
case is equal to the number of the traffic lights it comprises.
More details on our instances can be found in Table I.

The experimental evaluation was conducted on the
saw cluster of the Sharcnet consortium (http://www.
sharcnet.ca). The parallel implementations were based
on the OpenMPI project (http://www.open-mpi.org).
Regarding the simulation procedure, each vehicle started its

TABLE II
PARAMETERS OF THE ALGORITHMS.

Alg. Param. Description Value(s)

DE N Population size 50
F Differential weight {0.5, 0.7}
CR Crossover probability {0.05, 0.1}

PSO N Population size 100
c1 Cognitive parameter 2.05
c2 Social parameter 2.05
ωmin Min. inertia weight 0.1
ωmax Max. inertia weight 0.5

own trip from a starting point to a destination with a maximum
speed of 50 km/h. This speed limit is typical in urban areas.
The simulation time was set to 2200 seconds (iterations of
microsimulation) for the Málaga instance and 3400 seconds
for the Paris instance, as it consisted of a larger number of
traffic lights. The simulation was conducted by executing the
traffic simulator SUMO release 0.19.0. for Linux.

The first objective of the experiments was to compare
the different variants of the DE algorithm on both problem
instances. The population size of the algorithm was set to
50 individuals, each conducting 600 iterations, resulting in a
computational budget of 30000 function evaluations overall.
Each function value was obtained by a single simulation run of
SUMO. We considered two distinct values for the differential
weight parameter F ∈ {0.5, 0.7}, as well as for the crossover
probability CR ∈ {0.05, 0.1}. Details for the parameterization
of the DE algorithm are given in Table II.

For each problem case and DE variant, 10 independent
experiments were conducted and the best detected solution
was recorded. Each independent experiment required 10 to
13 hours of simulation, and it was terminated as soon as the
maximum number of function evaluations was attained. For
each problem instance and algorithmic variant, the average of
the obtained solution values and the standard deviation are
reported in Tables III and IV. The best approach per problem
case, i.e., the one with the lowest average function value is
boldfaced.

To further facilitate the comparisons among the different
DE variants, we performed pairwise Wilcoxon rank-sum tests
between all pairs of the considered approaches. For each
variant, we counted the number of wins, i.e., the number of
comparisons that it outperformed another variant (achieved
lower mean function value) with significance level 95%.

The approaches that appear boldfaced in Tables III and IV
exhibited the highest number of wins. Specifically, the best
approach on the Málaga instance, namely the one that used the
DE3 operator and parameter values F = 0.5, CR = 0.1, won
18 different variants. The best approach on the Paris instance,
namely the one that employed the DE1 operator and parameter
values F = 0.7, CR = 0.1, won 17 different variants. Notice
that the total number of comparisons among the different DE
variants is equal to 19.

The number of rank-sum wins per DE variant is graphically



TABLE III
RESULTS OF DE ALGORITHM ON THE MÁLAGA INSTANCE.

OP F CR Mean StD

DE1 0.5 0.05 0.4908 0.0098
0.5 0.1 0.4895 0.0085
0.7 0.05 0.5010 0.0073
0.7 0.1 0.4992 0.0049

DE2 0.5 0.05 0.5015 0.0096
0.5 0.1 0.5051 0.0079
0.7 0.05 0.5141 0.0115
0.7 0.1 0.5150 0.0070

DE3 0.5 0.05 0.5030 0.0098
0.5 0.1 0.4809 0.0080
0.7 0.05 0.4979 0.0062
0.7 0.1 0.4979 0.0079

DE4 0.5 0.05 0.4988 0.0091
0.5 0.1 0.4986 0.0114
0.7 0.05 0.5058 0.0091
0.7 0.1 0.5250 0.0134

DE5 0.5 0.05 0.5095 0.0138
0.5 0.1 0.5178 0.0100
0.7 0.05 0.5188 0.0101
0.7 0.1 0.5408 0.0091

illustrated in Fig. 1 for the Málaga case and Fig. 2 for the Paris
case. In both cases, there is an evident superiority of the DE1
operator, achieving 45 wins for the Málaga case and 53 wins
for the Paris case. Also, DE3 and DE4 operators achieved
high numbers of wins compared to DE2 and DE5 ones, which
exhibited the worst performance. This fact is attributed to the
global information incorporated into the three best-performing
operators. In general, experimental evidence suggests that it
is beneficial to use exploitation-oriented operators in order
to rapidly achieve a sub-optimal solution, under restricted
computational budget. Operators DE1, DE3, and DE4 fulfill
this necessity since they take advantage of the globally best
solution, which rapidly leads the population to sub-optimal
solutions.

In a second round of experiments, the best-performing DE
variant for each problem competed against the global best
model of the PSO algorithm. Details about the employed PSO
were given in Section III-C. Regarding the parameterization
of PSO, the swarm size was set to 100 and the cognitive and
social constants were equal to 2.05. The PSO algorithm used
an initial inertia weight ωmax = 0.5 that was linearly decreased
to the final value ωmin = 0.1. Recall that the inertia weight
adjusts the exploitation/exploration capabilities of PSO. The
selected parameter values are also reported in Table II.

The obtained average values and standard deviations of
PSO are reported in Table V. Evidently, the best-performing
DE variant surmounts the specific PSO approach on each
problem case. For the Málaga instance, the best DE approach
achieved mean function value equal to 0.4809 in contrast to
the value 0.5081 achieved by PSO. Similar performance is
observed for the Paris instance where DE achieved an average

TABLE IV
RESULTS OF DE ALGORITHM ON THE PARIS INSTANCE.

OP F CR Mean StD

DE1 0.5 0.05 0.7420 0.0117
0.5 0.1 0.7487 0.0096
0.7 0.05 0.7502 0.0109
0.7 0.1 0.7332 0.0052

DE2 0.5 0.05 0.7684 0.0117
0.5 0.1 0.7681 0.0193
0.7 0.05 0.7686 0.0097
0.7 0.1 0.7603 0.0098

DE3 0.5 0.05 0.7764 0.0125
0.5 0.1 0.7627 0.0600
0.7 0.05 0.7602 0.0092
0.7 0.1 0.7366 0.0111

DE4 0.5 0.05 0.7466 0.0111
0.5 0.1 0.7344 0.0088
0.7 0.05 0.7624 0.0063
0.7 0.1 0.7521 0.0092

DE5 0.5 0.05 0.7732 0.0097
0.5 0.1 0.7675 0.0105
0.7 0.05 0.7759 0.0140
0.7 0.1 0.7878 0.0085
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Fig. 1. Comparison of DE operators on Málaga instance

value 0.7332 whereas PSO achieved 0.7724. Although the
differences between these values seem marginal, it shall be
underlined that the improvement in the function value from
one iteration to another during the optimization was usually
observed in the second or third decimal digit using both DE
and PSO algorithms. These small fitness differences represent
an important difference in the solution space.

In the third round of the experiments, we evaluated the
proposed parallel approach. The best-performing algorithm per
problem was selected and implemented according to the par-
allelization of population approach. Specifically, we employed
the DE variant that uses DE3 with F = 0.5, CR = 0.1 for
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Fig. 2. Comparison of DE operators on Paris instance

TABLE V
RESULTS OF PSO ALGORITHM ON BOTH PROBLEM INSTANCES.

Problem instance Mean StD

Málaga 0.5081 0.0122
Paris 0.7724 0.0083

the Málaga problem and the one that uses DE1 with F = 0.7,
CR = 0.1 for the Paris problem. The function evaluations
were equally distributed among 2 and 3 nodes in an effort to
speed up the computation process. Details about the proposed
parallel model are given in Section III-E. For each problem and
algorithmic variant, we recorded the execution time required
to achieve a targeted objective function value, ftrg. For the
Málaga problem, this value was set to 0.50, while for the
Paris problem it was equal to 0.74. The specific values of ftrg
were achievable at each independent experiment. As soon as
the algorithm reached the targeted function value or a better
one, it terminated its execution.

A significant gain metric for parallel implementations is
the speedup, which computes the ratio between sequential
and corresponding parallel execution times. Several speedup
definitions are used in the literature. Here, we use the weak
speedup definition [20]. The weak speedup sm of a parallel
algorithm using m processors is defined as follows:

sm =
Tseq

Tm
, (15)

where Tseq is the execution time of the sequential algorithm
executed on a single processor, and Tm is the execution time
of the parallel algorithm running on m processors.

Table VI reports the execution time (in hours) and the
achieved speedup for the best serial algorithm per problem,
parallelized across a number of nodes. We note that the
reported number of nodes includes the master node, which
runs the algorithm, and the slave nodes that conduct the
function evaluations through parallel SUMO calls. Thus, 2

TABLE VI
RESULTS OF THE PARALLEL APPROACH.

Problem Nodes Time (hours) Speedup

Málaga 2 1.90 –
3 1.41 1.35
4 1.10 1.73

Paris 2 9.28 –
3 5.79 1.60
4 5.29 1.75

nodes refer to the serial execution of the algorithm (1 master
and 1 slave) and it was used as a baseline for comparisons with
the parallel approaches that assume higher number of nodes.

For the Málaga instance, we observe that the sequential
algorithm required 1.90 hours to achieve the considered ftrg.
The approaches that exploited 3 and 4 nodes achieved lower
execution times, namely 1.41 and 1.10 hours, respectively.
In terms of speedup, Table VI shows a value of 1.35 for
3 nodes. The speedup value was further increased when 4
nodes were used. This result was expected since the function
evaluations were distributed among a larger number of nodes,
thus enhancing the performance of the algorithm. However,
we notice that the percentage of increase in speedup values
from 2 to 3 nodes is lower than the one from 3 to 4 nodes.

For the Paris instance, we observe that the parallel approach
was even more beneficial. Specifically, the sequential algo-
rithm required 9.28 hours, whereas the parallel approach using
3 and 4 nodes needed 5.79 and 5.29 hours, respectively. The
corresponding speedup values were 1.60 for the 3-node case
and 1.75 for the 4-node one. The longer execution time needed
for the Paris instance is attributed to its problem size, which
is almost twice the Málaga one, thereby leading to higher
simulation times.

Thus, the proposed parallel model has evidently boosted
the performance of the employed algorithms. This finding is
highly desirable in real-world traffic light scenarios as the
considered one. Nevertheless, we would like to underline the
effect of the simulation procedure on the acquired results, since
we noticed high deviation in the running times needed by the
SUMO simulator.

V. CONCLUSIONS

Urban traffic planning has been recently established as an
active research area of Smart Cities. It mainly copes with
important problems such as traffic flow management, pedes-
trian safety, management of fuel consumption, reduction of
vehicular emissions, and urban noise. Traffic light scheduling
constitutes a crucial task in solving these problems.

We studied an approach based on the DE algorithm to
optimize traffic light cycle programs. To the best of our
knowledge, this is the first work that investigates the potential
of the DE algorithm on the considered problem. We compared
the performance of our approach in terms of solution quality
with the PSO algorithm. Furthermore, we developed a parallel



version of our method in order to tackle more realistic in-
stances, efficiently. The proposed methods have been assessed
on two real-world scenarios, consisting of large metropolitan
areas located in Málaga (Spain) and Paris (France).

Future research will focus on sophisticated parallel algo-
rithmic schemes, such as Algorithm Portfolios, on demand-
ing real-world problem instances using higher computational
budgets. Also, experimentation with real-world scenarios that
exhibit high levels of heterogeneity will be considered.
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