
Grid Search for Operator and Parameter Control in
Differential Evolution

Vasileios A. Tatsis
Department of Computer Science & Engineering

University of Ioannina
GR-45110 Ioannina, Greece

vtatsis@cse.uoi.gr

Konstantinos E. Parsopoulos
Department of Computer Science & Engineering

University of Ioannina
GR-45110 Ioannina, Greece

kostasp@cse.uoi.gr

ABSTRACT
Evolutionary Algorithms constitute a very active research branch
of Computational Intelligence. Typically, such algorithms are used
for the detection of (sub-) optimal solutions in difficult optimiza-
tion problems. Numerous works have provided experimental ev-
idence of the remarkable efficiency of Evolutionary Algorithms.
However, their performance has proved to be strongly connected
to their proper parametrization. Various approaches have been pro-
posed for (offline) tuning and (online) control of their parameters.
Recently, a grid-based technique was proposed for parameter adap-
tation during the algorithm’s run without user intervention, and it
was validated on the Differential Evolution algorithm, which is
widely known for its parameter sensitivity. Experimental results
on high-dimensional test problems verified the effectiveness of the
technique on controlling the scalar parameters and crossover type
of the algorithm. The present work extends that study by consid-
ering another crucial component of the algorithm, namely the mu-
tation operator type. Extensive experiments enrich and verify the
previous evidence, suggesting that grid-based search can maintain
competitive performance while absolving the user from the labori-
ous parameter-tuning phase.

CCS Concepts
•Computing methodologies→ Bio-inspired approaches;

1. INTRODUCTION
The complexity of real-world optimization problems has placed

metaheuristics in a salient position among the available algorith-
mic artillery. Although solution optimality is often not guaranteed,
metaheuristics can provide useful (sub-) optimal solutions in rea-
sonable time, requiring only minimal knowledge of the problem.
Evolutionary Algorithms (EAs) constitute an essential category of
metaheuristics that model optimization procedures from nature [8].

EAs have dominated the relevant literature for decades due to
their efficiency and effectiveness in solving hard optimization prob-
lems. However, their performance has proved to be intimately re-
lated to their parameterization [6]. Thus, the user is compelled
to conduct a laborious preprocessing phase for the detection of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SETN ’16, May 18-20, 2016, Thessaloniki, Greece
c© 2016 ACM. ISBN 978-1-4503-3734-2/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903220.2903238

promising parameter values and/or the adaptation of basic opera-
tors of the algorithm, on the specific problem at hand. A number of
diverse techniques have been proposed in the literature for this pur-
pose. They can be roughly categorized in two essential approaches,
namely the offline tuning of parameters prior to the algorithm’s ex-
ecution, and the online, dynamic adaptation (control) of the param-
eters during its run [7].

Offline tuning is based on the detection of promising parameter
values according to the outcome of a preprocessing phase that uti-
lizes a set of test problems. Specifically, a set of parameter configu-
rations are determined by the user and validated on all or a fraction
of the test problems, usually under limited computational budget.
The best-performing configurations are then selected to be applied
to the problem of interest using all the available resources. The pre-
processing phase may require even higher computational resources
than the solution of the problem itself, although this is usually
neglected in the overall algorithms’ evaluations and comparisons.
Sophisticated approaches such as Design of Experiments [2], F-
Race [3], and ParamILS [10] are part of the state-of-the-art in this
field.

In contrast to the offline approaches, online techniques modify
the parameters by using feedback from the algorithm regarding its
current performance. Thus, the parameters are adapted in real-time
without the necessity of preprocessing or user intervention. This
is a favorable property for online techniques, although their out-
come is not re-usable in different problem instances or algorithms.
Typical representatives of this category are the dynamic parameter
adaptation approaches presented in [7, 10].

Differential Evolution (DE) has proved to be one of the most effi-
cient and effective EAs. Due to its identified parameter sensitivity,
a number of adaptive variants were proposed. Common approaches
include SHADE [16] and L-SHADE [17] as well as the variants
proposed in [4, 20, 21, 23, 24]. Multi-trajectory search was used in
the self-adaptive scheme of [25], while distributed adaptation with
inheritance and subpopulation connectivity was proposed in [22].
Further insight was offered in [14].

A grid-based adaptation technique was recently proposed in [19]
and validated on DE. That approach is based on local search pro-
cedures applied on a grid constructed by the discretization of DE’s
parameter space. The search is driven by estimations of the algo-
rithm’s performance on neighboring parameter configurations on
the grid. The experimental study of [19] was focused on the adapta-
tion of the two scalar parameters of DE as well as its crossover type
(binomial/exponential). The results revealed high competitiveness
and superiority against other (DE-based and not) algorithms over
an established test suite of high-dimensional test problems.

The present work extends the study of [19] by considering the
mutation operator of the algorithm, along with its scalar parame-

http://dx.doi.org/10.1145/2903220.2903238

Algorithm 1 DIFFERENTIAL EVOLUTION
1: INPUT: N (population size); P (population); F , CR (scalar pa-

rameters); Tmax (maximum number of iterations)

2: t← 0

3: INITIALIZE
(

P(t)
)

4: while (t < Tmax) do

5: for (i = 1 . . .N) do

6: R(t)
s ← RANDOM_INDICES(I \{i})

7: u(t+1)
i ←MUTATION

(
R(t)

s ,x(t)i ,x(t)g ,F
)

8: v(t+1)
i ← CROSSOVER

(
x(t)i ,u(t+1)

i ,CR
)

9: EVALUATE
(

v(t+1)
i

)
10: x(t+1)

i ← SELECTION
(

x(t)i ,v(t+1)
i

)
11: end for

12: P(t+1)← UPDATE
(

P(t)
)

13: t← t +1

14: g(t)← BEST_INDEX
(

P(t)
)

15: end while

ters. Thus, instead of tackling the crossover type between binomial
and exponential, five different mutation operators are presented to
the algorithm and adaptively selected during its run. For this pur-
pose, the grid search is conducted over five grids instead of two
in [19], thereby increasing the difficulty of finding proper parame-
ter settings. We apply the proposed approach on the same test suite
as in [19] and report comparisons with other algorithms following
the same experimental setting. Statistical analysis is used to vali-
date the results and derive useful conclusions.

The rest of the paper is organized as follows: Section 2 briefly
presents DE and the grid-based search technique. The proposed
approach is analyzed in Section 3. Experimental assessment is re-
ported in Section 4. The paper closes with conclusions in Section 5.

2. BACKGROUND INFORMATION
The basic DE algorithm as well as the grid-based parameter adap-

tation technique are presented in the following paragraphs.

2.1 Differential Evolution
Differential Evolution (DE) is a widely recognized population-

based optimization algorithm, originally introduced by Storn and
Price [15]. DE utilizes a mutation procedure that involves the ran-
dom selection of existing members of the population and their de-
terministic combination in order to produce new candidate solu-
tions. Then, stochastic recombination takes place to produce new
trial points that compete with the current members of the popula-
tion. The simplicity and adaptability of DE has placed it among the
most popular metaheuristics, also counting a significant number of
enhanced variants [5].

Putting it formally, let

f : X −→ R, X ⊂ Rn,

be the objective function under consideration. DE employs a pop-

ulation,

P = {x1,x2, . . . ,xN},

of search points. Each point,

xi = (xi1,xi2, . . . ,xin)
> ∈ X , i ∈ I def

= {1,2, . . . ,N},

constitutes a candidate solution of the problem, and it is randomly
and uniformly initialized in X .

At each iteration t, the population P(t) undergoes three main pro-
cedures, namely mutation, crossover, and selection, as oulined in
Algorithm 1. Mutation combines two or more randomly selected
members of P(t), producing a new vector u(t+1)

i . There is a vari-
ety of mutation operators reported in literature. Among the most
common ones are the following five operators that are used in the
present study:

DE/Best/1:

u(t+1)
i = x(t)g +F

(
x(t)r1 − x(t)r2

)
, (1)

DE/Rand/1:

u(t+1)
i = x(t)r1 +F

(
x(t)r2 − x(t)r3

)
, (2)

DE/Current-to-Best:

u(t+1)
i = x(t)i +F

(
x(t)g − x(t)i + x(t)r1 − x(t)r2

)
, (3)

DE/Best/2:

u(t+1)
i = x(t)g +F

(
x(t)r1 − x(t)r2 + x(t)r3 − x(t)r4

)
, (4)

DE/Rand/2:

u(t+1)
i = x(t)r1 +F

(
x(t)r2 − x(t)r3 + x(t)r4 − x(t)r5

)
. (5)

The index g denotes the best individual in P(t) with respect to its
function value, i.e.,

g = argmin
i∈I
{ f (xi)} ,

while rs ∈ I are randomly selected indices such that,

r1 6= r2 6= r3 6= r4 6= r5 6= i.

Also, F is a fixed, user-defined parameter called scale factor, which
usually assumes values in the range (0,1] [5].

Mutation is succeeded by the crossover procedure, where a trial
vector vi is produced for each xi in the population. The most popu-
lar crossover operator is the binomial one,

v(t+1)
i j =


u(t+1)

i j , if R 6CR or j = rand(n),

x(t)i j , otherwise,
(6)

where j ∈ {1,2, . . . ,n}; R is a sample drawn from the uniform
distribution over the range [0,1]; CR ∈ (0,1] is another parameter
of the algorithm called the crossover rate; and rand(n) is an inte-
ger randomly selected from the set {1,2, . . . ,n}. The conditions of
Eq. (6) ensure that the trial vector receives at least one component
from u(t+1)

i .
An alternative crossover operator is the exponential one. Un-

der this scheme, x(t)i is initially copied into v(t+1)
i . Then, starting

from a randomly selected index k ∈ {1,2, . . . ,n}, the components
u(t+1)

ik are copied in the corresponding components v(t+1)
ik as long

as a stochastic condition is satisfied. When the condition fails, the

Algorithm 2 DEGPA
1: INITIALIZE(P)

2: M← 9 /* subpopulations */

3: while (NOT TERMINATION) do

4: /* Dynamic’s deployment phase */

5: EVOLVE(P,F,CR, tp)

6: /* Performance estimation phase */

7: for (i = 1 . . .M) do

8: P′i ← P

9: ASSIGN(P′i ,F
′,CR′) /* use Eq. (8) */

10: EVOLVE(P′i ,F
′,CR′, ts)

11: end for

12: /* Update primary population */

13: P′best ← BEST _AOV (P′1, . . . ,P
′
9)

14: if
(

f̄P− f̄P′best
> εmin

)
then

15: P← P′best

16: (F,CR)← (F ′best ,CR′best)

17: end if

18: end while

procedure stops. Hence, the rest of the components v(t+1)
ik retain

the values initially copied from x(t)i [13].

Finally, selection takes place where v(t+1)
i competes against x(t)i

for its position in the new population, i.e.,

x(t+1)
i =

 v(t+1)
i , if f

(
v(t+1)

i

)
6 f

(
x(t)i

)
,

x(t)i , otherwise.
(7)

The algorithm continues until a stopping criterion is satisfied. This
criterion usually involves the maximum number of iterations or the
desirable solution quality. When the algorithm terminates, the best
detected solution xg is reported.

2.2 Grid-Based Parameter Adaptation
In [19] an online adaptation technique for the parameters F and

CR of the DE algorithm was proposed. The technique, called DE
with Grid-based Parameter Adaptation (DEGPA) is based on a grid
produced by discretizing the values of the two parameters in the
range (0,1], which is their most common domain [5]. Specifically,
discretization step sizes λF and λCR are initially defined. The step
sizes

λF = λCR = 0.1,

were adopted in [19], according to experimental evidence that as-
sociates smaller step sizes with marginal performance differences.

The discretization defines the following grid,

G = {(F,CR); F,CR,∈ {0.0,0.1, . . . ,1.0}} ,

which becomes the 2-dimensional parameter search space. Obvi-
ously, each point (F,CR) in the interior of G has 8 immediate neigh-
boring points (F ′,CR′), corresponding to the search directions in

the constructed grid. These points are defined as follows [19],

F ′ = F +aλF , CR′ =CR+bλCR, a,b ∈ {−1,0,1}, (8)

where a = b = 0 corresponds to the central pair (F,CR) itself.
The DEGPA algorithm, which is outlined in Algorithm 2, em-

ploys a primary population, which is assigned a selected parameter
pair (F,CR). Initially, the parameters are set to the center of the
grid, i.e., (F,CR) = (0.5,0.5). Given the parameters, the primary
population is evolved for tp iterations (for the moment let us as-
sume that the mutation operator is known and fixed). This is called
the dynamic’s deployment phase of the algorithm [19]. According
to suggestions in literature, the value,

tp = 10×n,

where n is the problem’s dimension, was proposed as a default fixed
value in [19]. Alternatively, linearly increasing values were also
considered.

After that, the resulting primary population is copied to M = 9
secondary populations (of same size as the primary one), each one
assuming a different parameter pair (F ′,CR′) according to Eq. (8).
Let P′a,b denote the secondary population with the corresponding
parameters for a and b in Eq. (8). Each secondary population is
evolved for te < tp iterations and its performance is recorded. In
order to minimize the computational cost of this step, te is selected
to be much smaller than tp. Typical values reported in [19] lie be-
tween 5 and 10 iterations.

Thus, a rough estimation of the performance trend is gained for
each secondary population, i.e., for each alternative parameter pair
(F ′,CR′) neighboring with the current pair (F,CR). This second
phase of the algorithm is called the performance estimation phase.
Naturally, the secondary populations can be evolved either serially
or in parallel [19].

Finally, a cycle of the algorithm is completed by selecting the
best-performing secondary population and copying it to the pri-
mary one, along with its parameter pair. In order to fully exploit
the findings of the unselected secondary populations, their best in-
dividuals are also sent to the new primary population, replacing
its worst 8 individuals, if the latter have inferior objective values.
From this point, a new cycle begins by initiating a dynamic’s de-
ployment phase anew. The algorithm is executed until a predefined
stopping criterion is attained.

The secondary populations are compared with respect to their
average objective value (AOV) [19] defined as,

f̄P =
1
N

N

∑
i=1

f (xi) , xi ∈ P. (9)

AOV was found to be less sensitive to occasional detection of steep
local minima that may entrap the algorithm [19]. Additionally, in
order to avoid marginal AOV improvements that can result in mis-
leading adaptation of the parameter pair, a minimal improvement
threshold εmin is imposed for accepting a new parameter pair [19].

Hence, the best-performing secondary population P′a,b replaces
the primary one, P, only if,

f̄P− f̄P′a,b > εmin > 0.

Also, the maximum number of cycles, cmax, of the algorithm can
be estimated given the maximum number of iterations Tmax, as fol-
lows,

cmax =

⌊
Tmax

tp +9 te

⌋
, (10)

where b.c defines the floor function. The DEGPA algorithm pro-

Auxi
liary

Primary

Bridg
e

Auxi
liary

Bridg
e

Auxi
liary

Bridg
e

Auxi
liary

Bridg
e

Figure 1: Bridging parallel grids through populations that cor-
respond to different mutation operators.

duces a trajectory of parameter pairs by tracking the estimated im-
provement of performance in the parameter space G .

In [19] DEGPA was accompanied with an enhanced version,
namely eDEGPA. The eDEGPA approach closely follows the op-
eration of DEGPA, although it introduces an additional secondary
population that estimates the performance of the primary popula-
tion’s parameter pair under changes of the crossover type between
exponential and binomial. This approach was found to produce
even superior results than DEGPA for various test problems, mo-
tivating our study in the present work. Further details on DEGPA
and eDEGPA can be found in [19].

3. THE PROPOSED APPROACH
The success of DEGPA and eDEGPA motivated our interest to-

wards the further extension of the grid-based search technique. A
key-factor in DE’s operation and performance is the employed mu-
tation operator, which is assumed to be fixed in [19]. This operator
defines the dynamic of the algorithm with respect to the search di-
rections that are used in order to sample the search space for new
candidates solutions. For example, operators that involve the best
individual, xg, have been associated with rapid convergence but
they are also more prone to be mislead by local minimizers. Con-
trary to this, operators with purely random selection of the involved
vectors have been shown to promote diversity. Also, the use of one
or two difference vectors can have remarkable impact on the algo-
rithm’s performance.

In the present work, we consider the main eDEGPA scheme, yet
replacing the endeavor for controlling the crossover operator type
in favor of the dynamic adaption of the mutation operator among
the five operators defined in Eqs. (1)-(5). This requires the use of
additional secondary populations besides the ones defined in the
grid of the parameters F and CR. The additional populations in-
herit the primary population and its parameters, but assume differ-
ent mutation operator, and they will be henceforth called the bridge
populations. They can be conceived as bridging the current grid
search with parallel grids corresponding to different mutation op-
erators, as illustrated in Fig. 1.

We will henceforth call the proposed variant DE with Grid-based
Parameter and Operator Adaptation (DEGPOA), and it is outlined
in Algorithm 3. DEGPOA requires 9 secondary populations for the
performance estimation under different parameter pairs (F,CR) as
in DEGPA and eDEGPA, as well as 4 additional secondary popu-
lations that carry the same parameter pair as the primary one, but
with different mutation operators. Thus, a total of 13 secondary
populations are needed for the application of DEGPOA.

Similarly to DEGPA, the proposed approach is initialized with a
primary population assuming initial parameters (F,CR) = (0.5,0.5)

Algorithm 3 DEGPOA
1: INITIALIZE(P)

2: M← 13 /* subpopulations */

3: while (NOT TERMINATION) do

4: /* Dynamic’s deployment phase */

5: EVOLVE(P,F,CR,OPP, tp)

6: /* Performance estimation phase */

7: for (i = 1 . . .M) do

8: P′i ← P

9: if (i 6 9) then

10: /* Normal secondary population */

11: OPP′i ← OPP

12: ASSIGN(P′i ,F
′,CR′,OPP′i) /* use Eq. (8) */

13: else

14: /* Bridging secondary population */

15: CHANGE_OPERATOR(OPP′i)

16: (F ′,CR′)← (F,CR)

17: end if

18: EVOLVE(P′i ,F
′,CR′,OPP′i , ts)

19: end for

20: /* Update primary population */

21: P′best ← BEST _AOV (P′1, . . . ,P
′
13)

22: if
(

f̄P− f̄P′best
> εmin

)
then

23: P← P′best

24: (F,CR)← (F ′best ,CR′best)

25: end if

26: end while

and an initial mutation operator. The primary population is evolved
for tp iterations (dynamic’s deployment phase). Then, it is copied to
the 9 secondary populations of its own parameter grid, exactly as in
the DEGPA approach described in the previous section. However,
in DEGPOA the primary population is also copied in the 4 bridg-
ing populations, which assume same scalar parameters but different
mutation operator than the primary population. For example, if the
primary population has the initial parameters mentioned above and
uses the DE/Rand/1 operator, then the bridging populations would
assume the same scalar parameters (F ′,CR′) = (F,CR) = (0.5,0.5),
but the DE/best/1, DE/Current-to-Best, DE/Rand/2, and DE/best/2
operators, respectively.

After that, each secondary population is evolved for te iterations
(performance estimation phase). The best secondary population is
selected to replace the primary population along with its parameters
and mutation operator. This procedure can be viewed as jumping
from one mutation operator’s grid to another. The new primary
population initiates a new cycle of the algorithm with a new dy-
namic’s deployment phase and so on, as shown in Algorithm 3.

The selection of the primary population’s initial mutation oper-

Table 1: Average errors and standard deviations for the proposed and base algorithms, for dimension n = 50 and 100.
Problem DEGPOA eDEGPOA DEbin DEexp CHC GCMAES

Mean StD Mean StD Mean StD Mean StD Mean StD Mean StD
50-dimensional

F1 9.09e−14 3.67e−14 1.30e−13 3.86e−14 3.00e−17 7.69e−18 2.78e−17 6.29e−33 2.90e+02 5.69e+02 2.78e−17 6.29e−33
F2 6.25e+00 5.56e+00 7.06e+00 7.05e+00 3.87e+01 8.90e+00 3.31e−01 5.90e−02 7.72e+01 1.23e+01 7.69e−11 4.83e−11
F3 4.65e+01 2.12e+01 4.90e+01 1.97e+01 6.99e+01 3.58e+01 3.10e+01 8.65e+00 5.64e+07 1.42e+08 6.38e−01 1.49e+00
F4 4.78e−01 9.58e−01 1.99e−01 8.12e−01 3.21e+01 1.38e+01 4.79e−02 2.01e−01 1.12e+02 2.74e+01 3.72e+02 8.68e+01
F5 2.96e−04 1.48e−03 2.96e−04 1.48e−03 9.86e−04 2.76e−03 0.00e+00 0.00e+00 9.02e−01 1.82e+00 2.16e−01 5.64e−01
F6 1.49e−13 3.78e−14 2.58e−13 1.19e−13 7.16e−14 1.86e−14 1.39e−13 9.43e−15 3.23e+00 2.44e+00 1.90e+01 1.02e+00
F7 1.05e−15 3.21e−15 2.70e−11 1.33e−10 2.22e−15 1.17e−15 8.88e−17 1.96e−16 1.23e−09 1.45e−09 2.10e+01 1.38e+01
F8 1.64e+01 3.72e+01 1.55e+02 3.91e+02 9.02e+10 0.00e+00 9.02e+10 0.00e+00 9.02e+10 9.02e+06 9.03e+10 9.39e+07
F9 5.35e−02 9.50e−02 4.40e−03 8.08e−03 2.85e+02 5.30e+00 2.73e+02 7.40e−01 3.11e+02 4.98e+00 3.16e+02 7.03e+00
F10 9.67e−32 4.73e−31 1.78e−22 6.97e−22 1.53e+00 1.29e+00 6.50e−29 3.60e−29 7.72e+00 2.93e+00 9.25e+00 2.82e+00
F11 2.81e−02 5.00e−02 2.65e−02 1.01e−01 9.65e−01 2.02e+00 6.26e−05 1.30e−05 1.01e−02 1.26e−02 1.95e+02 3.65e+01
F12 8.34e−05 4.00e−04 1.27e−05 4.66e−05 5.82e+00 1.03e+01 5.26e−13 1.64e−13 8.23e+01 1.53e+02 1.14e+02 1.01e+01
F13 3.06e+01 1.99e+01 2.75e+01 5.77e+00 5.97e+01 2.22e+01 2.48e+01 1.31e+00 1.43e+07 3.29e+07 1.16e+02 1.43e+01
F14 2.79e−01 6.75e−01 1.99e−01 8.12e−01 3.35e+01 1.86e+01 3.55e−08 2.26e−08 6.76e+01 1.30e+01 2.71e+02 7.30e+01
F15 9.68e−15 3.43e−14 1.08e−12 3.78e−12 2.29e−01 6.07e−01 1.99e−24 3.22e−24 3.07e+00 5.32e+00 3.94e+01 1.25e+02
F16 3.77e−03 1.13e−02 8.22e−05 4.09e−04 5.64e+00 8.47e+00 1.56e−09 2.81e−10 5.60e+01 5.16e+01 2.23e+02 1.50e+01
F17 4.86e+00 6.32e+00 3.33e+00 4.82e+00 1.51e+01 1.43e+01 8.52e−01 4.92e−01 7.61e+06 2.44e+07 3.47e+02 2.18e+01
F18 8.59e−02 2.76e−01 4.39e−02 1.99e−01 5.73e+00 5.26e+00 1.28e−04 4.63e−05 6.76e+01 3.46e+01 3.59e+02 8.45e+01
F19 1.33e−23 5.99e−23 1.64e−16 7.87e−16 1.23e+00 9.26e−01 2.00e−24 1.50e−24 1.95e+02 5.01e+02 1.71e+03 5.84e+03

100-dimensional
F1 2.43e−13 5.57e−14 3.34e−13 9.61e−14 1.12e−16 4.28e−17 7.77e−17 1.13e−17 4.67e+02 7.02e+02 5.55e−17 1.26e−32
F2 2.12e+01 9.36e+00 2.27e+01 8.64e+00 7.74e+01 7.77e+00 4.60e+00 4.24e−01 9.96e+01 1.16e+01 2.61e−03 1.30e−02
F3 1.10e+02 2.66e+01 1.03e+02 3.06e+01 4.43e+02 3.63e+02 8.01e+01 1.03e+01 1.52e+08 2.69e+08 1.23e+01 1.80e+01
F4 1.07e+00 2.07e+00 3.58e−01 1.25e+00 1.01e+02 2.25e+01 9.53e−03 4.76e−02 2.92e+02 5.16e+01 8.38e+02 1.39e+02
F5 2.96e−04 1.48e−03 1.65e−13 3.58e−14 2.93e−02 5.32e−02 2.55e−17 5.19e−18 5.95e+00 1.29e+01 2.68e+00 1.05e+01
F6 4.14e−13 9.95e−14 4.41e−12 1.27e−11 1.55e+00 3.88e−01 3.10e−13 1.62e−14 4.79e+00 1.87e+00 1.86e+01 2.45e+00
F7 2.26e−15 1.02e−14 2.94e−05 1.47e−04 1.39e−14 7.12e−15 3.80e−17 5.29e−17 8.67e−02 3.70e−01 6.35e+01 2.36e+01
F8 8.60e+02 2.18e+03 2.24e+03 2.93e+03 1.79e+11 0.00e+00 1.79e+11 0.00e+00 1.79e+11 1.92e+07 1.80e+11 3.54e+08
F9 4.80e−02 1.09e−01 2.04e−03 5.99e−03 5.43e+02 1.36e+01 5.06e+02 9.16e−01 5.87e+02 1.01e+01 6.08e+02 1.07e+01
F10 4.84e−28 2.40e−27 2.08e−23 6.17e−23 1.54e+01 3.31e+00 1.35e−28 3.86e−29 2.89e+01 1.01e+01 1.93e+01 5.10e+00
F11 7.29e−02 1.69e−01 4.44e−03 1.34e−02 4.31e+01 2.09e+01 1.25e−04 1.43e−05 2.80e+01 3.02e+01 4.82e+02 4.27e+01
F12 2.66e−03 9.35e−03 1.17e−03 3.72e−03 7.21e+01 3.21e+01 6.44e−11 1.52e−11 8.72e+02 2.55e+03 2.41e+02 1.23e+01
F13 6.74e+01 2.55e+01 6.30e+01 2.20e+01 2.76e+02 6.18e+01 6.13e+01 1.00e+00 9.37e+07 4.02e+08 2.59e+02 2.16e+01
F14 7.56e−01 2.12e+00 1.20e−01 3.30e−01 9.37e+01 1.56e+01 4.48e−02 2.24e−01 2.25e+02 4.59e+01 6.19e+02 9.25e+01
F15 6.36e−14 3.09e−13 7.16e−14 3.50e−13 3.67e+00 1.76e+00 7.10e−23 7.00e−23 5.99e+00 1.19e+01 5.57e+01 5.22e+01
F16 3.03e−03 9.53e−03 1.96e−03 9.43e−03 1.10e+02 3.80e+01 1.94e−02 9.70e−02 2.08e+02 1.49e+02 4.84e+02 2.08e+01
F17 1.92e+01 2.29e+01 1.30e+01 1.81e+01 1.78e+02 5.49e+01 1.19e+01 2.62e+00 4.36e+07 7.09e+07 7.04e+02 3.92e+01
F18 4.71e−01 1.01e+00 3.99e−02 1.99e−01 1.04e+02 4.39e+01 2.92e−04 6.77e−05 2.37e+02 7.02e+01 1.09e+03 4.15e+02
F19 5.54e−23 2.77e−22 5.86e−17 2.93e−16 1.17e+01 2.61e+00 4.79e−23 2.65e−23 4.70e+02 1.84e+03 5.83e+03 9.85e+03

ator can be done in two ways. If an operator is known to perform
well in the given problem, it is a reasonable choice to prefer it as the
initial one. On the other hand, the initial operator can be randomly
selected in absence of any relevant information.

Another significant issue that may require further investigation
is the performance measure used for the assessment of the sec-
ondary populations. In [19], the AOV measure defined in Eq. (9)
was preferred against the common choice of the overall best value,
because it is less sensitive in temporary performance improvements
that may be caused by the rapid detection of local minimizers (espe-
cially from the greedier operators). However, AOV is still based on
a single performance aspect, namely the objective value, neglecting
other aspects such as population diversity.

In order to probe the diversity properties of DEGPOA, we con-
sidered also a second, diversity-based performance measure, namely
the objective value standard deviation (OVSD), defined as,

σ fP =

√√√√ 1
N

N

∑
i=1

(
f (xi)− f̄P

)
, xi ∈ P, (11)

where f̄P is the AOV defined in Eq. (9). OVSD measures the di-
versity of the objective function values of the population and can
be used as a rapidly computed indicator of the population’s diver-
sity. Higher values of OVSD can be associated to higher diversity,
which is preferable for alleviating premature convergence.

The concurrent use of two performance measure is rather simple
and draws ideas from the concept of Pareto dominance in multi-
objective optimization. Specifically, after the execution of te itera-
tions by all secondary populations (including the bridging popula-
tions), their (AOV, OVSD) pairs, defined as,

(f̄P′i ,σ fP′i
),

are recorded and disposed in an external archive. Then, the non-
dominated pairs, in terms of Pareto dominance, are identified. The
non-dominated pairs are incomparable among them, since they are
superior according to the one performance criterion but inferior ac-
cording to the other. The final selection can be made either ran-
domly among the non-dominated pairs or with respect to the over-
all best value of the corresponding secondary populations. The re-

Table 2: Average errors and standard deviations for the proposed and base algorithms, for dimension n = 200 and 500.
Problem DEGPOA eDEGPOA DEbin DEexp CHC GCMAES

Mean StD Mean StD Mean StD Mean StD Mean StD Mean StD
200-dimensional

F1 5.82e−13 1.41e−13 7.12e−13 1.20e−13 6.39e−16 5.32e−16 1.78e−16 1.60e−17 9.61e+02 1.65e+03 1.17e−16 1.13e−17
F2 4.65e+01 9.30e+00 5.24e+01 1.21e+01 1.01e+02 5.90e+00 1.89e+01 1.05e+00 1.17e+02 7.60e+00 7.47e−02 2.44e−01
F3 2.04e+02 3.48e+01 2.12e+02 3.38e+01 6.38e+02 3.80e+02 1.79e+02 8.89e+00 2.54e+08 3.97e+08 1.24e+02 8.85e+01
F4 1.43e+00 3.11e+00 3.98e−01 1.32e+00 4.21e+02 5.63e+01 8.52e−02 3.98e−01 6.32e+02 8.43e+01 1.57e+03 1.54e+02
F5 4.45e−12 2.07e−11 3.57e−13 6.72e−14 3.00e−01 7.73e−01 7.49e−17 6.94e−18 1.02e+01 1.59e+01 1.13e+00 2.84e+00
F6 9.15e−13 2.21e−13 1.85e−12 1.76e−12 5.28e+00 9.65e−01 6.46e−13 2.53e−14 8.14e+00 2.26e+00 1.93e+01 7.39e−01
F7 6.34e−15 1.15e−14 6.41e−12 3.16e−11 1.78e−11 4.65e−11 2.25e−16 1.92e−16 3.95e−01 1.21e+00 1.25e+02 1.92e+01
F8 5.92e+03 7.34e+03 1.56e+04 1.62e+04 8.33e+11 0.00e+00 8.33e+11 0.00e+00 8.33e+11 3.09e+08 8.56e+11 3.36e+09
F9 3.79e−02 8.17e−02 5.54e−03 1.55e−02 1.13e+03 1.87e+01 1.01e+03 1.30e+00 1.18e+03 8.29e+00 1.22e+03 1.79e+01
F10 8.23e−28 4.11e−27 2.03e−21 1.02e−20 5.52e+01 1.02e+01 2.77e−28 5.31e−29 7.34e+01 6.25e+01 3.76e+01 2.78e+01
F11 5.20e−02 1.15e−01 3.68e−03 1.00e−02 3.95e+02 6.11e+01 2.55e−04 3.20e−05 4.03e+02 8.45e+01 1.08e+03 8.25e+01
F12 1.51e−03 4.22e−03 1.46e−03 7.27e−03 2.84e+02 4.97e+01 9.97e−10 2.01e−10 8.11e+02 1.58e+03 5.87e+02 4.52e+02
F13 1.47e+02 3.46e+01 1.37e+02 3.81e+01 7.52e+02 2.71e+02 1.40e+02 1.26e+01 2.06e+08 3.51e+08 5.92e+02 1.08e+02
F14 5.17e−01 1.41e+00 1.19e−01 5.97e−01 3.11e+02 3.66e+01 8.08e−03 4.04e−02 4.90e+02 5.23e+01 1.26e+03 1.81e+02
F15 7.95e−14 2.05e−13 1.29e−13 4.57e−13 1.17e+01 2.85e+00 3.71e−24 2.32e−24 1.40e+01 9.80e+00 1.95e+02 1.66e+02
F16 1.62e−02 4.13e−02 2.25e−05 6.82e−05 5.58e+02 7.96e+01 7.85e−09 1.11e−09 6.77e+02 6.04e+02 9.56e+02 3.33e+01
F17 5.99e+01 3.05e+01 4.71e+01 2.84e+01 1.03e+03 1.11e+02 3.71e+01 8.30e−01 1.17e+07 1.70e+07 1.49e+03 8.00e+01
F18 5.48e−02 2.06e−01 4.00e−02 1.99e−01 7.53e+02 6.55e+01 5.10e−04 9.97e−05 7.67e+02 2.14e+02 3.94e+03 3.91e+03
F19 2.43e−16 1.03e−15 1.72e−15 6.24e−15 4.04e+01 7.71e+00 1.67e−22 7.58e−23 7.51e+02 1.76e+03 2.53e+04 2.45e+04

500-dimensional
F1 1.57e−12 2.76e−13 1.61e−12 4.01e−13 3.88e−05 7.93e−05 5.17e−16 1.36e−17 9.25e+02 1.27e+03 n/a n/a
F2 8.93e+01 1.20e+01 8.76e+01 1.17e+01 1.25e+02 5.37e+00 5.38e+01 1.21e+00 1.35e+02 5.52e+00 n/a n/a
F3 5.28e+02 8.52e+01 5.00e+02 2.83e+01 3.44e+04 1.62e+05 4.74e+02 1.48e+00 6.93e+08 1.72e+09 n/a n/a
F4 1.87e+00 5.67e+00 3.98e−02 1.99e−01 2.35e+03 1.60e+02 7.12e−01 9.64e−01 2.11e+03 1.66e+02 n/a n/a
F5 8.48e−13 1.51e−13 8.61e−13 1.54e−13 3.11e−01 5.07e−01 2.38e−16 1.18e−17 1.45e+01 2.52e+01 n/a n/a
F6 3.28e−12 1.39e−12 2.91e−12 3.78e−13 1.49e+01 8.38e−01 1.64e−12 4.85e−14 1.27e+01 1.26e+00 n/a n/a
F7 6.21e−13 2.14e−12 2.74e−13 1.36e−12 2.74e−03 6.49e−03 7.29e−16 3.58e−16 3.33e−05 1.12e−04 n/a n/a
F8 9.60e+04 9.04e+04 1.11e+05 1.18e+05 4.94e+12 0.00e+00 4.94e+12 0.00e+00 4.94e+12 1.42e+08 n/a n/a
F9 5.47e−02 1.37e−01 3.58e−03 9.41e−03 2.97e+03 3.17e+01 2.52e+03 2.10e+00 3.00e+03 1.64e+01 n/a n/a
F10 1.41e−31 4.85e−31 1.51e−30 3.54e−30 1.36e+02 2.08e+01 9.79e−28 1.43e−28 1.64e+02 5.62e+01 n/a n/a
F11 1.31e−01 3.27e−01 3.88e−03 9.22e−03 2.34e+03 9.22e+01 6.78e−04 3.60e−05 1.67e+03 1.44e+02 n/a n/a
F12 1.55e−02 4.42e−02 1.25e−05 4.65e−05 1.02e+03 6.68e+01 6.80e−09 8.58e−10 1.62e+03 1.83e+03 n/a n/a
F13 3.91e+02 5.28e+01 3.54e+02 3.01e+01 2.49e+03 3.13e+02 3.60e+02 9.23e+00 3.41e+08 4.29e+08 n/a n/a
F14 7.57e−01 2.73e+00 1.23e−04 6.13e−04 1.67e+03 1.51e+02 3.93e−01 1.05e+00 1.59e+03 1.57e+02 n/a n/a
F15 9.20e−13 3.33e−12 8.21e−13 3.77e−12 4.44e+01 5.59e+00 2.93e−18 7.16e−18 3.50e+01 1.20e+01 n/a n/a
F16 1.04e−02 4.78e−02 2.74e−06 7.42e−06 2.02e+03 8.60e+01 2.05e−08 1.64e−09 1.92e+03 1.44e+03 n/a n/a
F17 1.41e+02 4.51e+01 1.39e+02 3.57e+01 3.83e+03 1.41e+02 1.12e+02 1.02e+00 6.64e+08 1.64e+09 n/a n/a
F18 3.24e−01 8.12e−01 4.02e−02 1.99e−01 3.37e+03 4.34e+02 1.25e−03 1.87e−04 2.74e+03 3.59e+02 n/a n/a
F19 7.64e−16 2.69e−15 2.29e−21 1.13e−20 1.29e+02 2.34e+01 3.35e−21 2.15e−21 2.05e+03 4.03e+03 n/a n/a

quired time for this procedure is negligible since there are only 13
pairs in the archive. The DEGPOA variant with the two perfor-
mance measures will be henceforth denoted as eDEGPOA.

4. EXPERIMENTAL ASSESSMENT
Following the experimental setting of [19], the test suite pro-

posed in the Special Issue on Large Scale Continuous Optimiza-
tion Problems of the Soft Computing journal [12] was used to val-
idate the proposed DEGPOA and eDEGPOA approaches. The test
suite consists of 19 scalable test functions, henceforth denoted as
F1−F19. These include CEC 2008 test problems [18], as well as
shifted and hybrid composition functions [12].

Three base algorithms are proposed in the test suite for com-
parisons, namely DE with exponential crossover, CHC, and GC-
MAES [1, 9, 12]. For the sake of completeness, we included also
the DE with binomial crossover using the settings and source codes
provided in [11]. The control parameters of the base DE approaches
were set to their claimed optimal values (F,CR) = (0.7,0.5), along
with the reportedly best-performing DE/Rand/1 mutation opera-
tor. In addition, the average performance for a number of differ-

ent metaheuristics is provided in the test suite for comparison pur-
poses [12].

The specific test suite was selected against others due to its prob-
lem diversity and high-dimensionality. All test problems were con-
sidered for dimension,

n = 50, 100, 200, 500.

For each test problem and dimension, both DEGPOA and eDEG-
POA were applied assuming a computational budget of,

Tmax = 5000×n,

function evaluations, according to the typical setting of the spe-
cific test suite [12]. The competent algorithms require a prelimi-
nary parameter-tuning phase that is typically not accounted in their
computational cost, while our approaches do not require this phase
because of the online parameter tunning. Thus, it would be more
fair to provide to our approaches additional running time. However,
we restricted our budget to the strict requirements of the test suite
in order to evaluate their performance competitiveness under tight
resource limits.

Table 3: Number of wins (+), losses (−), and draws (=) of DEGPOA and eDEGPOA against the base algorithms.
DEGPOA eDEGPOA

Dimension Algorithm + − = + − =

50 DEbin 14 3 2 13 3 3

DEexp 7 5 7 4 6 9

CHC 18 0 1 19 0 0

GCMAES 16 3 0 16 3 0

100 DEbin 17 1 1 17 1 1

DEexp 7 5 7 5 7 7

CHC 19 0 0 19 0 0

GCMAES 16 3 0 16 3 0

200 DEbin 17 1 1 17 1 1

DEexp 8 6 5 8 5 6

CHC 19 0 0 19 0 0

GCMAES 16 3 0 14 3 2

500 DEbin 19 0 0 19 0 0

DEexp 8 7 4 11 6 2

CHC 19 0 0 19 0 0

GCMAES n/a n/a n/a n/a n/a n/a

The quality of the final solution was measured with the error
from the optimal solution value,

err f (x∗) = f (x∗)− f
(
xopt
)
,

where x∗ is the solution achieved by the algorithm and xopt is the
known optimal solution of the problem. Since all algorithms are
stochastic in nature, 25 independent experiments were conducted
in order to approximate their performance distributions.

Following the setting of the test suite’s DE-based approaches,
DEGPOA and eDEGPOA assumed a fixed population size,

N = 60.

The initial parameter pair in all runs was the center of the grid,

(F,CR) = (0.5,0.5).

Both approaches were considered with their exponential crossover,
which was proved to be the best one also in [12, 19]. Regarding the
rest of the parameters, the values,

te = 10, εmin = 10−2,

were used while tp was linearly adapted between its minimum and
maximum values,

tmin
p = 10×n, tmax

p = 14×n,

according to the suggestions in [19].
The experimental assessment consisted of two phases. In the

first phase, full statistical comparisons between DEGPOA, eDEG-
POA, and the base algorithms of the test suite were conducted. In
the second phase, comparisons of average performance were made
against the rest of the test suite’s metaheuristics. This experimental
practice is dictated by the specific test suite [12].

The base algorithms were applied using the source codes and set-
tings provided in the test suite. The obtained solution errors were
recorder for all algorithms and test problems. The mean and stan-

dard deviations are reported in Tables 1 and 2. For the GCMAES
approach, 500-dimensional results were not attainable due to the
excessive computation time required by the algorithm (this is re-
ported as “n/a” in the Tables).

The results clearly show that both DEGPOA and eDEGPOA are
very competitive against the base algorithms. They outperform
DEbin, CHC, and GCMAES in almost all test problems and di-
mensions. Also, they exhibit remarkable competitiveness against
DEexp, which was recognized as the best-performing base algo-
rithm in the test suite [12]. We shall emphasize that the competi-
tiveness of our approaches comes along with the depletion of the
computational burden for parameter tuning, while for the rest of
the approaches their most promising versions are used after addi-
tional parameter-tuning cost. This fact augments the usefulness of
DEGPOA and eDEGPOA.

In order to statistically verify the observed performance differ-
ences with the base algorithms, pairwise Wilcoxon ranksum tests
of the algorithms at confidence level 95% were conducted for all
test functions. Each favorable comparison was counted as a win
for the algorithm and denoted as “+”. Negative comparisons were
counted as losses and denoted as “−”, while draws were denoted
as “=”. Table 3 summarizes the number of wins, losses, and draws
of DEGPOA and eDEGPOA against the base algorithms.

An interesting observation is that, as dimension increases, both
DEGPOA and eDEGPOA exhibit higher numbers of wins against
the strongest competitor algorithm, namely DEexp. Moreover, we
can observe that the diversity-promoting eDEGPOA variant has
marginal difference than DEGPOA, although it improves its per-
formance with the problem’s dimension. This is an indication that
the online adaptation mechanism of DEGPOA is capable of pre-
serving the necessary diversity even without the use of specialized
mechanisms or diversity-oriented performance measures.

The second phase of experimental analysis included compar-
isons of expected performance against the rest of the test suite’s
algorithms [11, 12]. The comparisons were based on the algo-

Table 4: Number of problems where DEGPOA and eDEGPOA exhibited inferior and non-inferior average solution values against
the rest of the algorithms.

Non-Inferior Inferior

(Dim.) (Dim.)

50 100 200 500 50 100 200 500

DEGPOA

EvoPROpt 17 17 17 16 2 2 2 3

EM323 9 9 10 12 10 10 9 7

SOUPDE 6 6 7 7 13 13 12 12

DE-D40+Mm 6 7 8 8 13 12 11 11

GODE 6 6 7 7 13 13 12 12

MA-SSW-Chains 11 13 16 16 8 6 3 3

GaDE 7 7 8 7 12 12 11 12

RPSO-vm 13 13 16 16 6 6 3 3

jDElscop 6 6 7 7 13 13 12 12

SaDE-MMTS 7 7 9 11 12 12 10 8

MOS 7 6 7 7 12 13 12 12

Tuned IPSOLS 11 10 12 12 8 9 7 7

VXQR1 12 13 15 15 7 6 4 4

eDEGPOA

EvoPROpt 17 17 16 17 2 2 3 2

EM323 9 10 12 16 10 9 7 3

SOUPDE 6 6 8 9 13 13 11 10

DE-D40+Mm 7 8 9 11 12 11 10 8

GODE 6 7 8 9 13 12 11 10

MA-SSW-Chains 11 13 16 16 8 6 3 3

GaDE 7 7 8 7 12 12 11 12

RPSO-vm 14 14 16 16 5 5 3 3

jDElscop 6 6 7 9 13 13 12 10

SaDE-MMTS 7 8 9 12 12 11 10 7

MOS 7 7 7 7 12 12 12 12

Tuned IPSOLS 11 9 12 12 8 10 7 7

VXQR1 13 14 15 15 6 5 4 4

rithms’ average error values provided in their original sources [11].
Table 4 reports the number of test problems were DEGPOA and
eDEGPOA exhibited non-inferior or inferior average error values
from the rest of the algorithms. Again, it is confirmed that both
algorithms have similar non-inferior performance. However, as di-
mension increases, eDEGPOA has marginally better performance.
Nevertheless, it worths noting that both algorithms outperform also
non-DE-based algorithms, such as EvoPROpt, MA-SSW-Chains,
RPRSO-vm, Tuned IPSOLS and VXQR1, in all dimensions.

5. CONCLUSIONS
The parameter tuning of metaheuristics is a laborious task that

often consumes significant amount of time and computational re-
sources, while the result is usually problem-dependent. The present
work proposed an extension of a recently introduced grid-based
search technique for dynamic parameter adaptation.

The technique was previously evaluated on the DE algorithm for

the online control of its scalar parameters and crossover type. We
extended this approach by considering another crucial aspect of
DE’s performance, namely the mutation operator. Moreover, we
introduced also a diversity-promoting evaluation measure for the
performance of the involved secondary populations.

The proposed approaches were evaluated on an established high-
dimensional test suite, following the setting of previous studies.
The obtained results revealed that the proposed adaptive approaches
can release the user from the burden of parameter tuning, while at-
taining very competitive performance in all test problems using the
same computational resources as the specially tuned algorithms.

The parameter grid search approach has opened various direc-
tions for further inquiry. More refined versions of the algorithm that
are based on the literature of deterministic gradient-based optimiza-
tion are under development. Furthermore, the grid-based adapta-
tion technique is not explicitly dependent from the specific algo-
rithm. Thus, its effectiveness on different algorithms will provide

additional insight.

6. REFERENCES
[1] A. Auger and N. Hansen. A restart CMA evolution strategy

with increasing population size. In Proc. of the 2005 IEEE
Congress on Evolutionary Computation, pages 769–1776,
2005.

[2] T. Bartz-Beielstein. Experimental Research in Evolutionary
Computation: The New Experimentalism. Springer, 2006.

[3] M. Birattari. Tuning Metaheuristics: A Machine Learning
Perspective. Springer, 2009.

[4] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer.
Self-adapting control parameters in Differential Evolution: a
comparative study on numerical benchmark problems. IEEE
Transactions on Evolutionary Computation., 10(6):646–657,
2006.

[5] S. Das and P. N. Suganthan. Differential Evolution: A survey
of the state-of-the-art. IEEE Transactions on Evolutionary
Computation, 15(1):4–31, 2011.

[6] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter
control in evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 3(2):124–141, 1999.

[7] A. E. Eiben and S. K. Smit. Evolutionary algorithm
parameters and methods to tune them. In Y. Hamadi,
E. Monfroy, and F. Saubion, editors, Autonomous Search,
chapter 2, pages 15–36. Springer, Berlin Heidelberg, 2011.

[8] A. E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. Springer-Verlag, 2015.

[9] Eshelman, L.J., and S. J.D. Real-coded genetic algorithms
and interval-schemata. Foundations of Genetic Algorithms,
2:187–202, 1993.

[10] H. H. Hoos. Automated algorithm configuration and
parameter tuning. In Y. Hamadi, E. Monfroy, and F. Saubion,
editors, Autonomous Search, chapter 3, pages 37–72.
Springer, Berlin Heidelberg, 2011.

[11] M. Lozano, F. Herrera, and D. Molina. Evolutionary
algorithms and other metaheuristics for continuous
optimization problems.

[12] M. Lozano, F. Herrera, and D. Molina. Editorial: scalability
of evolutionary algorithms and other metaheuristics for
large-scale continuous optimization problems. Soft
Computing, 15:2085–2087, 2011.

[13] K. V. Price, R. M. Storn, and J. A. Lampinen. Differential
Evolution: A Practical Approach to Global Optimization.
Springer, Verlag, Berlin, 2005.

[14] C. Segura, C. A. C. Coello, E. Segredo, and C. León. On the
adaptation of the mutation scale factor in differential
evolution. Optimization Letters, 9(1):189–198, 2015.

[15] R. Storn and K. Price. Differential evolution-a simple and
efficient heuristic for global optimization over continuous
spaces. J. Global Optimization, 11:341–359, 1997.

[16] R. Tanabe and A. Fukunaga. Success-history based
parameter adaptation for differential evolution. In IEEE
Congress on Evolutionary Computation, 2013.

[17] R. Tanabe and A. Fukunaga. Improving the search
performance of SHADE using linear population size
reduction. In IEEE Congress on Evolutionary Computation,
2014.

[18] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y.-P. Chen,
C.-M. Chen, and Z. Yang. Benchmark functions for the cec
2008 special session and competition on large scale global
optimization. Nature Inspired Computation and Applications
Laboratory, USTC, China, pages 153–177, 2007.

[19] V. A. Tatsis and K. E. Parsopoulos. Differential evolution
with grid-based parameter adaptation. Soft Computing, 2015,
in press.

[20] J. Tvrdík. Competitive differential evolution. In 12th
International Coference on Soft Computing, 2006.

[21] J. Tvrdík and R. Poláková. Competitive differential evolution
applied to CEC 2013 problems. In Evolutionary
Computation (CEC), 2013 IEEE Congress on, pages
1651–1657. IEEE, 2013.

[22] M. Weber, V. Tirronen, and F. Neri. Scale factor inheritance
mechanism in distributed differential evolution. Soft
Computing, 14:1187–1207, 2010.

[23] D. Zaharie. A comparative analysis of crossover variants in
differential evolution. Proceedings of IMCSIT, pages
171–181, 2007.

[24] D. Zaharie. Influence of crossover on the behavior of
differential evolution algorithms. Applied Soft Computing,
9(3):1126–1138, 2009.

[25] S. Zhao, P. Suganthan, and S. Das. Self-adaptive differential
evolution with multi-trajectory search for large-scale
optimization. Soft Comput., 15(11):2175–2185, 2011.

	Introduction
	Background Information
	Differential Evolution
	Grid-Based Parameter Adaptation

	The proposed approach
	Experimental Assessment
	Conclusions
	References

