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Abstract Logistics in natural disasters or emergencies involve highly complicated
optimization problems with diverse characteristics. The contribution of the present
paper is twofold. First, it introduces a multi-period model aiming to minimize
the shortages of different relief products in a number of affected areas. The relief
products are transported via multiple modes of transportation from dispatch centers
to these areas, while adhering to traffic restrictions. A test suite of benchmark
problems with diverse characteristics is generated from the proposed model and
solved to optimality with CPLEX. The test suite is used for benchmarking a
number of established metaheuristics. Necessary modifications are introduced in
the algorithms, in order to fit the special requirements of the specific problem type.
The algorithms’ performance is assessed in terms of solution accuracy with respect
to the optimal solutions. Comparisons among the employed metaheuristics offer
valuable insight regarding their ability to tackle humanitarian logistics problems.
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1 Introduction

Humanitarian Logistics (HL) has attracted increasing interest due to the exponential
surge in natural and man-made disasters (Ozdamar et al., 2004). Ranging from
earthquakes to tsunamis, natural disasters have produced startling devastation with
major death tolls and economical consequences worldwide. Recent examples of
severe natural disasters include the Nepal earthquake in 2015, Japan earthquake and
tsunami in 2011, Haiti earthquake in 2010, Myanmar cyclone Nargis in 2008, and
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Pakistan earthquake in 2005. All these events caused thousands of deaths and left
numerous people homeless, needing emergent assistance. The long lasted, slowly
progressing recovery efforts forced thousands of wounded people to continue living
in refugee camps that were set up immediately after the disaster.

HL plays a crucial role in addressing disaster relief operations problems. Quoting
from (Thomas and Kopczak, 2005), HL is responsible for “planning, implementing
and controlling the efficient, cost-effective flow and storage of goods and materials,
as well as related information, from point of origin to point of consumption for the
purpose of alleviating the suffering of vulnerable people.” 1t is widely perceived
that HL constitutes a powerful tool, capable of making the difference between
success and failure in managing disaster relief operations (Cozzolino et al., 2012;
Van Wassenhove, 2006).

Moreover, according to the Pan American Health Organization (PAHO), HL
focuses on the procurement, transportation, storage, and distribution of relief
supplies (PAHO, 2001). Procurement ensures the availability of the demanded
resources, while transportation is responsible for the transfer of the latter to the
wounded people in the affected areas. Transportation plans for the goods must take
into account the available infrastructure, which is frequently damaged from the
disaster. Storage protects the relief commodities until their delivery to the points of
consumption. Finally, distribution is responsible for the aid delivery to beneficiaries,
avoiding problems triggered by external factors (Balcik et al., 2008).

Although HL is significant to prevent from consequences on people’s health or
life loss, the relevant literature is limited when compared to commercial logistics.
In the latter, the main goal is typically the cost reduction (Van Wassenhove, 2006).
HL promotes different priorities than cost, thereby introducing new aspects to
the underlying problems. Various aspects of HL have been investigated in several
studies (Diaz et al., 2013; Galindo and Batta, 2013). Transportation and routing
were studied by Barbarosoglu and Arda (2004), Han et al. (2011), Huang et al.
(2013), Yi and Ozdamar (2007), Yi and Kumar (2007), and Yuan and Wang
(2009). Specifically, Barbarosoglu and Arda (2004) proposed a two-stage stochastic
programming model to plan the transportation of vital relief resources to the affected
areas, taking into account the variations in demand, supply, and route capacity. Han
etal. (2011) proposed a model based on Lagrangian relaxation to address a problem
of delivering relief commodities.

Huang et al. (2013) studied a continuous approximation approach by utilizing
aggregated instance data to explore appropriate routes for aid response teams. Yi
and Ozdamar (2007) addressed a dynamic coordination model for evacuation and
support in disaster response situations. Yi and Kumar (2007) employed a meta-
heuristic algorithm, namely ant colony optimization to explore optimal solutions for
wounded people with respect to speed delivery. Yuan and Wang (2009) presented
two mathematical models for path-selection, taking into account the travel speed on
each route as well as hectic situations that frequently follow disasters.

Supply chain and procurement were investigated by Balcik and Beamon (2008),
Clark and Culkin (2013), Falasca and Zobel (2011), Peng and Chen (2011), as well
as by Tatham and Kovacs (2010), and Taylor and Pettit (2009). More specifically,
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Balcik and Beamon (2008) presented a model aiming to define the optimal number
of distribution centers and the quantity of supplies. Clark and Culkin (2013)
proposed a mathematical transshipment multi-commodity supply chain flow model
to satisfy demand for affected people. Falasca and Zobel (2011) explored the need
for models that support procurement through a two-stage decision model. Peng and
Chen (2011) studied how transportation and information delays affect disaster relief
operations. Tatham and Kovacs (2010) suggested a model of swift trust aiming to
enhance disaster relief operations. Finally, Taylor and Pettit (2009) explored how
lean logistics techniques such as value chain analysis perform in HL.

In addition, a number of research works are devoted to the study of distribution
and supply location (Chang et al., 2007; Sheu et al., 2005; Van Hentenryck
et al., 2010; Vitoriano et al., 2011; Zhang et al., 2012). Specifically, Chang et al.
(2007) addressed a flood emergency logistics problem by presenting two stochastic
programming models that were solved by using a sample average approximation
scheme. Sheu et al. (2005) solved a disaster relief distribution problem by employing
fuzzy clustering techniques and fuzzy linear programming. Van Hentenryck et al.
(2010) proposed a hybrid optimization algorithm to solve the single commodity
allocation problem. Vitoriano et al. (2011) solved a distribution model, taking
into account performance measures such as equity of the distribution and security
of routes. Zhang et al. (2012) proposed a heuristic approach based on linear
programming and network optimization to solve a multiple-resource and multiple-
depot disaster relief problem.

The complexity of HL optimization problems requires efficient solvers that
can produce satisfactory solutions within strict time constraints. Metaheuristics
have been recognized as valuable optimization tools for this purpose. The term
metaheuristics mostly refers to nature-inspired algorithms with stochastic compo-
nents (Glover, 1986). Such algorithms are able to offer (sub-)optimal solutions to
difficult optimization problems within reasonable amount of time. However, this
comes at the cost of dubious optimality of the detected solution. The dynamic
of metaheuristics is governed by two major properties, namely exploration and
exploitation (Blum and Roli, 2003). The first one is the ability to perform diverse
search without neglecting regions of the search space. The latter is the ability to
conduct more refined search in the neighborhood of already detected candidate
solutions. Global optimality of the solutions is highly related to the appropriate
balance of these two components.

Metaheuristics have gained increasing popularity in academia and industry due
to their successful application in solving complex real-world problems. This can
be attributed to their efficiency in decision making, simplicity, noise tolerance, and
easy implementation (Liu and Ye, 2014). There is a significant amount of research
studying the performance of metaheuristics in various problems in logistics, while
recently several works appeared also in the growing area of HL (Yan and Shih, 2012;
Yi and Kumar, 2007; Zheng et al., 2014).

Recently, Liu and Ye (2014) studied a multi-period problem, taking into account
limited supply and transportation capacity that aims to minimize losses caused
by (i) the mismatch between supplies and demand and (ii) the transportation
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time due to logistics processes. In the present study, we consider a similar model
where the objective is the minimization of losses caused by the mismatch between
supply and demand of relief resources in the affected areas, while taking into
account the already existing quantities (if any) and the importance of the different
resources. Furthermore, apart from constraints related to the number, volume, and
load capacity of vehicles, we consider also road capacity constraints. The latter is
the source of bottleneck in supply chain due to the increase of relief vehicles and
possible decrease in transportation capacity, defined by the authorities (Besiou et al.,
2011).

A test suite of benchmark problems is produced for the proposed model and they
are solved to optimality with the commercial CPLEX solver. In addition, a number
of established metaheuristics, namely differential evolution (DE) (Price et al., 2005)
and particle swarm optimization (PSO) (Parsopoulos and Vrahatis, 2010), are
considered and their efficiency is studied on the test suite. In order to fit the special
requirements of the test problems, appropriate modifications are made in their
basic operations. Moreover, we consider an enhanced DE (eDE) variant (Mohamed,
2014), which is shown to produce significant performance improvement. All the
aforementioned algorithms are also utilized in a parallel algorithm portfolio (AP)
framework (Gomes and Selman, 1997, 2001; Huberman et al., 1997; Peng et al.,
2010; Tang et al., 2014), according to a recently proposed scheme (Souravlias et al.,
2014).

The rest of the paper is organized as follows: in Sect. 2 the mathematical formula-
tion of the proposed model is given. The employed algorithms are comprehensively
discussed in Sect. 3, while Sect. 4 contains details on the experimental setting and
presentation of the obtained results. Sect. 5 concludes the paper.

2 Problem Formulation

In our model, we consider a set J of affected areas (AAs) and a set I of dispatch
centers (DCs). Relief resources (commodities) are transported from DCs to AAs
through a number of vehicles of different type and mode. In our case, ground and
aerial vehicles of two sizes (big and small) are considered. We henceforth denote
as C the set of commodities, M the set of transportation modes, and O,, the set of
vehicles of mode m € M. The planning horizon is finite and denoted as 7. The
complete notation used in our model is presented in Table 1.

The main optimization goal lies in specifying the optimal delivered quantities
séijm per commodity ¢ € C from DC i to AA j, using vehicles of transportation
mode m, for each time period ¢. Moreover, we need to specify the optimal number
Ueijimo Of type o, mode m vehicles that are used to transport the commodities at
each time period ¢. All decision variables assume integer values. The corresponding
minimization problem is defined as follows:

2
min YY" Y by (dij—z ZSZ[jm—L’JI) , (1)

te€T jeJ ceC i€l meM
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Table 1 Notation used in the proposed model

Model parameters | Description

T
1

J

C
M
m
0,

m
o
be

We

volume,

Capumo
V0l
d;
kfim
Ul.tan

t
Lz:i

Planning horizon

Set of dispatch centers (DCs)

Set of affected areas (AAs)

Set of commodities

Set of transportation modes

Index denoting the transportation mode (ground, air)

Set of vehicle types of transportation mode m

Index denoting the vehicle type (big vehicle, small vehicle)
Importance weight of commodity ¢ in AA j

Unit weight of commodity ¢

Unit volume of commodity ¢

Capacity of type o, mode m vehicle

Volume capacity of type o, mode m vehicle

Demand for commodity ¢ in AA j at time period ¢

Traffic restriction for mode m vehicles from DC i to AA j at time ¢
Number of type o, mode m vehicles at DC i at time ¢
Inventory level of commodity ¢ in AA j at time ¢

Decision variables | Description

t

scijm

t

v cijmo

Delivered quantity of commodity ¢ from DC i to AA j through
transportation mode m at time ¢

Number of type o, mode m vehicles used at period ¢ to transport
commodity ¢ from DC i to AA j

where b, is a scalar weight of importance of commodity ¢ at AA j. The model is
subject to the following constraints:

'
Lcj

Lg.:ch, VceC, Vjel, (2)

=Y Y sn—di+ L5, VieT. ¥YceC. Vjel. (3

i€l meM
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ceC jeJ 0€0,,
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30D Vlimo S U VIET. Viel, YmeM, Yoe€O, (8)

ceC jel
Seijm» Veiimor Ly € N, forall £, ¢,i,j,m, 0, 9)
Uinos dejs VO0lno, CaPyo, vOlume,, w, € N*, forallt,c,i,j, m,o, (10)
Y by=1. byel0.1].  Vjel. (11)

cec

Equation (2) accounts for the initial inventory level of commodity ¢ that pre-exists
at DCj. Equation (3) determines the inventory balance, which takes into account the
demand of the commodity ¢ and the replenishment quantity. Equations (4) and (5)
refer to capacity and volume constraints, respectively. Equation (6) defines upper
limits of the delivered quantity s’cijm, which is useful for bounding the decision
variables. Equation (7) stands for traffic flow restrictions expected in natural
disasters, e.g., roads that are partially damaged or destroyed, thereby reducing
traffic capacity. Equation (8) ensures that the number of vehicles transporting the
commodities in a particular AA does not exceed the total number of vehicles.
Equations (9)-(11) define the appropriate domains of the decision variables and
problem parameters.

The squared error in Eq. (1) can be replaced by the absolute error if metaheuris-
tics are used. Nevertheless, the quadratic form is selected in order to render the
problem solvable by CPLEX. Note that the objective function is also convex since
it constitutes the sum of convex functions.

3 Employed Algorithms

In the following paragraphs, we briefly present the main features of the employed
metaheuristics. For presentation purposes, we assume that the considered minimiza-
tion problem is defined in the general form,

i 12

3, S (2

where X is the (real-valued) search space. The only requirement on the objective

function is the availability of f(x) at any x € X. Appropriate modifications of the

algorithms to handle the integer search spaces of the considered HL model are given
later.
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3.1 Differential Evolution

Differential Evolution (DE) was introduced by Storn and Price (1997). Being a
population-based optimization algorithm, it proceeds by iteratively improving a
population of candidate solutions,

S = {X],Xz,...,XN},

consisting of N search points, called the individuals. The population is randomly
and uniformly initialized over the search space. DE applies biologically inspired
operators, namely mutation, crossover, and selection, on each individual in order to
produce new candidate solutions by combining existing ones.

At each iteration (also called generation) g of the algorithm, a mutant vector
v; is generated for each individual x;, i = 1,2,...,N. This vector is produced by
combining existing individuals from the population according to various mutation
operators. The following are among the most popular ones:

DEl: v¥*) =x% +F (x¥ —x¥), 13)
DE2: v¥*) =x® 4 F (x¥ —x¥), (14)
DE3: v =x¥ 4+ F (& —x?) +F (9 —x®),  (5)
DE4: VO = x4 F () —x) +F (60 —x). (16)
DE5: v¥*) =x® 4 F (x® —x¥) + F (x© —x¥), a7

where Xt(,ilt denotes the individual with the lowest objective value in the population

at iteration g. The randomly selected indices r; € {1,2,... ,N}\{i},j = 1,2,...,5,
are taken to be mutually different. The user-defined parameter F € [0, 2] is called
the scale factor and defines the size of the steps taken towards the search directions
defined by the differences between existing individuals.

After generating the mutant vectors, crossover takes place. A trial vector, u; =
(i1, un, ..., um) ", is generated for each individual xgg), as follows:

v+ if R < CR or j = RI(i),

+1 v
uf ) = (18)
xfyg) ,  otherwise,
where j = 1,2,...,n; R; is the j-th evaluation of a uniform random number

generator in the range [0, 1]; CR € [0, 1] is a user-defined crossover rate; and RI (i)
is a randomly selected index in {1,2,...,n}.
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Eventually, the selection operator is applied, where the trial vectors compete
against their original individuals. If the trial vector achieved a better objective value,
it replaces the original individual in the population, as follows:

a0 i g () <7 (x),

Xl{g)

X(g+l) =

1

(19)
, otherwise.

The parameters F', CR, and N must be carefully selected due to their impact on DE’s
performance. A comprehensive presentation of DE-related research can be found
in Price et al. (2005).

3.2 Enhanced Differential Evolution

Recently, Mohamed (2014) proposed an enhanced DE (eDE) variant. It defines an
alternative mutation scheme, while crossover is based on probabilistic selection
between the new and the DE2 scheme of Eq.(14). Moreover, the algorithm is
enhanced by using restart to alleviate local minima.

Putting it formally, eDE is based on the mutation scheme,

+1
Wi = x® 4 By (xf@ - x9) + B (x© = x(0) 20)

where xﬁf) is a randomly selected individual; F, F, € [0, 2] are scalar parameters

called the differential weights; and x{,i)st, xﬁfgm, denote the best and worst individuals

at iteration g, respectively. The trial vector is given as follows:

w&tD i (R,- <CRorj= RI(i)) and R > (1 _ s )

by &max
+1
uf T = 3Dt (Ri<CRorj=RIG))andR< (1-£), @D

©

i otherwise,

X
where gmax 1S the total number of iterations and R is a uniform random number
generator in the range [0,1]. The rest of the parameters are identical to the standard
DE. Also, note that v; is the j-th component of the mutation vector v; produced
through Eq. (14).

A restart mechanism is also incorporated in eDE to avoid premature convergence.
The restart mechanism is applied on each individual except for the best one, which
is kept unaltered. In our case, we adopt restarts from mild perturbations x; of current
individuals x;, as follows:

X;j = Xjj + 1. (22)
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According to this scheme, the probability of plunging into local minima is drasti-
cally decreased and the local search capability is enhanced through the perturbation
of individuals into their imminent neighborhood. The sign “+” or “—" in Eq. (22) is
randomly selected with equal probability for each j. The bias is selected equal to 1
since it constitutes the smallest step size in integer search spaces as the ones in the
proposed model.

3.3 Particle Swarm Optimization

Farticle swarm optimization (PSO) was introduced by Kennedy and Eberhart
(1995). Similarly to DE it is a population-based algorithm, although with special
emphasis in cooperation. PSO does not have any direct selection operator. Instead, a
population (called a swarm) of candidate solutions (called the particles) probes the
search space. Each particle retains in memory the best position it has ever visited.
This position, along with information shared with the rest of the swarm, is used to
bias the move of the particles.

Let S = {x1,Xs,...,Xy} be a swarm of N particles, each one being an n-
dimensional vector in the search space, X; = (x;1,Xi2,...,%n) € X,i=1,2,...,N.
The particle moves by adding to its current position an adaptable bias vector, called
the velocity,

T
Vi = (Ui, Viz, -+, Vi)~ s
while it has also a personal memory, called the best position,

pi = Pi,po2, - - ,Pin)T €X.

Apart from its own best position, each particle assumes a neighborhood in the
form of a set of particle indices. The particle exchanges information with other
particles from its neighborhood by adopting their best findings. In the case where the
particle’s neighborhood is the entire swarm, the best position in the neighborhood is
referred as global best particle, and the resulting algorithm is denoted as gbest PSO.
On the other hand, when smaller neighborhoods are used the algorithm is denoted
as local best PSO (lbest PSO) (Parsopoulos and Vrahatis, 2010). The size of the
neighborhood has crucial impact on the dissemination of information in the swarm
and, hence, on convergence speed.

In literature, various neighborhood topologies have been proposed. Most com-
monly used are the star, Von Neumann, and the ring topology. According to the
ring, all particles are assumed to lie on a ring with respect to their indices. Then, for
a given particle, its neighborhood is defined by its immediate neighbors in the ring.
The considered number of neighbors per neighborhood is called the neighborhood’s
radius. Thus, a ring neighborhood of radius r for a particular particle x; is defined
as follows:

NB ={i—ri—r+1,....i....i+r—1i+r}. (23)
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Let best; be the index of the best position found so far by any individual in the
neighborhood NB! of x;, i.e.,

best; = arg min f (p;) . (24)
JENB]

Also, let g denote the iteration counter. Then, the swarm is updated according to,

+1 (

b = i [vj]s) + R (P?f’ _xl(;')) + eRy (pgiw _xl(f))], (25)
+1 +1

AT = 1 ot (26)

where y is the constriction coefficient parameter; c;, c,, are positive acceleration
parameters; and R;, R,, are random variables, uniformly distributed in the range
[0, 1]. The constriction coefficient promotes convergence by reducing the magnitude
of the velocities. For the reader’s convenience, we mention the typical values y =
0.729, ¢c; = ¢, = 2.05, which are widely accepted as the default parameter set on
the basis of the PSO’s stability analysis due to Clerc and Kennedy (2002).

The best positions of the particles are updated at each iteration according to,

e+ (g+1) (€3]
@n_ )% o lff(x" )<f(p" )

p;
pfg) , otherwise.

27)

A compendium of PSO-related research can be found in Parsopoulos and Vrahatis
(2010).

3.4 Algorithm Portfolios

The term Algorithm Portfolio (AP) refers to a framework where different algorithms
(heterogeneous AP) or different copies of the same algorithm (homogeneous
AP) are combined in a single algorithmic scheme (Huberman et al., 1997). APs
constitute a modern approach for solving challenging optimization problems. Their
computational efficiency against common metaheuristics has led to a constantly
increasing research production (Gomes and Selman, 1997; Huberman et al., 1997;
Peng et al., 2010; Souravlias et al., 2014, 2015; Tang et al., 2014).

The performance of APs depends on the selection of appropriate constituent
algorithms. The constituent algorithms can either interact or run independently. In
the present work, the AP framework proposed by Souravlias et al. (2015) is used
to define interactive algorithmic schemes consisting of the metaheuristics described
in the previous sections. The AP’s algorithms interact with each other and employ
a typical master-slave parallelization model. Each metaheuristic runs on one of M
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slave nodes for a pre-specified budget of total running time. The budget is divided
into execution time, Texec, 1.€., time used by the algorithm for its own execution, and
investment time, Ty, 1.€., time used to buy elite solutions from the other algorithms.

Slave nodes can communicate via a master node, which is responsible for two
basic operations. Firstly, it maintains an archive of the M elite solutions detected by
the algorithms. Secondly, it assigns prices to the elite solutions whenever solution
trading takes place. For this purpose, the solutions are sorted in descending order
with respect to their objective values. Then, the price of each one is determined
according to its corresponding position p; in the ranking, i.e.,

pi X BC
Ci= YR (28)
where BC = B Ty, is a fixed base cost and B is a constant that takes values in [0, 1]
as suggested by Souravlias et al. (2014).

When an algorithm (slave node) fails to improve its solution for some predefined
amount of time, it requests from the master node to buy an elite solution from
the archive. For the buyer algorithm, this comes at the cost of a fraction of its
investment time, which is immediately credited to the seller algorithm that offered
the purchased solution. The master node proposes to the slave node its archived
elite solutions that are better than its own current best solution. Then, the buyer
algorithm gets the one that maximizes the Return on Investment (ROI) index, among
the solutions it can afford. The ROI index comes from trading theory and in our case
is defined as follows:

ROIjzfcﬁ, je{l,2,...,M}, 29)
J

where f denotes the objective value of the buyer’s best solution, f; denotes the
objective value of the seller’s elite solution, and C; is the assigned price (Souravlias
et al., 2014). The paid investment time from the buyer algorithm is then added to
the total execution time of the seller algorithm. The purchased solution replaces the
worst solution in the population of the buyer. In case of no affordable solution, the
buyer algorithm simply restarts, retaining only its best solution.

Apparently, better algorithms of the AP sell solutions more frequently and,
consequently, gain additional execution time. It is worth mentioning that the
total execution time assigned to the AP remains constant, since time portions
are only dynamically transferred from inferior to the most promising constituent
algorithms. This is a significant property in modern high-performance platforms
where usage and execution time have a significant cost. Also, the final distribution
of execution time of the constituent algorithms offers useful insight regarding the
best-performing one for the problem at hand (Souravlias et al., 2014, 2015).
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3.5 Further Applicability Issues

Two main issues need to be addressed prior to the application of the presented
metaheuristics on the problem of Sect. 2. The first one is related to the discrete
nature of the search space, while the second one refers to constraint handling.

Regarding the first issue, simple rounding to the nearest integer is used. Specif-
ically, the algorithms are applied on the corresponding real search space and, for
the function evaluation, the vectors are rounded to the nearest integer ones. In DE
and eDE, the rounded vectors are also retained in the population. In PSO, rounded
vectors replace best positions solely. Rounding is a common approach successfully
applied in similar problems (Piperagkas et al., 2012; Parsopoulos et al., 2015).

The constraint handling problem is tackled with the widely used penalty function
approach, combined with a set of preference rules between feasible and infeasible
solutions:

1. Between two infeasible solutions, the one that violates fewer constraints is
selected.

2. Between a feasible and an infeasible solution, the feasible one is preferred.

3. Between two feasible solutions, the one with the lowest objective value is
preferred.

These rules have been previously used with PSO and DE (Parsopoulos et al., 2015).
The employed penalty function has a simple form,

PX)=fx)+ Y V(). (30)

i€VC(x)

where f(x) is the actual objective value of x; V(i) is the violation magnitude of the
i-th constraint; and VC(x) is the set of constraints violated by x. Note that the penalty
for a violated constraint depends on the magnitude of violation. Apparently, in
absence of violated constraints the penalty function is equal to the original objective
function.

4 Performance Assessment

In this section we expose the experimental settings and the obtained results from the
application of the described algorithms on the test suite produced for the proposed
HL model.
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Table 2 Capacity and volume information
for vehicle types I (small) and II (big)
Transportation mode
Ground | Air
1 m I 1I
Load capacity (ton) | 3 |10 4 9
Load volume (m®) |20 |44 |35 |75

Table 3 Commodities information

Water | Medicines | Food

Importance weight | 0.35 0.35 0.30
Unit weight (kg) 650 20 200
Unit volume (m?) | 1.44 |0.125 0.60

Table 4 Number of vehicles
per DC

Transportation mode

Ground | Air

I |II |I I
DC, |4 |5 1 |1
DC, |4 |5 1 |1

4.1 Experimental Setting

The main goal in our model is the minimization of losses caused by the mismatch
between supply and demand, as well as the determination of the optimal number
of vehicles for the transportation of relief resources to the stricken areas. In
our experiments we considered three life-essential commodities, namely water,
medicines, and food. Among them, the first two were assumed to have slightly higher
importance weights than the third one.

Moreover, we assumed the existence of two DCs responsible to supply two AAs,
and two modes of transportation, ground and aerial, using trucks and helicopters,
respectively. For each transportation mode, two vehicle types were considered,
namely small and big vehicles, henceforth denoted as type I and II, respectively.
Tables 2 and 3 report all relevant information regarding vehicles and commodities,
respectively. Note that, motivated by the Kefalonia island earthquake in 2014, the
reported data are based on real-world values (e.g., palettes of water bottles, typical
transportation boxes for medication, etc). Also, Table 4 reports the number of
available vehicles per DC.

In the context of the proposed model, a test suite of 10 benchmark problems with
diverse characteristics was generated. The test problems are henceforth denoted
as P1-P10. The problems were initially solved to optimality with the CPLEX
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solver. Subsequently, extensive experiments were conducted with the following
algorithms: PSO, DE, eDE, as well as APs consisting of PSO+DE, PSO+¢eDE,
DE+DE, DE+eDE, eDE+eDE, and PSO+DE+eDE.

In a preprocessing phase, all five mutation operators of Egs.(13)—(17) were
considered for DE and eDE, along with all combinations of their parameters
F € [0,2] and CR € [0, 1], discretized with step size 0.05. Various population sizes
were also investigated. Preliminary experiments provided clear evidence that DE2
with,

F=F =F, =04, CR = 0.05,

was the most promising setting. The PSO algorithm was considered in its Ibest
model with ring topology of radius r = 1, and the default parameter set,

X = 0729, Cl =C = 2.05.

The population size for all algorithms was set to N = 150, which was identified as
a promising value for our 144-dimensional optimization problem. The boundaries
for the decision variables were the ones imposed by the given data (for the vehicles)
and the constraints given in Sect. 2 (for the delivered quantities).

In order to statistically validate each algorithm, 30 independent experiments
were performed per problem instance. The experiments were conducted on Intel i7
servers with 8GB RAM. The running time for each experiment was set to 10 min in
order to be comparable with the time needed by CPLEX to provide accurate lower
bounds for the solutions. Note that, on average CPLEX required around 10 min
to find good solution approximations, although their optimality guarantee required
even hours. The algorithms were run and analyzed also for 5 and 20 min in order to
investigate their sensitivity with respect to running time. The time-variation of the
solution error is illustrated in Fig. 1.

For each algorithm and experiment, the best solution x;g and its value aTg were
recorded, along with the solution error from the global minimum detected by
CPLEX, i.e.,

. % *

solution error = fy, — foiex-
The plain solution error is utilized instead of the relative error, because the optimal
objective value of some problems was zero. Average values of solution error over
the 30 experiments, along with standard deviation, minimum, and maximum values,
were also recorded for performance comparison purposes.

4.2 Results and Discussion

A summary of all recorded results is reported in Table 5, where the best-performing
approach is boldfaced. Also, the results are graphically illustrated to facilitate visual
comparisons. The average solution error from the global minimum is presented in
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Fig. 1 Solution error averaged over all problem instances per algorithm and running time

Table 5 Mean, standard deviation, minimum, and maxi-
mum solution error values for all algorithms, averaged over
all problems. Best values are boldfaced. The “+” symbol
denotes AP approach constituting of the corresponding

algorithms

Algorithm Mean
PSO 513.80
DE 63.31
eDE 3.54
PSO+DE 52.28
PSO+eDE 4.14
DE+DE 59.65
DE+-eDE 0.76
eDE+¢eDE 0.75

PSO+DE+¢eDE 0.84

St.D.
235.85
40.45
3.42
31.11
3.99
55.36
0.91
0.85
1.18

Min
197.00
26.97
0.29
27.01
0.16
21.15
0.00
0.00
0.00

Max
2442.20

160.21
11.80
129.42
13.77
193.81
2.91
2.27
3.74

the upper part of Fig. 2, per problem and algorithm. In the lower part of Fig. 2, the
central region around the origin is zoomed, exposing the corresponding curves of
the most competitive algorithms. Similarly, in the upper and lower part of Fig. 3, we
illustrate the averaged standard deviation per problem and algorithm. Note that in
all figures we excluded the results of PSO due to scaling reasons.

Furthermore, we also recorded the success rate per algorithm, i.e., the percentage
of experiments where it succeeded to reach the optimal solution within the available
execution time. Figure 4 presents the resulting success rates per problem instance
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Fig. 2 Averaged solution error per algorithm and problem (upper part) and zoom in center area
(lower part)

for the most promising algorithms. Finally, the boxplots of Fig.5 illustrate the
distribution of the obtained solution error values in all experiments.

The reported results offer interesting conclusions. Firstly, we can easily see
that the homogeneous AP approach eDE+eDE as well as the heterogeneous
PSO-+DE+-eDE outperformed the rest of the algorithms, yielding higher success
rates. Also, these two approaches exhibited almost equivalent performance. How-
ever, in problems P6-P8, which were proved to be the most difficult ones with
respect to the success rates of the algorithms, the eDE+-eDE approach dominated in
terms of efficiency.

In order to quantitatively study this behavior, we further analyzed the solution
purchases between the algorithms of the AP approaches. The analysis verified that,
especially for the aforementioned problems, the number of purchases between the
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Fig. 3 Standard deviation of the solution error per algorithm and problem (upper part) and zoom
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algorithms was remarkably high. This leads to the conclusion that, due to the
complexity of these problems, the constituent algorithms of the AP experienced
severe difficulties in reaching the optimal solution. Therefore, they were more prone
to exchange information in order to improve their performance.

Also, in the case of PSO+DE+-eDE, the assigned execution time per algorithm
was shorter than that of each eDE instance in eDE+eDE, because in the first case
the total time of the AP is divided by 3, while in the latter one it is divided in 2
equal parts. Since PSO was proved to be less efficient than eDE, the assigned time
in PSO+DE+-eDE was consequently proved to be insufficient.

Regarding the standalone algorithms, eDE was clearly the dominant one, exhibit-
ing undoubtful advantages against the rest. This can also explain the superiority
of the eDE-based AP approaches. Obviously, the special probabilistic operator
of eDE as well as the restart mechanism with mild perturbations (see Sect. 3.2)
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were beneficial for the algorithm. Experimental evidence suggested that this can
be attributed to the alleviation of search stagnation caused by the rounding of the
real-valued vectors to their nearest integers. Moreover, this can be related also to
the domination of the DE2 operator, which offers the necessary diversity to avoid
stagnation. These properties were also identified in Souravlias et al. (2014).

Although there is a clear advantage of some algorithms against the rest, there are
marginal differences among the most promising approaches. In order to investigate
whether the observed differences were the outcome of random fluctuations, we
conducted statistical significance tests among the most competitive algorithms.
Specifically, pairwise comparisons of the algorithms were conducted using the
Wilcoxon ranksum tests at 95 % confidence level for all test problems. Whenever an
algorithm was statistically superior to another, we counted it as win of the algorithm.
On the other hand, if it was statistically inferior, we counted it as a loss. The lack of
statistical significance was counted as a draw for both algorithms.

The results concerning wins/losses/draws are presented in Table 6 and the
corresponding graphical illustration is given in Fig. 6 for all problem instances. The
superiority of DE+eDE, eDE+eDE, and PSO+DE+eDE was anew confirmed. In
almost all comparisons, these approaches were prevalent against the rest. Yet, most
of the comparisons among them resulted in draws, despite the marginal differences
reported in Table 6. Especially for DE+eDE and eDE+eDE, no losses were reported.
Thus, our initial assumption regarding the superiority of eDE-based approaches was
corroborated by the statistical evidence, placing these AP approaches in a salient
position among the most promising solvers.

5 Conclusions

The contribution of the present work was twofold. On one hand, we introduced
a model that aims at minimizing the losses caused by the mismatch between
supply and demand, while concurrently determining the number of different types
of vehicles used to transport relief commodities from dispatch centers to stricken
areas. A number of test problems with diverse characteristics was generated for the
proposed model and solved to optimality using CPLEX.

Table 6 Wins/losses/draws of row versus column algorithms for all problem instances

eDE | PSO+eDE | DE4-eDE | eDE+eDE | PSO+DE+eDE

eDE - 1/1/8 0/5/5 0/5/5 0/8/2
PSO+eDE - 0/7/73 0/9/1 1/7172
DE+eDE - 0/0/10 0/0/10
eDE+eDE - 0/0/10

PSO+DE+eDE -
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Fig. 6 Results of the pairwise statistical comparisons among the most competitive algorithms for
all test problems

On the other hand, prevalent modern metaheuristics were studied in solving
Humanitarian Logistics problems. Our approach was based on DE, eDE, PSO, and
heterogeneous/homogeneous APs consisting of combinations of these algorithms.
Proper modifications and refinements were introduced to tackle the special require-
ments of the test problems.

From the extracted results, we concluded that APs based on eDE offer remark-
able performance efficiency and solution quality. Also, it became evident that APs
can offer crucial insight in gathering information regarding the most appropriate
metaheuristic for the problem at hand.

Future work will extend the test suite, aiming at an abundant set of test problems
with a multitude of different characteristics and peculiarities. Also, the study of APs
will be enriched by employing larger and diverse collections of metaheuristics, in
order to efficiently deal with problems of higher complexity.

References

Balcik, B., Beamon, B.M.: Facility location in humanitarian relief. Int. J. Log. Res. Appl. 11(2),
101-121 (2008)

Balcik, B., Beamon, B.M., Smilowitz, K.: Last mile distribution in humanitarian relief. J. Intell.
Transp. Syst. 12(2), 51-63 (2008)



Metaheuristic Optimization for Logistics in Natural Disasters 133

Barbarosoglu, G., Arda, Y.: A two-stage stochastic programming framework for transportation
planning in disaster response. J. Oper. Res. Soc. 55(1), 43-53 (2004)

Besiou, M., Stapleton, O., Van Wassenhove, L.N.: System dynamics for humanitarian operations.
J. Humanitarian Logist. Supply Chain Manag. 1(1), 78-103 (2011)

Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Comput. Surv. 35(3), 268-308 (2003)

Chang, M.S., Tseng, Y.L., Chen, J.W.: A scenario planning approach for the flood emergency
logistics preparation problem under uncertainty. Transp. Res. E Logist. Transp. Rev. 43(6),
737-754 (2007)

Clark, A., Culkin, B.: A network transshipment model for planning humanitarian relief operations
after a natural disaster. In: Decision Aid Models for Disaster Management and Emergencies,
Atlantis Computational Intelligence Systems, vol. 7, pp. 233-257. Atlantis Press, Paris (2013)

Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimen-
sional complex space. IEEE Trans. Evol. Comput. 6(1), 58-73 (2002)

Cozzolino, A., Rossi, S., Conforti, A.: Agile and lean principles in the humanitarian supply chain.
J. Humanitarian Logist. Supply Chain Manag. 2(1), 16-33 (2012)

Diaz, R., Behr, J., Toba, A.L., Giles, B., Ng, M., Longo, F., Nicoletti, L.: Humanitarian/emergency
logistics models: A state of the art overview. In: Proceedings of the 2013 Summer Computer
Simulation Conference (SCSC13), pp. 24:1-24:8. Society for Modeling & Simulation Interna-
tional, Vista (2013)

Falasca, M., Zobel, C.W.: A two-stage procurement model for humanitarian relief supply chains.
J. Humanitarian Logist. Supply Chain Manag. 1(2), 151-169 (2011)

Galindo, G., Batta, R.: Review of recent developments in OR/MS research in disaster operations
management. Eur. J. Oper. Res. 230(2), 201-211 (2013)

Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper.
Res. 13(5), 533-549 (1986)

Gomes, C.P., Selman, B.: Algorithm portfolio design: Theory vs. practice. In: Proceedings of
the 13th Conference on Uncertainty in Artificial Intelligence (UAI’97), pp. 190-197. Morgan
Kaufmann Publishers, San Francisco (1997)

Gomes, C.P,, Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43-62 (2001)

Han, Y., Guan, X., Shi, L.: Optimization based method for supply location selection and routing in
large-scale emergency material delivery. IEEE Trans. Autom. Sci. Eng. 8(4), 683-693 (2011)

Huang, M., Smilowitz, K., Balcik, B.: A continuous approximation approach for assessment
routing in disaster relief. Transp. Res. B Methodol. 50, 20-41 (2013)

Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational
problems. Science 27, 51-53 (1997)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings on IEEE International
Conference on Neural Networks, vol. 4, pp. 1942—-1948 (1995)

Liu, N., Ye, Y.: Humanitarian logistics planning for natural disaster response with Bayesian
information updates. J. Ind. Manag. Optim. 10(3), 665-689 (2014)

Lourenco, H.: Logistics management: An opportunity for metaheuristics. In: Metaheuristics
Optimization via Memory and Evolution, vol. 30, pp. 329-356. Springer, New York (2005)
Mohamed, A.W.: RDEL: Restart differential evolution algorithm with local search mutation for

global numerical optimization. Egypt. Inform. J. 15(3), 175-188 (2014)

Ozdamar, L., Ekinci, E., Kucukyazici, B.: Emergency logistics planning in natural disasters. Ann.
Oper. Res. 129(1-4), 217-245 (2004)

PAHO: Humanitarian Supply Management and Logistics in the Health Sector. Pan American
Health Organization, Washington D.C. (2001)

Parsopoulos, K.E., Konstantaras, I., Skouri, K.: Metaheuristic optimization for the single-item
dynamic lot sizing problem with returns and remanufacturing. Comput. Ind. Eng. 83, 307-
315 (2015)

Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization and Intelligence: Advances and
Applications. Information Science Publishing (IGI Global), Hershey (2010)



134 Th. Korkou et al.

Peng, F.,, Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for numerical
optimization. IEEE Trans. Evol. Comput. 14(5), 782-800 (2010)

Peng, M., Chen, H.: System dynamics analysis for the impact of dynamic transport and information
delay to disaster relief supplies. In: 2011 International Conference on Management Science and
Engineering (ICMSE 2011), pp. 93-98 (2011)

Piperagkas, G.S., Konstantaras, 1., Skouri, K., Parsopoulos, K.E.: Solving the stochastic dynamic
lot-sizing problem through nature-inspired heuristics. Comput. Oper. Res. 39(7), 1555-1565
(2012)

Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global
Optimization. Springer, New York (2005)

Sheu, J., Chen, Y., Lan, L.: A novel model for quick response to disaster relief distribution. In:
Proceedings of the Eastern Asia Society for Transportation Studies, vol. 5, pp. 2454-2462
(2005)

Souravlias, D., Parsopoulos, K.E., Alba, E.: Parallel algorithm portfolio with market trading-based
time allocation. In: International Conference on Operations Research 2014 (OR2014). Aachen,
Germany (2014)

Souravlias, D., Parsopoulos, K.E., Kotsireas, I.S.: Circulant weighing matrices: A demanding
challenge for parallel optimization metaheuristics. Optim. Lett. 10(6), 1303-1314 (2015)

Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization
over continuous spaces. J. Global Optim. 11(4), 341-359 (1997)

Tang, K., Peng, F., Chen, G., Yao, X.: Population-based algorithm portfolios with automated
constituent algorithms selection. Inform. Sci. 279, 94-104 (2014)

Tatham, P., Kovacs, G.: The application of swift trust to humanitarian logistics. Int. J. Prod. Econ.
126(1), 35-45 (2010)

Taylor, D., Pettit, S.: A consideration of the relevance of lean supply chain concepts for
humanitarian aid provision. Int. J. Serv. Technol. Manag. 12(4), 430—444 (2009)

Thomas, A., Kopczak, L.: From Logistics to Supply Chain Management - The Path Forward to the
Humanitarian Sector. Fritz Institute, San Francisco (2005)

Van Hentenryck, P., Bent, R., Coffrin, C.: Strategic planning for disaster recovery with stochastic
last mile distribution. In: Integration of Al and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6140, pp.
318-333. Springer, Berlin-Heidelberg (2010)

Van Wassenhove, L.N.: Humanitarian aid logistics: Supply chain management in high gear. J.
Oper. Res. Soc. 57(5), 475-489 (2006)

Vitoriano, B., Ortufio, M., Tirado, G., Montero, J.: A multi-criteria optimization model for
humanitarian aid distribution. J. Glob. Optim. 51(2), 189-208 (2011)

Yan, S., Shih, Y.L.: An ant colony system-based hybrid algorithm for an emergency roadway repair
time-space network flow problem. Transportmetrica 8(5), 361-386 (2012)

Yi, W., Kumar, A.: Ant colony optimization for disaster relief operations. Transp. Res. E Logist.
Transp. Rev. 43(6), 660-672 (2007)

Yi, W., Ozdamar, L.: A dynamic logistics coordination model for evacuation and support in disaster
response activities. Eur. J. Oper. Res. 179(3), 1177-1193 (2007)

Yuan, Y., Wang, D.: Path selection model and algorithm for emergency logistics management.
Comput. Ind. Eng. 56(3), 1081-1094 (2009)

Zhang, J.H., Li, J., Liu, Z.P.: Multiple-resource and multiple-depot emergency response problem
considering secondary disasters. Expert Syst. Appl. 39(12), 11,066-11,071 (2012)

Zheng, YJ., Ling, H.F,, Xue, J.Y., Chen, S.Y.: Population classification in fire evacuation: A
multiobjective particle swarm optimization approach. IEEE Trans. Evol. Comput. 18(1), 70-81
(2014)



	Metaheuristic Optimization for Logistics in Natural Disasters
	1 Introduction
	2 Problem Formulation
	3 Employed Algorithms
	3.1 Differential Evolution
	3.2 Enhanced Differential Evolution
	3.3 Particle Swarm Optimization
	3.4 Algorithm Portfolios
	3.5 Further Applicability Issues

	4 Performance Assessment
	4.1 Experimental Setting
	4.2 Results and Discussion

	5 Conclusions
	References


