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Abstract. Research on the existence of specific classes of combinatorial
matrices such as the Circulant Weighing Matrices (CWMs) lies in the
core of diverse theoretical and computational efforts. Modern metaheuris-
tics have proved to be valuable tools for solving such problems. Recently,
parallel Algorithm Portfolios (APs) composed of established search algo-
rithms and sophisticated resource allocation procedures offered signifi-
cant improvements in terms of time efficiency and solution quality. The
present work aims at shedding further light on the latent quality of paral-
lel APs on solving CWM problems. For this purpose, new AP configura-
tions are considered along with specialized procedures that can enhance
their performance. Experimental evaluation is conducted on a compu-
tationally restrictive, yet widely accessible, multi-core processor compu-
tational environment. Statistical analysis is used to reveal performance
trends and extract useful conclusions.

Keywords: Algorithm Portfolios · Circulant Weighing Matrices ·
Computational optimization · Multi-core processors

1 Introduction

Combinatorial matrices are involved in various significant applications rang-
ing from statistical experimentation to coding theory and quantum information
processing [3,8,23]. Special types of combinatorial matrices have been exten-
sively investigated. Circulant Weighing Matrices (CWMs) constitute an impor-
tant class in this framework. The existence of finite or infinite classes of CWMs
has been the core subject in several theoretical works [2,4,9,10,12].
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Metaheuristics have proved to be very useful in cases where theoretical
approaches have not provided adequate insight. The application of metaheuris-
tics requires the transformation of the CWM existence problem to a combina-
torial optimization task [6,7,18,19,21,22]. Recently, prevailing metaheuristics
have been used in the Algorithm Portfolios (APs) framework [16,17] for solv-
ing CWM problems in parallel computational environments [28]. Sophisticated
resource allocation schemes based on market trading procedures were used in
those approaches, achieving high standards of performance. The provided results
suggested that APs can remarkably enhance the time performance and quality of
solution of their constituent algorithms in CWM problems [28]. Also, they ver-
ified the domination of trajectory-based approaches against population-based
stochastic algorithms.

The present work aims at extending the previous studies by offering further
insight regarding the performance of interactive and non-interactive parallel APs.
Based on previous findings, the established Tabu Search (TS) algorithm and the
previously unused Iterated Local Search (ILS) approach compose the consid-
ered APs. Additionally, a sequence-comparison scheme that prevents TS from
revisiting classes of equivalent sequences is introduced.

The experimental evaluation of the APs is conducted on a low-specification
parallel hardware, i.e., a common multi-core processor, in contrast to the abun-
dant grid-computing environment of previous studies [28]. The overall perfor-
mance of the APs is investigated in terms of time efficiency and solution quality
on two representative CWM problems. Additionally, the impact of the number
of concurrently running algorithms on the overall performance is investigated.
Diverse homogeneous and heterogeneous APs with various parameter configura-
tions are also considered.

The rest of the paper is structured as follows: Sect. 2 formulates the CWM
problem as a combinatorial optimization task. The employed individual algo-
rithms and APs are described in Sect. 3. Experimental analysis is reported in
Sect. 4, and the paper concludes in Sect. 5.

2 Circulant Weighing Matrices

Circulant Weighing Matrices (CWMs) [4] refer to a special type of combinatorial
matrices. A square n × n matrix W defined as,

W = (wij) , wij ∈ {−1, 0, 1}, i, j = 1, . . . , n,

is a CWM of order n and weight k2, denoted as CW (n, k2), if it satisfies the
condition,

W W� = k In,

where In is the identity matrix of size n, and W� is the transpose of W . Thus, a
CWM is primarily a weighing matrix. Additionally, each row of a CWM, except
the first one, is obtained through a right cyclic shift of its preceding row. Hence,
the complete matrix can be fully defined by its first row. A significant amount
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of research has been devoted to theoretical and experimental investigations on
the existence of CWMs of various orders and weights [1,5,10,29].

Metaheuristics have been employed in cases where theoretical efforts have
been fruitless. In these cases, the problem is solved as a permutation optimization
one, aiming at the detection of the first row of the considered CWM type. The
underlying objective function is based on the concept of Periodic Autocorrelation
Function (PAF) [20]. The defining row of a CWM is a ternary sequence,

x = (x1, x2, . . . , xn) ∈ {−1, 0,+1}n,

of length n, and its PAF values are defined as,

PAF x (s) =
n∑

i=1

xi xi+s, s = 1, 2, . . . ,
⌈n

2

⌉
. (1)

CWMs with zero PAF values have special research interest [19,20,28]. In
addition, it has been proved that admissible sequences have exactly k2 non-zero
components, with k(k + 1)/2 components being equal to +1 and k(k − 1)/2
components assuming the −1 value.

Let S(n,k) be the search space that contains all admissible ternary sequences
that define CWMs of order n and weight k2. Then, the objective function of the
corresponding combinatorial optimization problem is defined as,

min
x∈S(n,k)

f(x ) =
�n

2 �∑

s=1

|PAF x (s)| =
�n

2 �∑

s=1

∣∣∣∣∣

n∑

i=1

xi xi+s

∣∣∣∣∣ , (2)

where i+s is taken modulo n when i+s > n. Obviously, the global minimizer of
this optimization problem is a sequence with zero PAF values for all s. Experi-
mental evidence has shown that the difficulty of a CW (n, k2) problem increases
with the order n (length of sequence) and, particularly, with the weight k2.

3 Employed Algorithms

In the following paragraphs, we briefly describe the employed individual algo-
rithms as well as the considered APs. For presentation purposes, we assume that
the considered optimization problem is given in the general form,

min
x∈S

f(x ),

where S in the corresponding search space.

3.1 Iterated Local Search

Iterated Local Search (ILS) defines a simple and straightforward framework for
probing complex search spaces. Its main requirement is the use of a suitable
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Table 1. Pseudocode of the ILS algorithms.

Iterated Local Search (ILS)

1 : xini ← GetInitialSequence(S)

2 : x∗ ← LocalSearch(xini)

3 : S∗ ← {x∗}
4 : While (not stopping) Do

5 : If (rand() < ρ) Then

6 : xini ← GetInitialSequence(S∗)

7 : Else

8 : xini ← GetInitialSequence(S)

9 : End If

10 : x∗ ← LocalSearch(xini)

11 : S∗ ← S∗ ∪ {x∗}
12 : End While

13 : xbest ← arg minx∗∈S∗ f(x∗)

14 : Report xbest

local search procedure for the problem at hand. The local search is initiated to
a randomly selected sequence x ini and generates a trajectory that eventually
reaches the nearest local minimizer x ∗. This is achieved by iteratively selecting
downhill moves within the close neighborhood of the current sequence.

In discrete spaces such as the ones in the studied CWM problems, the close
neighborhood of a sequence is defined as the finite set of sequences with the
smallest possible distance from it. Typically, Hamming distance is used for
this purpose. The local search procedure usually scans the whole neighbor-
hood of the current sequence and makes the move with the highest improve-
ment (neighborhood-best strategy). Alternatively, it can make a move to the first
improving sequence found in the neighborhood (first-best strategy). The detected
local minimizer is archived in a set S∗. Then, a new trajectory is started from a
new initial sequence [24].

In its simplest form, ILS generates new trajectories by randomly sampling
new initial sequences in the search space according to a (typically Uniform) dis-
tribution. This is the well-known Random Restarts approach. The most common
stopping criteria are the detection of a prespecified number of local minimiz-
ers or a maximum computational budget in terms of running time or function
evaluations. Although random restarts were shown to be sufficient in various
problems, relevant research suggests that efficiency can be increased if already
detected local minimizers from the set S∗ are exploited during the search [24].
Typically, this refers to the generation of new initial sequences by perturbing
previously detected local minimizers.

The two initialization approaches can also be combined. Naturally, this
scheme introduces new parameters to the algorithm. Specifically, the user needs
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Table 2. Pseudocode of the TS algorithms.

Tabu Search (TS)

1 : TL ← ∅
2 : x ← GetInitialSequence(S)

3 : UpdateTabuList(TL,x)

4 : xbest ← x

5 : While (not stopping) Do

6 : x′ ← ProbeNeighborhood(N(x),TL)

7 : UpdateTabuList(TL,x′)

8 : If (f(x′) < f(xbest)) Then

9 : xbest ← x′

10 : End If

11 : If (trajectory termination) Then

12 : x ← NewInitialSequence(S,xbest, ρ)

13 : End If

14 : End While

15 : Report xbest

to specify a probability ρ ∈ [0, 1] of using perturbation-based restarts as well as
the criteria for selecting the local minimizers from the set S∗.

The ILS algorithm is given in pseudocode in Table 1. Each call of rand()
returns a real-valued random number in the range [0, 1], while the function
GetInitialSequence() implements the sampling procedures for the search space
S and the set S∗. For a comprehensive presentation of ILS the reader is referred
to [24].

3.2 Tabu Search

Tabu Search (TS) is among the most popular and well-studied metaheuris-
tics. Since its formal introduction in [13,14], TS has been applied on numerous
problems spanning various fields of discrete optimization [11,15,26]. The basic
motivation for the development of TS originated from the necessity of search
algorithms to overcome local minimizers. This was achieved by equipping the
algorithms with descent and hill-climbing capabilities.

In descent mode, the local search procedure of TS follows the baseline of the
ILS approach described in the previous section. After the detection of a local
minimizer, the algorithm begins ascending by reversing from downhill to uphill
moves in the neighborhood N(x ) of the current sequence x . This continues until
a local maximizer is reached. Subsequently, a new descent phase takes place etc.

In order to avoid retracing the same trajectories, a memory structure that
stores the most recent moves and prevents the algorithm from revisiting them is
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used in TS. In practice, the memory comprises a finite list structure, also called
tabu list (TL), where the most recently visited sequence replaces the oldest one.

The use of memory cannot fully prevent TS from getting trapped in mislead-
ing trajectories that drive the search away from global minimizers. In such cases,
it is beneficial to restart the algorithm on a new sequence if the current trajec-
tory has not improved the best solution for a prespecified number of iterations
or elapsed time.

Similarly to ILS, new initial sequences can be generated either randomly
within the whole search space S or through perturbations of already detected
local minimizers. The latter approach can be effective in problems where local
minimizers are closely clustered.

A simple form of the TS algorithm is reported in Table 2, where the parameter
ρ ∈ [0, 1] defines the probability of restarting the algorithm on a perturbation of
the best-so-far solution xbest. Other crucial parameters are the size of the tabu
list, stabu, as well as the number of non-improving steps, Tnis, before restarting a
trajectory. Further details on TS and its applications can be found in [11,15,26].

3.3 Algorithm Portfolios

Algorithm Portfolios (APs) [17] define schemes composed of multiple individual
algorithms that share the available computational budget. An AP may consist
of multiple copies of one algorithm with the same or different parameters (homo-
geneous AP) or different algorithms (heterogeneous AP). All the algorithms run
concurrently in either one or multiple processors (CPUs). If a single CPU is used,
the algorithms’ execution is alternated according to a time assignment schedule.
In multi-core or parallel systems, the algorithms share the hardware resources,
i.e., number of available CPUs [16].

Relevant studies have shown that proper resource allocation between the
constituent algorithms can render APs more efficient than the standalone algo-
rithms, both in serial [17] and parallel [16] computational environments. More-
over, information exchange between the algorithms (interactive APs) can be
highly beneficial [25]. Motivated from these studies, a new parallel AP with a
sophisticated time budget allocation scheme that is based on market-trading
procedures was proposed in [27] and successfully applied on the CWM problems
in [28]. The specific AP comprised various search algorithms. Among them, TS
was shown to be the most effective one [28].

The previous studies offered useful insight on the performance of APs on
CWM problems, leaving prosperous ground for further investigation. The AP
in [28] was based on the special trading-based time allocation rather than the
plain interactive AP model. The experimental results offered clear evidence that
trajectory-based approaches were dominant in terms of solution quality. More-
over, the highly-effective TS algorithm was considered only with the neighbor-
hood best strategy, which is an effective but also computationally demanding
approach.
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Another important issue in parallel APs is the effect of the number of algo-
rithms and, consequently, the number of nodes that are concurrently used. The
experiments in [28] were conducted on a computer cluster where a large number
of processors were available. However, it would be interesting to evaluate the APs
also on the widely accessible multi-core processors, which typically offer only a
small number of CPUs to the user. For instance, modern Intel c© i7 processors
consist of 4 actual cores that offer 8 CPUs by using hyper-threading technology1.
Each CPU can concurrently run multiple algorithms in different computation
threads at the cost of slower execution, since the algorithms are alternatively
executed. Given a prespecified running-time budget, it is compelling to investi-
gate whether it is preferable to use small number of algorithms (not exceeding
the number of available CPUs) in order to attain faster execution or use higher
numbers of algorithms (thereby promoting exploration) with slower execution.

Another interesting issue that emanates from previous TS applications is
related to the criteria of accepting a new sequence through comparisons with
the ones stored in TL. The typical comparison has been based solely on the
Hamming distance between the compared sequences, i.e., a pairwise comparison
of their corresponding components. Thus, a new sequence was accepted only if it
had non-zero distance from all stored sequences in TL. Although this approach
adheres to the typical rules applied in various TS applications, it can become
inefficient in CWM problems.

The reason lies on the specific properties of CWM matrices. Specifically, a
given sequence x defines the same CWM with all right-hand shifted sequences
produced from it. In simple words, the sequence x defines a whole class of
sequences that produce the same CWM. These equivalent sequences have non-
zero Hamming distances between them. Thus, the comparison criterion in previ-
ous TS approaches cannot prevent the acceptance of a sequence that is equivalent
with one already included in TL. Tabu lists of large size as in [28] can ameliorate
this deficiency but they impose additional computational burden. For this rea-
son, it is preferable to modify the comparison procedure such that a candidate
new sequence is accepted only if it differs from all sequences in TL as well as
from all their right-hand shifts.

The present work attempts to shed light on the aforementioned issues. The
employed parallel APs are outlined in Table 3. The number of nodes, m, refers to
the number of threads required by the AP and can exceed the number of available
CPUs. The parallel AP is based on a standard master-slave parallelization model,
where the master (node 0) is devoted to book-keeping and information-sharing
between the algorithms. Both homogeneous and heterogeneous APs consisting
of the TS and ILS algorithms are studied. The simple Random Restart variant
of ILS was used, along with the local search described in the previous sections.
Further details for the algorithms are given in the following section.

1 http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.
html.

http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
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Table 3. Pseudocode of the parallel Algorithm Portfolio approach with m nodes.

Algorithm Portfolio (m nodes)

Master Node (i = 0)

1 : Initialize (m − 1) slave nodes and assign an algorithm to each one.

2 : xbest ← GetInitialSequence(S)

3 : SendSequence(i,xbest), i = 1, . . . , m − 1

3 : While (nodes still running) Do

4 : GetMessage(i)

5 : If (node i improved xbest) Then

6 : UpdateBest(xbest)

7 : Else If (node i requests best sequence update) Then

8 : SendSequence(i,xbest)

9 : End If

10 : End While

11 : Report xbest

Slave Nodes (i = 1, . . . , m − 1)

1 : Initialize assigned algorithm.

2 : ReceiveSequence(0,xbest)

3 : While (allocated time not exceeded) Do

4 : Execute one iteration of the algorithm.

5 : If (new xbest found) Then

6 : SendSequence(0,xbest)

7 : Else If (best sequence update is needed) Then

8 : RequestSequenceUpdate(0)

9 : End If

10 : End While

11 : Finalize node

4 Experimental Analysis

The experimental analysis consisted of two phases. In the first phase, all algo-
rithms were applied on the representative 33-dimensional CW (33, 25) problem,
in order to statistically analyze their performance. The specific problem was
selected due to its guaranteed solution existence, moderate size, high weight
(k2 = 25), and reasonable convergence times of the algorithms. The second
phase consisted of the application of the best-performing algorithms on the more
challenging 48-dimensional CW (48, 36) problem. This is a well-studied problem
that was used as benchmark in previous studies [28]. The number of sequence
components that assume each value of the set {−1, 0,+1} for both problems is
reported in Table 4.
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Table 4. Details of the considered representative problems.

Problem Length Weight Dim. +1 −1 0

CW (33, 25) 33 25 33 15 10 8

CW (48, 36) 48 36 48 21 15 12

Table 5. Parameter values for the employed algorithms.

Param. Description Value(s)

m number of nodes (threads) {8, 16, 64}
nss neighborhood search strategy {neighb. best (nb), first best (fb)}
stabu tabu list size {5, 10}
Tnis non-improving iterations before restart {100, 1000}
ρ probability of perturbing best solution {0.00, 0.01}
ptype algorithm parameters’ type {fixed (f), random (r)}
Tmax maximum running time 300 s

We considered APs composed solely of TS or ILS algorithms, henceforth
denoted as “TS” or “ILS”, respectively. Also, we considered mixed APs embrac-
ing both algorithms, henceforth denoted as “MIX”. Initially, an extensive exper-
imental study was conducted for all combinations (full factorial design) of the
parameter values reported in Table 5. Specifically, for each portfolio type (TS,
ILS, or MIX), we considered the cases of m = 8, 16, and 64 threads running on
a single processor with 8 CPUs available (note that the number of slave nodes is
m − 1). In TS-based APs all slave nodes were occupied by TS algorithms, while
in ILS-based APs they were devoted to ILS. In MIX APs, the TS algorithm was
assigned to the odd-indexed nodes (1, 3, . . .) and ILS algorithms were running
on even-indexed nodes (2, 4, . . .).

All experiments were conducted on a single-processor Intel c© i7-4770
3.40 GHz machine with 8 GB DDR3 RAM, providing 8 available CPUs under
Ubuntu Linux 14.04. There was no suppression of the operating system pro-
cedures during the runs. For the parallelization, the Open MPI libraries were
used with the GCC 4.8.4 compiler. All source codes were developed in the C
programming language.

In the TS and ILS algorithms, both the neighborhood-best (nb) and first-
best (fb) strategies were considered for neighborhood search. New trajectories
were either initialized on random perturbations of the best-so-far solution with
probability ρ = 0.01 or solely on random new points (denoted as ρ = 0.00). In
the first case, mild perturbations of the best solution were used, consisting of
1 up to 3 distinct random swaps of the sequence’s components.

The TS algorithms require some additional parameters. The tabu list size
stabu in our experiments was set to rather small values, namely 5 and 10. These
values are significantly smaller than in previous studies where it was set equal
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Table 6. Results for the 3 best-performing approaches per AP type and number of
nodes, as well as for the 5 overall best APs for the CW (33, 25) problem. The “*”
symbol denotes randomized-parameters APs and, if followed by a number, e.g., “*s”,
it denotes that the upper bound of the corresponding randomized parameter is s.

TS-based APs

m nss stabu Tnis ρ ptype Suc.(%) Time Loc. Min.

8 * 5 *100 0.00 r 100.0 24.6(26.4) 14080.9

8 fb 5 100 0.00 f 100.0 26.8(28.2) 17535.1

8 * 10 *100 0.00 r 100.0 32.9(34.4) 10488.2

16 * 5 *100 *0.01 r 100.0 25.7(27.4) 7574.2

16 * 5 *100 0.00 r 100.0 31.6(26.5) 8937.5

16 fb 5 100 0.00 f 100.0 38.4(30.2) 12494.7

64 fb 5 100 0.00 f 100.0 25.0(25.5) 2032.3

64 fb 5 100 0.01 f 100.0 25.5(23.8) 2100.9

64 * 5 100 0.00 r 100.0 29.0(31.8) 2063.8

ILS-based APs

m nss stabu Tnis ρ ptype Suc.(%) Time Loc. Min.

8 nb - - 0.00 f 100.0 11.0(14.6) 32512.7

8 nb - - 0.01 f 100.0 9.6(11.7) 28486.7

8 fb - - 0.00 f 100.0 6.6(4.8) 42418.4

16 fb - - 0.01 f 100.0 2.8(4.3) 8762.9

16 nb - - 0.00 f 100.0 8.5(9.0) 12413.9

16 nb - - 0.01 f 100.0 12.2(11.7) 17587.3

64 fb - - 0.00 f 100.0 4.2(4.5) 3447.3

64 fb - - 0.01 f 100.0 4.3(5.3) 3388.9

64 * - - 0.00 r 100.0 7.7(9.9) 3927.3

MIX APs

m nss stabu Tnis ρ ptype Suc.(%) Time Loc. Min.

8 fb 5 100 0.00 f 100.0 10.3(12.1) 31847.9

8 fb 10 100 0.01 f 100.0 9.9(10.2) 29267.2

8 * 5 *100 *0.01 r 100.0 9.8(12.2) 20060.1

16 fb 5 100 0.01 f 100.0 7.6(11.5) 12508.8

16 fb 10 1000 0.01 f 100.0 8.3(11.8) 12792.8

16 fb 10 100 0.01 f 100.0 7.6(7.5) 11695.5

64 * 10 *1000 0.00 r 100.0 9.9(15.8) 2681.8

64 fb 10 1000 0.00 f 100.0 8.0(6.1) 3318.4

64 fb 5 100 0.00 f 100.0 9.1(7.9) 3967.3

OVERALL BEST APs

Alg. m nss stabu Tnis ρ ptype Suc.(%) Time Loc. Min.

ILS 16 fb - - 0.01 f 100.0 2.8(4.3) 8762.9

ILS 64 fb - - 0.01 f 100.0 4.3(5.3) 3388.9

ILS 64 fb - - 0.00 f 100.0 4.2(4.5) 3447.3

MIX 16 fb 5 100 0.01 f 100.0 7.6(11.5) 12508.8

MIX 16 fb 10 1000 0.01 f 100.0 8.3(11.8) 12792.8
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to the length of the sequences (order of the CWM) [28]. The reduction was
implied by the new scheme for comparisons between the current sequence and the
stored ones in TL, as described in Sect. 3.3. The tolerance Tnis of non-improving
moves before restart was set to 100 and 1000. Larger values of Tnis result in
longer trajectories and, hence, better local exploration around recently visited
minimizers. Smaller values promote global exploration because the algorithm
is restarted more frequently. All combinations of the corresponding parameters
were considered for each AP type.

0 50 100 150 200 250
0

20

40

60

80

100

120

MEAN(TIME)

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N
(T

IM
E

)

 

 

TS−f
TS−r
ILS−f
ILS−r
MIX−f
MIX−r

Fig. 1. Mean vs standard deviation of time required per AP type (TS, ILS, MIX) for
fixed (-f) and random (-r) parameters.

In addition to the fixed-parameters APs, randomized-parameters variants
were also studied. In these cases, the algorithms in the AP were allowed to
randomly select new parameter values, among the available ones in Table 5, for
each new trajectory. Thus, there was a total number of 162 different APs in our
experiments. Each AP was independently applied on the CW (33, 25) problem
for a maximum time of Tmax = 300 s. Since the algorithms in the APs involve
stochastic decisions, 25 independent experiments were conducted per AP for
statistical analysis purposes.

For each individual combination of type (TS, ILS, MIX) and number of nodes
(8, 16, 64), the performances of the corresponding APs were pairwisely tested
using the Wilcoxon ranksum test with 0.05 significance level in order to identify
statistically significant differences. The comparisons were primarily based on the
successes of the APs in detecting globally optimal solutions and, secondarily, on
the required running times. Then the APs were sorted according to the achieved
scores.
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The three best-performing APs per case are reported in Table 6 along with
their parameters. For each reported AP, the percentage of success in detecting
a global minimizer, the mean and standard deviation (in parenthesis) of the
required time in seconds, as well as the mean number of visited local minimizers
per slave node, averaged over the 25 experiments are reported. For the MIX
APs, the parameters stabu and Tnis refer to their constituent TS algorithms.

In a second round of comparisons, all the 162 APs were statistically compared
against each other, aiming at finding the overall best-performing approaches. The
Wilcoxon ranksum test with 0.05 significance level was used also in this case, and
the APs were sorted according to their scores. The five most promising APs are
reported in the lower part of Table 6. Furthermore, Fig. 1 illustrates the mean
value versus the standard deviation of the time required per AP type (TS, ILS,
MIX) for fixed (-f) and random (-r) parameters. Figure 2 shows the average time
required per AP type (TS, ILS, MIX) for 8, 16, and 64 nodes.

Table 6 offers interesting evidence for each AP type. First, we can notice that
the best TS-based APs required higher average running times and visited less
local minimizers than ILS-based and MIX APs. This is also observed in Fig. 1
where TS-based APs occupy the upper-right part of the figure. The observed
time-performance profiles are reasonable, since TS spends a fraction of its com-
putational budget for procedures related to checking and updating the tabu list,
as well as for hill-climbing. Nevertheless, TS was highly effective in detecting
the global minimizer. Also, we can see that the small TL size, stabu = 5, was
dominant in the best-performing TS-based APs because larger tabu lists require
additional comparisons and, consequently, reduce convergence speed. This is also
in line with the dominant Tnis = 100 parameter, which promotes shorter trajec-
tories.
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Fig. 2. Average time required per AP type (TS, ILS, MIX) for 8, 16, and 64 nodes.
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Moreover, Table 6 reveals a trend of (almost linear) reduction of the num-
ber of visited minimizers with the number of nodes. This may seem counter-
intuitive, because additional nodes offer higher numbers of concurrent trajec-
tories (although at slower speed in the multi-core processor). However, it can
be explained by the increase of the exploration capabilities of the algorithms,
which lead to faster detection of a global minimizer. The rapid convergence is
also reflected to the declining average execution times in Fig. 2. Thus, the num-
ber of concurrent trajectories seems to be highly beneficial in TS-based APs
despite the possible slowdown in the AP’s execution.

Another interesting observation is that TS-based APs with fixed parameters
(ptype = “f”) profited from the first-best neighborhood search (nss = “fb”). This
is related to the previous comment on the significant time consumed for com-
paring the complete neighborhood of the current sequence with the whole tabu
list. Obviously, making a move directly after a sequence of adequate quality is
detected in the current neighborhood, can spare significant amount of execution
time without reducing effectiveness.

Finally, the results show that APs with randomized parameters can perform
equally well with the ones with fixed parameters, especially when random ini-
tialization is preferred against perturbations of the best solution. The latter can
be a consequence of the inherent ability of TS to visit neighboring sequences
through hill-climbing.

The ILS-based APs achieved the lowest average convergence times as depicted
in Fig. 2. This is reasonable, since ILS exploits its computational budget solely
in descent moves towards the nearest local minimizer. However, there is an inter-
esting effect of the number of nodes on the average running time. As we can see
in Fig. 2, doubling the number of nodes from 8 to 16 results in improved average
time, but further increase to 64 nodes produces negative effects on performance
since the trajectories are significantly slowed down. This verifies the existence
of a trade-off between the number of concurrent trajectories and time efficiency
for the ILS-based APs on multi-core processors.

The three best-performing ILS-based APs show a clear preference to fixed
parameters configuration, as we notice in Table 6. Since ILS does not have an
inherent mechanism for searching neighboring minimizers, there is a balanced
preference between completely random new trajectories and the use of pertur-
bations of the best solution. Also, the neighborhood-best approach seems to be
more beneficial, i.e., ILS prefers to conduct steepest descent to the nearest min-
imizer. The number of visited local minimizers with respect to the employed
nodes shows similar trends with the TS-based APs.

The performance profile of MIX APs combines performance aspects of both
TS and ILS. The effect of the number of nodes on the average running time
appears to follow the same trends with TS, since the running time of the AP
is primarily consumed by the TS algorithms. On the other hand, the number
of visited minimizers is comparable to the ILS-based APs. However, there are
some peculiarities on the parameters of the three best-performing approaches,
as revealed in Table 6.
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Specifically, we observe that the first-best approach was dominant, obviously
because it enhances the TS algorithms. However, APs with higher TL sizes and
longer trajectories appear more frequently among the best ones, especially for
higher number of nodes. Thus, there seems to be an interesting division of labor
in MIX APs, where TS algorithms offer the AP’s exploitation ability and ILS
undertake the exploration task. Furthermore, perturbation-based initialization
appears to be very competitive to the pure randomized one.

Overall, the synergism between TS and ILS in the MIX approaches seems
to equip the APs with combined dynamics. The extra cost due to the tabu
list-related procedures is counterbalanced by the first-best neighborhood search.
This way, the spared computation time allows for longer trajectories and larger
tabu lists.
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Fig. 3. Boxplots of running time of the best-performing APs on the CW (48, 6) problem.
Green color stands for 64-nodes APs, while red color stands for the 16-nodes APs.
(Color figure online)

In a second round of comparisons, where each AP was compared against all
the rest, three ILS and two MIX approaches were distinguished. As it is reported
in Table 6, all these APs were based on fixed parameters and high number of
nodes. Interestingly, a clear domination of the perturbation-based initialization
of new trajectories is noticed.

The five distinguished approaches were further assessed on the more chal-
lenging CW (48, 36) problem, which has been used as a benchmark in previous
works. The maximum time per experiment for this case was Tmax = 10800 s
(3 h). In all experiments and algorithms, a global minimizer was detected. The
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boxplots of the running time of the APs over 25 experiments is illustrated in
Fig. 3, where the APs appear in the same order as in Table 6.

Wilcoxon ranksum tests with 0.05 significance level showed no significant
differences in terms of running time among them. However, their average times
are favorably compared to those in previous studies [28], although strict com-
parisons would be questionable due to the completely different hardware and
experimental configurations used in the present work. Nevertheless, it is a clear
indication of the potential of the presented APs in solving CWM problems.

5 Conclusions

The present work enriched our insight on the performance of parallel APs on
CWM problems. Enhanced TS- and ILS-based APs were used. Also, mixed APs
composed by both algorithms were considered. Experimentation was focused
on the widely accessible multi-core processor computational environment. Two
representative test problems were used in order to investigate the performance
of the APs as well as the influence of the requested number of nodes (threads),
which defines also the number of the AP’s algorithms, on the time efficiency and
solution quality.

A rich variety of both homogeneous and heterogeneous APs were considered
under various parameter settings, offering useful conclusions. ILS-based APs
were significantly faster than TS-based ones, and they showed different response
when the number of nodes was increased. Fixed parameters were shown to domi-
nate randomized ones. Also, the effect of the time-consuming neighborhood-best
strategy was counterbalanced by smaller tabu lists in TL-based APs. Shorter
trajectories were clearly preferred in TS-based APs. Nevertheless, the best-
performing mixed APs assumed also longer trajectories for the TS constituent
algorithms, since running time was sparred by the ILS constituent algorithms of
the AP.

Future work will consider further refinements of the AP as well as more exten-
sive investigations of the identified trade-offs among their different properties.
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2012. LNCS, vol. 7461, pp. 220–227. Springer, Heidelberg (2012)

23. Koukouvinos, C., Seberry, J.: Weighing matrices and their applications. J. Stat.
Plan. Infer. 62(1), 91–101 (1997)
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